

Markov Random Fields for Computer Vision (Part 2) Machine Learning Summer School (MLSS 2011)

Stephen Gould stephen.gould@anu.edu.au

Australian National University

13-17 June, 2011

◆ロト < 部 > < き > < き > こ を の < で </p>

Recap: Pixel Labeling

Many problems in computer vision can be formulated as inference in a Markov random field.

Interactive segmentation

Surface context

Semantic labeling

Stereo matching

Photo montage

Denoising

How do we minimize the resulting energy function?

Outline of Energy Minimization via Graph-cuts

Big picture:

- Start with a pixel labeling problem
- Formulate as a (multilabel) graphical model inference problem
- Convert to a series of binary pairwise MRF inference problems
- Write MRF as a quadratic pseudo-Boolean function
- Convert pseudo-Boolean minimization to min-cut problem
- Equivalently, formulate as a max-flow problem
- Solve using augmented-path algorithm

 $\{0,1\}^n \to \mathbb{R}$

$$\{0,1\}^n \to \mathbb{R}$$

◆ロト ◆卸 ト ◆ 恵 ト ◆ 恵 ・ りへの

A Note About Graphs

point of confusion:

graphs are used to represent many different things

In this talk we use graphs to...

- represent probabilistic models (or energy functions), e.g., Markov random fields and factor graphs.
- represent optimization problems, e.g., psuedo-Boolean function minimization.

Pseudo-boolean Function

A mapping $f: \{0,1\}^n \to \mathbb{R}$ is called a *pseudo-Boolean function*.

◆ロ ▶ ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ りへの

Pseudo-boolean Function

A mapping $f: \{0,1\}^n \to \mathbb{R}$ is called a *pseudo-Boolean function*.

• Pseudo-boolean functions can be uniquely represented as multi-linear polynomials, e.g., $f(y_1, y_2) = 6 + y_1 + 5y_2 - 7y_1y_2$.

◆ロト ◆部 ト ◆ 差 ト ◆ 差 ト り へ で

Pseudo-boolean Function

A mapping $f: \{0,1\}^n \to \mathbb{R}$ is called a *pseudo-Boolean function*.

- Pseudo-boolean functions can be uniquely represented as multi-linear polynomials, e.g., $f(y_1, y_2) = 6 + y_1 + 5y_2 7y_1y_2$.
- Pseudo-boolean functions can also be represented in *posiform*, e.g., $f(y_1, y_2) = 2y_1 + 5\bar{y}_1 + 3y_2 + \bar{y}_2 + 3\bar{y}_1y_2 + 4y_1\bar{y}_2$. This representation is not unique.

◆ロ → ◆個 → ◆ 種 → ◆ 種 → ○ への

Pseudo-boolean Function

A mapping $f: \{0,1\}^n \to \mathbb{R}$ is called a *pseudo-Boolean function*.

- Pseudo-boolean functions can be uniquely represented as multi-linear polynomials, e.g., $f(y_1, y_2) = 6 + y_1 + 5y_2 7y_1y_2$.
- Pseudo-boolean functions can also be represented in *posiform*, e.g., $f(y_1, y_2) = 2y_1 + 5\bar{y}_1 + 3y_2 + \bar{y}_2 + 3\bar{y}_1y_2 + 4y_1\bar{y}_2$. This representation is not unique.
- A binary pairwise Markov random field (MRF) is just a quadratic pseudo-Boolean function.

4 □ ▶ 4 륜 ▶ 4 분 ▶ 4 분 ▶ 9 년

Representing a Binary Pairwise MRF

Consider a binary pairwise MRF over two variables:

0 1 A B C D

Representing a Binary Pairwise MRF

Consider a binary pairwise MRF over two variables:

$$E(y_1, y_2) = A + (C - A)y_1 + (D - C)y_2 + (B + C - A - D)\bar{y}_1y_2$$

[Kolmogorov and Zabih, 2004]

Pseudo-boolean Optimization [Boros and Hammer, 2001]

A large number of classical combinatorial optimization problems can be formulated in terms of pseudo-boolean optimization, e.g.,

• Maximum independent set problem: find the largest set of verticies in a graph such that no two are adjacent.

$$\alpha(G) = \max_{\mathbf{x} \in \{0,1\}^n} (\sum_{i \in \mathcal{V}} x_i - \sum_{(i,j) \in \mathcal{E}} x_i x_j)$$

 Minimum vertex cover: find the smallest set of verticies such that every edge in the graph is adjacent to at least one vertex in the set.

