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Recap: Pixel Labeling

Many problems in computer vision can be formulated as inference
in a Markov random field.
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Stereo matching Photo montage Denoising

How do we minimize the resulting energy function?
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Outline of Energy Minimization via Graph-cuts

Big picture:

©

Start with a pixel labeling problem

Formulate as a (multilabel) graphical model inference problem
Convert to a series of binary pairwise MRF inference problems
Write MRF as a quadratic pseudo-Boolean function

Convert pseudo-Boolean minimization to min-cut problem

Equivalently, formulate as a max-flow problem

¢ © ¢ ¢ ¢ ¢

Solve using augmented-path algorithm
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A Note About Graphs

point of confusion:
graphs are used to represent many different things

In this talk we use graphs to...

o represent probabilistic models (or energy functions),
e.g., Markov random fields and factor graphs.

o represent optimization problems, e.g., psuedo-Boolean
function minimization.
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Pseudo-boolean Functions [Boros and Hammer, 2001]

A mapping f : {0,1}" — R is called a pseudo-Boolean function. J
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Pseudo-boolean Functions [Boros and Hammer, 2001]

A mapping f : {0,1}" — R is called a pseudo-Boolean function. J

o Pseudo-boolean functions can be uniquely represented as
multi-linear polynomials, e.g., f(y1,y2) = 6+ y1+5y2 — Ty1 ).
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Pseudo-boolean Functions [Boros and Hammer, 2001]

A mapping f : {0,1}" — R is called a pseudo-Boolean function. J

o Pseudo-boolean functions can be uniquely represented as
multi-linear polynomials, e.g., f(y1,y2) = 6+ y1+5y2 — Ty1 ).
o Pseudo-boolean functions can also be represented in posiform,

e.g., f(y1,y2) = 2y1 + 591 + 3y2 + 32 + 371y2 + 4y17. This
representation is not unique.
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Pseudo-boolean Functions [Boros and Hammer, 2001]

A mapping f : {0,1}" — R is called a pseudo-Boolean function. J

o Pseudo-boolean functions can be uniquely represented as
multi-linear polynomials, e.g., f(y1,y2) = 6+ y1+5y2 — Ty1 ).

o Pseudo-boolean functions can also be represented in posiform,
e.g., f(y1,2) = 2y1 + 551 + 3y2 + ¥2 + 3V1y2 + 4y1y2. This
representation Is not unique.

o A binary pairwise Markov random field (MRF) is just a
guadratic pseudo-Boolean function.
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Representing a Binary Pairwise MRF

Consider a binary pairwise MRF over two variables: A
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Representing a Binary Pairwise MRF

Consider a binary pairwise MRF over two variables: Al B
c|D
AL 0 0 +OD—C+OB+C—A—D
C-A|C-A 0|D-C 0 0

E(y1,y2) =A+(C=Ay1+(D-C)y2 +(B+C—A—-D)y1y>

[Kolmogorov and Zabih, 2004]
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Pseudo-boolean Optimization [Boros and Hammer, 2001

A large number of classical combinatorial optimization problems
can be formulated in terms of pseudo-boolean optimization, e.g.,

© Maximum independent set problem: find the largest set of
verticies in a graph such that no two are adjacent.

a(G) =maxee 0,137 (Ziev Xi—> (i jee i)

© Minimum vertex cover: find the smallest set of verticies such that
every edge in the graph is adjacent to at least one vertex in the set.

T(G) :minXE{UJ}"(ZieV Xi+z(i,j)€£ )_(,'>_<j)

o Maximum satisfiability problem: find an assignment to a set of
variables that satisfy as many clauses as possible.

maxxe{o,l}”(ZCec(l_ZueC E))
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Pseudo-boolean Optimization [Boros and Hammer, 2001

A large number of classical combinatorial optimization problems
can be formulated in terms of pseudo-boolean optimization, e.g.,

© Maximum independent set problem: find the largest set of
verticies in a graph such that no two are adjacent.

