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Higher-Order Constraints

E (y; x) =
∑

c

ψc(yc ; x)

=
∑

i∈V

ψU
i (yi ; x)

︸ ︷︷ ︸
unary

+
∑

ij∈E

ψP
ij (yi , yj ; x)

︸ ︷︷ ︸

pairwise

+
∑

c∈C

ψH
c (yc ; x).

︸ ︷︷ ︸

higher-order

Higher-order terms allow us to encode stronger constraints:

encourage label consistency over regions [Kohli et al., 2007]

limit global occurrence of labels [Ladicky et al., 2010]

enforce global connectivity [Vicente et al., 2008; Norowin et al.,

2009]

prefer segmentation “tightness” [Lempitsky et al., 2009]
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Minimizing 2nd-Order Binary Functions

[Boros and Hammer, 2001], [Kolmogorov and Zabih, 2004],
[Freedman and Drineas, 2005], [Ishikawa, 2009]

Consider a cubic pseudo-Boolean function over y = (y1, y2, y3),

E (y1, y2, y3) = −y1y2y3.

Stephen Gould 3/12



Minimizing 2nd-Order Binary Functions

[Boros and Hammer, 2001], [Kolmogorov and Zabih, 2004],
[Freedman and Drineas, 2005], [Ishikawa, 2009]

Consider a cubic pseudo-Boolean function over y = (y1, y2, y3),

E (y1, y2, y3) = −y1y2y3.

Introducing auxiliary binary variable z , we can write

min
y

E (y1, y2, y3) = min
y

−y1y2y3

= min
y

min
z∈{0,1}

−z(y1 + y2 + y3 − 2)



Minimizing 2nd-Order Binary Functions

[Boros and Hammer, 2001], [Kolmogorov and Zabih, 2004],
[Freedman and Drineas, 2005], [Ishikawa, 2009]

Consider a cubic pseudo-Boolean function over y = (y1, y2, y3),

E (y1, y2, y3) = −y1y2y3.

Introducing auxiliary binary variable z , we can write

min
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E (y1, y2, y3) = min
y

−y1y2y3

= min
y

min
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z̄ + ȳ1z + ȳ2z + ȳ3z − 1
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The same trick applies to higher-order terms with negative
coefficients. Reduction of terms with positive coefficients is
possible, but the resulting energy function is non-submodular.
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Higher-Order Consistency Constraints

image superpixels segmentation
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Lower Linear Envelopes [Kohli and Kumar, 2010]

ψH
c (yc) , min

k

{

ak
∑

i∈C

wi [[yi = ℓk ]] + bk

}
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Minimizing Binary Lower Linear Envelopes [Gould, 2011]

ψH
c (yc) , min

k

{

ak
∑

i∈C

yi + bk

}

= min
k

{fk(yc)}

Assume sorted on ak . Introduce auxiliary binary random variables
z = (z1, . . . , zK−1) such that zk ≥ zk+1. Then

min
yc

ψH
c (yc) = min

yc ,z
f1(yc) +

∑

k

zk (fk+1(yc)− fk(yc))

︸ ︷︷ ︸

submodular binary pairwise MRF
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Integer Programming

Let us represent multi-label variable yi ∈ L by a binary vector
(zi ;1, . . . , zi ;L) such that zi ;a = 1 if, and only if, yi = a.
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Integer Programming

Let us represent multi-label variable yi ∈ L by a binary vector
(zi ;1, . . . , zi ;L) such that zi ;a = 1 if, and only if, yi = a.

Let θi ;a , ψU
i (yi = a; x) and θij ;ab , ψP

ij (yi = a, yj = b; x).

Then we can formulate energy minimization as a binary integer

programming problem,

minimizey∈LnE (y; x)

m

minimize
∑

i∈V

∑

a∈L θi ;azi ;a +
∑

ij∈E

∑

a,b∈L θij ;abzij ;ab

subject to
∑

a∈L zi ;a = 1
∑

a∈L zij ;ab = zj ;b∑

b∈L zij ;ab = zi ;a
zi ;a ∈ {0, 1}, zij ;ab ∈ {0, 1}
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Integer Programming Relaxation
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Integer Programming Relaxation

MAP Linear Programming Relaxation

minimize θ
Tz subject to z ∈ Mlocal

Stephen Gould 9/12



Integer Programming Relaxation

MAP Linear Programming Relaxation

minimize θ
Tz subject to z ∈ Mlocal

Advantages:

tractable

provides a lower bound

more “stable” for learning

Disadvantages:

LP is typically very large

solution is not integral
(i.e., needs rounding)

A number of specialized techniques have been developed to solve the

large-scale linear programs found in computer vision (e.g., [Wainwright et

al., 2005; Werner, 2005; Yanover et al., 2006; Globerson and Jaakkola,

2007; Komodakis et al., 2007]).
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Dual Decomposition [Komodakis and Paragios, 2009]

Main idea:

start with integer program

introduce duplicate variables and split into tractable slaves

add coupling constraints between duplicated variables

maximize the dual problem
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Dual Decomposition [Komodakis and Paragios, 2009]

Main idea:

start with integer program

minimizey
∑

c∈C ψc(y; x)

introduce duplicate variables and split into tractable slaves

minimizey
∑

c∈C ψc(y
(c); x)

add coupling constraints between duplicated variables

subject to y
(c)
i = yi

maximize the dual problem

maximizeλ
∑

c∈C miny(c)
{
ψc(y

(c); x)− λ
T
c y

(c)
}

subject to
∑

c∈C λc = 0
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Open Problems

What is the class of multi-label or higher-order functions that
can be transformed into submodular quadratic
pseudo-Boolean functions?

Are there better max-flow algorithms for solving energy
minimization problems with high connectivity (i.e., large
neighbourhoods)?

How best to solve large-scale integer programs for computer
vision applications?

How can we learn the parameters from data? (next tutorial)

· · ·
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Summary

Pixel labeling CRFs

Pseudo-boolean fcns

Higher-order terms

Integer programming

Please feel free to contact me if you are interested in research at
the intersection between computer vision and machine learning.

stephen.gould@anu.edu.au
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