$$\tau(G) =_{\min_{\mathbf{x} \in \{0,1\}^n} \left(\sum_{i \in \mathcal{V}} x_i + \sum_{(i,j) \in \mathcal{E}} \bar{x}_i \bar{x}_j\right)}$$

• Maximum satisfiability problem: find an assignment to a set of variables that satisfy as many clauses as possible.

$$\textstyle \mathsf{max}_{\mathbf{x} \in \{0,1\}^n} \left(\sum_{\mathcal{C} \in \mathcal{C}} \left(1 {-} \sum_{u \in \mathcal{C}} \bar{u} \right) \right)$$

Stephen Gould 7/41

Pseudo-boolean Optimization [Boros and Hammer, 2001]

A large number of classical combinatorial optimization problems can be formulated in terms of pseudo-boolean optimization, e.g.,

 Maximum independent set problem: find the largest set of verticies in a graph such that no two are adjacent.

$$\alpha(G) =_{\max_{\mathbf{x} \in \{0,1\}^n} \left(\sum_{i \in \mathcal{V}} x_i - \sum_{(i,j) \in \mathcal{E}} x_i x_j \right)}$$

 Minimum vertex cover: find the smallest set of verticies such that every edge in the graph is adjacent to at least one vertex in the set.

$$\tau(G) = \min_{\mathbf{x} \in \{0,1\}^n} \left(\sum_{i \in \mathcal{V}} x_i + \sum_{(i,j) \in \mathcal{E}} \bar{x}_i \bar{x}_j \right)$$

 Maximum satisfiability problem: find an assignment to a set of variables that satisfy as many clauses as possible.

$$\textstyle \mathsf{max}_{\mathsf{x} \in \{0,1\}^n} \left(\sum_{\mathcal{C} \in \mathcal{C}} \left(1 \! - \! \sum_{u \in \mathcal{C}} \bar{u} \right) \right)$$

These problems are all NP-hard.

Submodular Functions

Let \mathcal{V} be a set. A set function $f: 2^{\mathcal{V}} \to \mathbb{R}$ is called *submodular* if $f(X) + f(Y) \ge f(X \cup Y) + f(X \cap Y)$ for all subsets $X, Y \subseteq \mathcal{V}$.

$$f\left(\bigcap\right) + f\left(\bigcap\right) \ge f\left(\bigcap\right) + f\left(\bigcap\right)$$

Submodular Binary Pairwise MRFs

Submodularity

A pseudo-Boolean function $f: \{0,1\}^n \to \mathbb{R}$ is called *submodular* if $f(\mathbf{x}) + f(\mathbf{y}) \ge f(\mathbf{x} \lor \mathbf{y}) + f(\mathbf{x} \land \mathbf{y})$ for all vectors $\mathbf{x}, \mathbf{y} \in \{0,1\}^n$.

< ロト < 個 ト < き ト < き ト しき りへの

Submodular Binary Pairwise MRFs

Submodularity

A pseudo-Boolean function $f: \{0,1\}^n \to \mathbb{R}$ is called *submodular* if $f(\mathbf{x}) + f(\mathbf{y}) \ge f(\mathbf{x} \lor \mathbf{y}) + f(\mathbf{x} \land \mathbf{y})$ for all vectors $\mathbf{x}, \mathbf{y} \in \{0,1\}^n$.

Submodularity checks for pairwise binary MRFs:

- polynomial form (of pseudo-boolean function) has negative coefficients on all bi-linear terms;
- posiform has pairwise terms of the form $u\bar{v}$;
- all pairwise potentials satisfy $\psi_{ij}^P(0,1) + \psi_{ij}^P(1,0) \ge \psi_{ij}^P(1,1) + \psi_{ij}^P(0,0)$.

◆ロト ◆部 ▶ ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

Minimum-cut Problem

Graph Cut

Let $\mathcal{G}=\langle \mathcal{V},\mathcal{E}\rangle$ be a capacitated digraph with two distinguished vertices s and t. An st-cut is a partitioning of \mathcal{V} into two disjoint sets \mathcal{S} and \mathcal{T} such that $s\in\mathcal{S}$ and $t\in\mathcal{T}$. The cost of the cut is the sum of edge capacities for all edges going from \mathcal{S} to \mathcal{T} .

 ★□▶★□▶★□▶★□▶★□▶★□▶★□▶★□▶★□▶★□
 10/41

Quadratic Pseudo-boolean Optimization

Main idea:

- construct a graph such that every st-cut corresponds to a joint assignment to the variables y
- the cost of the cut should be equal to the energy of the assignment, $E(\mathbf{y}; \mathbf{x})$.*
- the minimum-cut then corresponds to the the minimum energy assignment, $\mathbf{y}^* = \operatorname{argmin}_{\mathbf{v}} E(\mathbf{y}; \mathbf{x})$.