O‘(G) :maXXE{Owl}”(Ziev Xi—=2 (i jee Xixj)

© Minimum vertex cover: find the smallest set of verticies such that
every edge in the graph is adjacent to at least one vertex in the set.

T(G) :minXE{UJ}"(ZieV Xi+z(i,j)€£ )_(,'>_<j)

o Maximum satisfiability problem: find an assignment to a set of
variables that satisfy as many clauses as possible.

maxxe{o,l}”(ZCec(l_ZueC E))

These problems are all NP-hard.
7/41
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Submodular Functions

Let V be a set. A set function f : 2¥ — R is called submodular if
f(X)+f(Y)>f(XUY)+Ff(XNY) for all subsets X, Y C V.

(D )+ Q)=AT) (10
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Submodular Binary Pairwise MRFs

A pseudo-Boolean function f : {0,1}" — R is called submodular if
f(x)+ f(y) > f(xVy)+ f(x Ay) for all vectors x,y € {0,1}".
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Submodular Binary Pairwise MRFs

A pseudo-Boolean function f : {0,1}" — R is called submodular if
f(x)+ f(y) > f(xVy)+ f(x Ay) for all vectors x,y € {0,1}".

Submodularity checks for pairwise binary MRFs:

o polynomial form (of pseudo-boolean function) has negative
coefficients on all bi-linear terms;

o posiform has pairwise terms of the form uv;

o all pairwise potentials satisfy
$P(0,1) + ¢ (1,0) > v (1,1) + £ (0,0).
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Minimum-cut Problem

Let G = (V, &) be a capacitated digraph with two distinguished
vertices s and t. An st-cut is a partitioning of ) into two disjoint
sets S and T such that s € S and t € 7. The cost of the cut is
the sum of edge capacities for all edges going from S to 7.
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Quadratic Pseudo-boolean Optimization

Main idea:

o construct a graph such that every st-cut corresponds to a
joint assignment to the variables y

o the cost of the cut should be equal to the energy of the
assignment, E (y;x).*

o the minimum-cut then corresponds to the the minimum
energy assignment, y* = argmin, E (y; x).

*Requires non-negative energies.
Stephen Gould 11/41



Example st-Graph Construction for Binary MRF

E (y1.y2) = ¥1(y1) + ¥2(y2) + ij(y1, y2)

®
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Example st-Graph Construction for Binary MRF

E (y1,y2) = ¥1(y1) + ¥2(y2) + ¥ij(y1, y2)
=2y1+5n
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Example st-Graph Construction for Binary MRF

E (y1,y2) = ¥1(y1) + ¥o(y2) + ¥ij(y1, y2)
=21 +5n+32+

\

Stephen Gould 12/41
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Example st-Graph Construction for Binary MRF

E (y1,y2) = ¥1(y1) + ¥o(y2) + ¥ij(y1, y2)
=2y1 + 5% +3y2 +yo +3y1y2

5 1
—
2 3 3
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Example st-Graph Construction for Binary MRF

E (y1,y2) = ¥1(y1) + ¥o(y2) + ¥ij(y1, y2)
=2y1 +5y1 +3y2 + y2 + 3y1y2 +4y1y>

©
oWl O

Stephen Gould 12/41



Australian
I\

ational
University

An Example st-Cut

E (0, ].) = 1/)1(0) + 1/12(1) + 1/1,;(0, ].)
=2y1 +5y1 +3y2 +y2 +3y1y2 +4y1yo
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Another st-Cut

E(l, ].) = 1/)1(1) + "L/Jz(l) + ’l/},'j(l, ].)
=2y1 +5y1 +3y2 + y2 +3y1y2 +4y1yo

©
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Invalid st-Cut

This is not a valid cut, since it does not correspond to a
partitioning of the nodes into two sets—one containing s and one

containing t.

15/41
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Alternative st-Graph Construction

Sometimes you will see the roles of s and t switched.

® @\@
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These graphs represent the same energy function.
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Big Picture: Where are we?

We can now formulate inference in a submodular binary
pairwise MRF as a minimum-cut problem.

