

Markov Random Fields for Computer Vision (Part 3) Machine Learning Summer School (MLSS 2011)

Stephen Gould stephen.gould@anu.edu.au

Australian National University

13-17 June, 2011

◆ロト < 部 > < き > < き > こ を の < で </p>

Higher-Order Constraints

$$E(\mathbf{y}; \mathbf{x}) = \sum_{c} \psi_{c}(\mathbf{y}_{c}; \mathbf{x})$$

$$= \sum_{i \in \mathcal{V}} \psi_{i}^{U}(y_{i}; \mathbf{x}) + \sum_{ij \in \mathcal{E}} \psi_{ij}^{P}(y_{i}, y_{j}; \mathbf{x}) + \sum_{c \in \mathcal{C}} \psi_{c}^{H}(\mathbf{y}_{c}; \mathbf{x}).$$
pairwise

Higher-order terms allow us to encode stronger constraints:

- encourage label consistency over regions [Kohli et al., 2007]
- limit global occurrence of labels [Ladicky et al., 2010]
- enforce global connectivity [Vicente et al., 2008; Norowin et al., 2009]
- prefer segmentation "tightness" [Lempitsky et al., 2009]

◆ロト ◆御 ▶ ◆注 ▶ ◆注 ▶ 注 りへ○

Stephen Gould 2/12

[Boros and Hammer, 2001], [Kolmogorov and Zabih, 2004], [Freedman and Drineas, 2005], [Ishikawa, 2009]

Consider a cubic pseudo-Boolean function over $\mathbf{y} = (y_1, y_2, y_3)$,

$$E(y_1, y_2, y_3) = -y_1y_2y_3.$$

3/12

Stephen Gould

[Boros and Hammer, 2001], [Kolmogorov and Zabih, 2004], [Freedman and Drineas, 2005], [Ishikawa, 2009]

Consider a cubic pseudo-Boolean function over $\mathbf{y} = (y_1, y_2, y_3)$,

$$E(y_1, y_2, y_3) = -y_1y_2y_3.$$

Introducing auxiliary binary variable z, we can write

$$\min_{\mathbf{y}} E(y_1, y_2, y_3) = \min_{\mathbf{y}} -y_1 y_2 y_3
= \min_{\mathbf{y}} \min_{z \in \{0,1\}} -z(y_1 + y_2 + y_3 - 2)$$

[Boros and Hammer, 2001], [Kolmogorov and Zabih, 2004], [Freedman and Drineas, 2005], [Ishikawa, 2009]

Consider a cubic pseudo-Boolean function over $\mathbf{y} = (y_1, y_2, y_3)$,

$$E(y_1, y_2, y_3) = -y_1y_2y_3.$$

Introducing auxiliary binary variable z, we can write

$$\min_{\mathbf{y}} E(y_1, y_2, y_3) = \min_{\mathbf{y}} -y_1 y_2 y_3
= \min_{\mathbf{y}} \min_{z \in \{0,1\}} -z(y_1 + y_2 + y_3 - 2)
= \min_{\mathbf{y}, z} \bar{z} + \bar{y}_1 z + \bar{y}_2 z + \bar{y}_3 z - 1
\underline{\text{submodular}}$$

Stephen Gould 3/12

[Boros and Hammer, 2001], [Kolmogorov and Zabih, 2004], [Freedman and Drineas, 2005], [Ishikawa, 2009]

Consider a cubic pseudo-Boolean function over $\mathbf{y} = (y_1, y_2, y_3)$,

$$E(y_1, y_2, y_3) = -y_1y_2y_3.$$

Introducing auxiliary binary variable z, we can write

$$\min_{\mathbf{y}} E(y_1, y_2, y_3) = \min_{\mathbf{y}} -y_1 y_2 y_3
= \min_{\mathbf{y}} \min_{z \in \{0,1\}} -z(y_1 + y_2 + y_3 - 2)
= \min_{\mathbf{y}, z} \bar{z} + \bar{y}_1 z + \bar{y}_2 z + \bar{y}_3 z - 1
\underline{\text{submodular}}$$

The same trick applies to higher-order terms with negative coefficients. Reduction of terms with positive coefficients is possible, but the resulting energy function is non-submodular.

