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Higher-Order Constraints
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unary pairwise higher-order

Higher-order terms allow us to encode stronger constraints:
o encourage label consistency over regions [Kohli et al., 2007]
o limit global occurrence of labels [Ladicky et al., 2010]

o enforce global connectivity [Vicente et al., 2008; Norowin et al.,
2009]

o prefer segmentation “tightness” [Lempitsky et al., 2009]
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Minimizing 2nd-Order Binary Functions

[Boros and Hammer, 2001], [Kolmogorov and Zabih, 2004],
[Freedman and Drineas, 2005], [Ishikawa, 2009]

Consider a cubic pseudo-Boolean function over y = (y1, y2, ¥3),

E(y1,y2,y3) = —y1y2ys.
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The same trick applies to higher-order terms with negative
coefficients. Reduction of terms with positive coefficients is
possible, but the resulting energy function is non-submodular.
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Higher-Order Consistency Constraints

image superpixels segmentation
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Lower Linear Envelopes [Kohli and Kumar, 2010]
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Minimizing Binary Lower Linear Envelopes [Gould, 2011]

H, A - .

dellye) £ min {akaf + bk} = min {fi(yc)}
ieC

Assume sorted on aj. Introduce auxiliary binary random variables

z=(z,...,2K_1) such that zx > zx,1. Then

min Yellyc) = min fi(ye) + > 2k (e (ye) = filye))
c c’ k

submodular binary pairwise MRF
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Integer Programming

o Let us represent multi-label variable y; € £ by a binary vector
(zi:1,---,2:1) such that z., = 1 if, and only if, y; = a.
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Integer Programming

o Let us represent multi-label variable y; € £ by a binary vector
(zi:1,---,2:1) such that z., = 1 if, and only if, y; = a.
o Let 6., £ ¢,U(y,- = a;x) and 0. £ /l/)f;(y,- =a,y; = b;x).

Then we can formulate energy minimization as a binary integer
programming problem,

minimizeyecn E (y; x)

0

minimize Ziev Zae[ﬁ 0i;azi;a + Zijes Za,beﬁ 6)fj;abzij;ab
subject to Y, zia=1

Dacr Zijiab = Zjib

> ber Zijiab = Ziia

Zj.a € {0, 1}, Zjj:ab € {O, ]_}
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Integer Programming Relaxation

minimize > jey > aep OiaZiia+ Xjice Daper VijiabZijiab
subject to Y, zia=1
2acs Zijiab = Zjib
ber Zij;ab = Zija

Zj.a € {07 1}7 Zjj:ab € {0, 1}
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Integer Programming Relaxation
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Integer Programming Relaxation

minimize 87z subject to z € MO

Advantages: Disadvantages:
o tractable o LP is typically very large
o provides a lower bound o solution is not integral

o more “stable” for learning (i.e., needs rounding)

A number of specialized techniques have been developed to solve the
large-scale linear programs found in computer vision (e.g., [Wainwright et
al., 2005; Werner, 2005; Yanover et al., 2006; Globerson and Jaakkola,
2007; Komodakis et al., 2007]).
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Dual Decomposition [Komodakis and Paragios, 2009]

Main idea:

o start with integer program

o introduce duplicate variables and split into tractable slaves
o add coupling constraints between duplicated variables

@ maximize the dual problem
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Dual Decomposition [Komodakis and Paragios, 2009]

Main idea:

o start with integer program

o introduce duplicate variables and split into tractable slaves
o add coupling constraints between duplicated variables

@ maximize the dual problem

maximizey ZCGC miny(c) {z/)c(y(c); x) — ACTy(C)}
subject to Y e Ac =10
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What is the class of multi-label or higher-order functions that
can be transformed into submodular quadratic
pseudo-Boolean functions?

Are there better max-flow algorithms for solving energy
minimization problems with high connectivity (i.e., large
neighbourhoods)?

How best to solve large-scale integer programs for computer
vision applications?

How can we learn the parameters from data?
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Summary

Pixel labeling CRFs
Pseudo-boolean fcns

Higher-order terms

© © © ¢

Integer programming

Please feel free to contact me if you are interested in research at
the intersection between computer vision and machine learning.

stephen.gould@anu.edu.au
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