{0,1}" - R ®)

How do we solve the minimum-cut problem?

Stephen Gould
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Max-flow /Min-cut Theorem

The maximum flow f from vertex s to vertex t is equal to the
minimum cost st-cut.
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Maximum Flow Example
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Maximum Flow Example (Augmenting Path)

@ 0
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0/5l l0/2 W—

edge with capacity c,
©
0/

0/1
@ and current flow f.
x ,/0/5
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Maximum Flow Example (Augmenting Path)
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©
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Maximum Flow Example (Augmenting Path)

@ 3
3/;/ \\0\/3
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edge with capacity c,
©
3/

0/1
@ and current flow f.
x ,/0/5
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Maximum Flow Example (Augmenting Path)

Stephen Gould

f/c
O—©
edge with capacity c,

and current flow f.
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Maximum Flow Example (Augmenting Path)

©) 5
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edge with capacity c,
©
3/

0/1
@ and current flow f.
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Maximum Flow Example (Augmenting Path)
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and current flow f.
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Maximum Flow Example (Augmenting Path)
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Maximum Flow Example (Augmenting Path)
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Maximum Flow Example (Push-Relabel)
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Maximum Flow Example (Push-Relabel)
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Maximum Flow Example (Push-Relabel)
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Maximum Flow Example (Push-Relabel)

Stephen Gould
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Maximum Flow Example (Push-Relabel)
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Maximum Flow Example (Push-Relabel)
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Maximum Flow Example (Push-Relabel)
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Maximum Flow Example (Push-Relabel)
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®

5/5 \/3
3/3

© ®

Stephen Gould

~
[0}
~

O = = = O/
Mo oO0p~OQI

+ O 0 T L n

f/c
O—@

edge with capacity c,
current flow f.

4

22/41



Australian
i National

University

Maximum Flow Example (Push-Relabel)
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Maximum Flow Example (Push-Relabel)
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Maximum Flow Example (Push-Relabel)
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Comparison of Maximum Flow Algorithms

Current state-of-the-art algorithm for exact minimization of general
submodular pseudo-Boolean functions is O(n® T + n%), where T is
the time taken to evaluate the function [Orlin, 2007].

fassumes integer capacities
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Comparison of Maximum Flow Algorithms

Current state-of-the-art algorithm for exact minimization of general
submodular pseudo-Boolean functions is O(n® T + n%), where T is
the time taken to evaluate the function [Orlin, 2007].

| Algorithm | Complexity ‘
Ford-Fulkerson O(E max f)T
Edmonds-Karp (BFS) | O(VE?)
Push-relabel o(V?)
Boykov-Kolmogorov | O(V?E max f)
(~ O(V) in practice)

fassumes integer capacities
Stephen Gould 24/41
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Maximum Flow (Boykov-Kolmogorov, PAMI 2004)
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Maximum Flow (Boykov-Kolmogorov, PAMI 2004)
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Maximum Flow (Boykov-Kolmogorov, PAMI 2004)
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Reparameterization of Energy Functions

E (y1,¥2) = 2y1+5y1+3y2+0 E (y1,¥2) = 6y1+5y2+Ty1¥»
+3y1y2 + 4y1y

O @
oWliso & O
® @
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Big Picture: Where are we now?

We can perform inference in submodular binary pairwise
Markov random fields exactly.

{0,1}" >R O
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Big Picture: Where are we now?

We can perform inference in submodular binary pairwise
Markov random fields exactly.

o)
{0,1}" > R o@o
No<

What about...

"

@ non-submodular binary pairwise Markov random fields?
o multi-label Markov random fields?

o higher-order Markov random fields?
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Non-submodular Binary Pairwise MRFs

Non-submodular binary pairwise MRFs have potentials that do not
satisfy ¢/ (0,1) + ¢ (1,0) > [ (1,1) + 4(0,0).

They are often handled in one of the following ways:

o approximate the energy function by one that is submodular
(i.e., project onto the space of submodular functions);

o solve a relaxation of the problem using QPBO (Rother et al.,
2007) or dual-decomposition (Komodakis et al., 2007).