Stephen Gould 3/12

Higher-Order Consistency Constraints

4□ > 4ⓓ > 4 를 > 4 를 > = 4)Q(*

Lower Linear Envelopes [Kohli and Kumar, 2010]

$$\psi_c^H(\mathbf{y}_c) \triangleq \min_k \left\{ a_k \sum_{i \in C} w_i \llbracket y_i = \ell_k \rrbracket + b_k \right\}$$

Stephen Gould 5/12

Minimizing Binary Lower Linear Envelopes [Gould, 2011]

$$\psi_c^H(\mathbf{y}_c) \triangleq \min_k \left\{ a_k \sum_{i \in C} y_i + b_k \right\} = \min_k \left\{ f_k(\mathbf{y}_c) \right\}$$

Assume sorted on a_k . Introduce auxiliary binary random variables $\mathbf{z} = (z_1, \dots, z_{K-1})$ such that $z_k \geq z_{k+1}$. Then

$$\min_{\mathbf{y}_c} \psi_c^H(\mathbf{y}_c) = \min_{\mathbf{y}_c, \mathbf{z}} f_1(\mathbf{y}_c) + \sum_k z_k \left(f_{k+1}(\mathbf{y}_c) - f_k(\mathbf{y}_c) \right)$$

submodular binary pairwise MRF

Stephen Gould 6/12

Integer Programming

• Let us represent multi-label variable $y_i \in \mathcal{L}$ by a binary vector $(z_{i;1}, \ldots, z_{i;L})$ such that $z_{i;a} = 1$ if, and only if, $y_i = a$.

(ロト(御) (き)(き) きょりへの

Stephen Gould 7/12

Integer Programming

- Let us represent multi-label variable $y_i \in \mathcal{L}$ by a binary vector $(z_{i;1}, \ldots, z_{i;L})$ such that $z_{i;a} = 1$ if, and only if, $y_i = a$.
- Let $\theta_{i;a} \triangleq \psi_i^U(y_i = a; \mathbf{x})$ and $\theta_{ij;ab} \triangleq \psi_{ii}^P(y_i = a, y_j = b; \mathbf{x})$.

< ロ > < 卸 > < 重 > < 重 > ・ 重 ・ り < ご

Integer Programming

- Let us represent multi-label variable $y_i \in \mathcal{L}$ by a binary vector $(z_{i;1}, \ldots, z_{i;L})$ such that $z_{i;a} = 1$ if, and only if, $y_i = a$.
- Let $\theta_{i;a} \triangleq \psi_i^U(y_i = a; \mathbf{x})$ and $\theta_{ij;ab} \triangleq \psi_{ij}^P(y_i = a, y_j = b; \mathbf{x})$.

Then we can formulate energy minimization as a *binary integer* programming problem,

$$\operatorname{minimize}_{\mathbf{y} \in \mathcal{L}^n} E(\mathbf{y}; \mathbf{x})$$

1

$$\begin{array}{ll} \text{minimize} & \sum_{i \in \mathcal{V}} \sum_{a \in \mathcal{L}} \theta_{i;a} z_{i;a} + \sum_{ij \in \mathcal{E}} \sum_{a,b \in \mathcal{L}} \theta_{ij;ab} z_{ij;ab} \\ \text{subject to} & \sum_{a \in \mathcal{L}} z_{i;a} = 1 \\ & \sum_{a \in \mathcal{L}} z_{ij;ab} = z_{j;b} \\ & \sum_{b \in \mathcal{L}} z_{ij;ab} = z_{i;a} \\ & z_{i;a} \in \{0,1\}, \ z_{ij;ab} \in \{0,1\} \end{array}$$

Stephen Gould 7/12

minimize
$$\sum_{i \in \mathcal{V}} \sum_{a \in \mathcal{L}} \theta_{i;a} z_{i;a} + \sum_{ij \in \mathcal{E}} \sum_{a,b \in \mathcal{L}} \theta_{ij;ab} z_{ij;ab}$$
subject to
$$\sum_{a \in \mathcal{L}} z_{i;a} = 1$$
$$\sum_{a \in \mathcal{L}} z_{ij;ab} = z_{j;b}$$
$$\sum_{b \in \mathcal{L}} z_{ij;ab} = z_{i;a}$$
$$z_{i;a} \in \{0,1\}, z_{ij;ab} \in \{0,1\}$$

8/12

Stephen Gould

$$\begin{array}{ll} \text{minimize} & \sum_{i \in \mathcal{V}} \sum_{a \in \mathcal{L}} \theta_{i;a} z_{i;a} + \sum_{ij \in \mathcal{E}} \sum_{a,b \in \mathcal{L}} \theta_{ij;ab} z_{ij;ab} \\ \text{subject to} & \sum_{a \in \mathcal{L}} z_{i;a} = 1 \\ & \sum_{a \in \mathcal{L}} z_{ij;ab} = z_{j;b} \\ & \sum_{b \in \mathcal{L}} z_{ij;ab} = z_{i;a} \\ & z_{i;a} \in [0,1], \ z_{ij;ab} \in [0,1] \end{array}$$

Stephen Gould 8/12

MAP Linear Programming Relaxation

minimize $\boldsymbol{\theta}^T \mathbf{z}$ subject to $\mathbf{z} \in \mathcal{M}^{\text{local}}$

Stephen Gould 9/12

MAP Linear Programming Relaxation

minimize $\boldsymbol{\theta}^T \mathbf{z}$ subject to $\mathbf{z} \in \mathcal{M}^{\text{local}}$

Advantages:

- tractable
- provides a lower bound
- more "stable" for learning

Disadvantages:

- LP is typically very large
- solution is not integral (i.e., needs rounding)

A number of specialized techniques have been developed to solve the large-scale linear programs found in computer vision (e.g., [Wainwright et al., 2005; Werner, 2005; Yanover et al., 2006; Globerson and Jaakkola, 2007; Komodakis et al., 2007]).

Stephen Gould 9/12

Main idea:

start with integer program

- introduce duplicate variables and split into tractable slaves
- add coupling constraints between duplicated variables
- maximize the dual problem

|ロト 4回 ト 4 恵 ト 4 恵 ト | 恵 | 釣り())

Main idea:

start with integer program

minimize_y
$$\sum_{c \in \mathcal{C}} \psi_c(\mathbf{y}; \mathbf{x})$$

- introduce duplicate variables and split into tractable slaves
- add coupling constraints between duplicated variables
- maximize the dual problem

(ロ) (레) (토) (토) (토) (의익(C

Main idea:

start with integer program

minimize_y
$$\sum_{c \in \mathcal{C}} \psi_c(\mathbf{y}; \mathbf{x})$$

• introduce duplicate variables and split into tractable slaves

minimize_y
$$\sum_{c \in \mathcal{C}} \psi_c(\mathbf{y}^{(c)}; \mathbf{x})$$

• add coupling constraints between duplicated variables

subject to
$$y_i^{(c)} = y_i$$

maximize the dual problem

Main idea:

start with integer program

minimize_y
$$\sum_{c \in \mathcal{C}} \psi_c(\mathbf{y}; \mathbf{x})$$

introduce duplicate variables and split into tractable slaves

minimize_y
$$\sum_{c \in \mathcal{C}} \psi_c(\mathbf{y}^{(c)}; \mathbf{x})$$

add coupling constraints between duplicated variables

subject to
$$y_i^{(c)} = y_i$$

maximize the dual problem

$$\begin{aligned} & \text{maximize}_{\boldsymbol{\lambda}} & \sum_{c \in \mathcal{C}} \min_{\mathbf{y}^{(c)}} \left\{ \psi_c(\mathbf{y}^{(c)}; \mathbf{x}) - \boldsymbol{\lambda}_c^T \mathbf{y}^{(c)} \right\} \\ & \text{subject to} & \sum_{c \in \mathcal{C}} \boldsymbol{\lambda}_c = \mathbf{0} \end{aligned}$$

10/12

Open Problems

- What is the class of multi-label or higher-order functions that can be transformed into submodular quadratic pseudo-Boolean functions?
- Are there better max-flow algorithms for solving energy minimization problems with high connectivity (i.e., large neighbourhoods)?
- How best to solve large-scale integer programs for computer vision applications?
- How can we learn the parameters from data? (next tutorial)

a . . .

4 B M 4 전 M

11/12

Summary

- Pixel labeling CRFs
- Pseudo-boolean fons
- Higher-order terms
- Integer programming

Please feel free to contact me if you are interested in research at the intersection between computer vision and machine learning.

stephen.gould@anu.edu.au

Stephen Gould 12/12