Stephen Gould 32/41
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Approximating Non-submodular Binary Pairwise MRFs

. A B
Consider the non-submodular potential with

C|D
A+D > B+ C.

We can project onto a submodular potential by modifying the
coefficients as follows:

A=A+D-C-B

A
A A— —
A3

A
C C+—
«C+
B<—B+%
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QPBO (ROOf Duality) [Rother et al., 2007]

Consider the energy function

E(y) =Y ¢/i)+Y_vfiy)+ D05 viny)

i€y jeg jee

submodular non-submodular

We can introduce duplicate variables y; into the energy function,

and write
wU }/l +¢
"(v.9) =) ) S
ey
VE (i) +vE (1 -y, 1)
ij ij
+ 5
je&

2 >

jee
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QPBO (Roof Duality)

E'(y,¥) =Y 3/ (vi) + 17 (1 - 37)
iey
+Zz¢lj .ylv.y_/)+ 21/}11( .yl7 _)_/j)
je&

jee

o if yy=1—y; for all i, then E (y) = E'(y,¥).
o E'(y,y) is submodular.
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QPBO (Roof Duality)

E'(y,¥) =Y 3/ (vi) + 17 (1 - 37)
iey
+Zz¢lj .ylvy_/)—i_ 21/}1_/( .yl7 _)_/j)
je&

jee

o if yy=1—y; for all i, then E (y) = E'(y,¥).
o E'(y,y) is submodular.

Ignore the constraint on y; and solve anyway. Result satisfies
partial optimality: if y; = 1 — y; then y; is the optimal label.

Stephen Gould 35/41
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Multi-label Markov Random Fields

The quadratic pseudo-Boolean optimization techniques described
above cannot be applied directly to multi-label MRFs.

However...
o ...for certain MRFs we can transform the multi-label problem
into a binary one exactly.

o ...we can project the multi-label problem onto a series of
binary problems in a so-called move-making algorithm.

Stephen Gould 36/41
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The “Battleship” Transform [ishikawa, 2003]

If the multi-label MRFs has pairwise potentials that are convex
functions over the label differences, i.e., v/ (yi, ;) = &(|yi — yjl)
where g(+) is convex, then we can transform the energy function
into an equivalent binary one.

y=1<2z=(0,0,0
y=2ez=(1,0,0
y=3ez=(1,1,0
y=4ez=(1,1,1

)
)
)
)
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The “Battleship” Transform [ishikawa, 2003]

If the multi-label MRFs has pairwise potentials that are convex
functions over the label differences, i.e., v/ (yi, ;) = &(|yi — yjl)
where g(+) is convex, then we can transform the energy function

into an equivalent binary one.

Stephen Gould
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I\/Iove making Inference
Idea:

o initialize yP™V to any valid assignment

o restrict the label-space of each variable y; from £ to V; C L
(with y>™" € )

0transformE:E”%Rtoé:ylx“‘xyn—ﬂ[%

o find the optimal assignment y for E and repeat

each move results in an assignment with lower energy
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lterated Conditional Modes [Besag, 1986]

Reduce multi-variate inference to solving a series of
univariate inference problems.

For one of the variables y;, set V; = L. Set ); = {yjprev} for all
J # i (i.e., hold all other variables fixed).
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lterated Conditional Modes [Besag, 1986]

Reduce multi-variate inference to solving a series of
univariate inference problems.

For one of the variables y;, set V; = L. Set ); = {yjprev} for all
J # i (i.e., hold all other variables fixed).

Can be used for arbitrary energy functions.

Stephen Gould 39/41
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Alpha Expansion and Alpha-Beta Swap [Boykov et al., 2001]

Reduce multi-label inference to solving a series of binary
(submodular) inference problems.

Choose some a € L. Then for all variables, set Vi = {a, y/"*'}.

Choose two labels «, 8 € L. Then for each variable y; such that
vy e {a, B}, set Vi = {a,B}. Otherwise set V; = {y’""}.

1
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end of part 2
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