- 《日》《레》《토》《토》 - 토 - 쒼오C

^{*}Requires non-negative energies.

$$E(y_1, y_2) = \psi_1(y_1) + \psi_2(y_2) + \psi_{ij}(y_1, y_2)$$

$$E(y_1, y_2) = \psi_1(y_1) + \psi_2(y_2) + \psi_{ij}(y_1, y_2)$$

= $2y_1 + 5\bar{y}_1$

$$E(y_1, y_2) = \psi_1(y_1) + \psi_2(y_2) + \psi_{ij}(y_1, y_2)$$

= $2y_1 + 5\bar{y}_1 + 3y_2 + \bar{y}_2$

→ロト→同ト→ヨト→ヨ りへ○

$$E(y_1, y_2) = \psi_1(y_1) + \psi_2(y_2) + \psi_{ij}(y_1, y_2)$$

= $2y_1 + 5\bar{y}_1 + 3y_2 + \bar{y}_2 + 3\bar{y}_1y_2$

→ロト→同ト→ヨト→ヨ りへ○

$$E(y_1, y_2) = \psi_1(y_1) + \psi_2(y_2) + \psi_{ij}(y_1, y_2)$$

= $2y_1 + 5\bar{y}_1 + 3y_2 + \bar{y}_2 + 3\bar{y}_1y_2 + 4y_1\bar{y}_2$

◆ロト ◆問 → ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

An Example st-Cut

$$E(0,1) = \psi_1(0) + \psi_2(1) + \psi_{ij}(0,1)$$

= $2y_1 + 5\bar{y}_1 + 3y_2 + \bar{y}_2 + 3\bar{y}_1y_2 + 4y_1\bar{y}_2$

4□→ 4両→ 4 = → 4 = → 9 Q Q

Another st-Cut

$$E(1,1) = \psi_1(1) + \psi_2(1) + \psi_{ij}(1,1)$$

= $2y_1 + 5\bar{y}_1 + 3y_2 + \bar{y}_2 + 3\bar{y}_1y_2 + 4y_1\bar{y}_2$

◆ロト ◆問 → ◆ き → ◆ ま め Q ○

Stephen Gould 14/41

Invalid st-Cut

This is not a valid cut, since it does not correspond to a partitioning of the nodes into two sets—one containing s and one containing t.

Alternative st-Graph Construction

Sometimes you will see the roles of s and t switched.

These graphs represent the same energy function.

くロトイラトイミト モミト モーラス で 16/41

Big Picture: Where are we?

We can now formulate inference in a submodular binary pairwise MRF as a minimum-cut problem.

$$\{0,1\}^n \to \mathbb{R}$$

How do we solve the minimum-cut problem?

Max-flow/Min-cut Theorem

Max-flow/Min-cut Theorem [Fulkerson, 1956]

The maximum flow f from vertex s to vertex t is equal to the minimum cost st-cut.

Stephen Gould 18/41

Maximum Flow Example

Stephen Gould 19/41

flow 0

flow 0

low

3

notation

 $(u) \xrightarrow{f/c} (v)$

edge with capacity c, and current flow f.

flow 3

flow 5

flow 5

◆ロト ◆園 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

flow 6

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ りへ ○

Maximum Flow Example (Augmenting Path)

flow 6

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	0	0
s a b c d	0	0
С	0	0
d	0	0
t	0	0

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	0	∞ 0
b	0	0
С	0	0
s a b c d	0	0
t	0	0

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
a b	0	∞ 5
	0	3
c d	0	0
d	0	0
t	0	0

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
s a	1	∞ 5 3
b	0	3
С	0	0
c d t	0	0
t	0	0

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	1	∞ 5
s a b c d	0	3
С	0	0
d	0	0
t	0	0

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	1	0
a b	0	6
С	0	2
c d t	0	0
t	0	0

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	1	∞ 0
s a b c d	1	6
С	0	2
d	0	0
t	0	0

notation

edge with capacity c, current flow f.

state

		$h(\cdot)$	$e(\cdot)$
S	5	6	∞
a	1	1	∞ 0
a b c)	1	6
(:	0	2
c	ł	0	0
t	:	0	0

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	1	0
b	1	4
c d	0	2
d	0	2
t	0	0

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	1	∞
b	1	4
С	1	4 2 2
s a b c d t	0	2
t	0	0

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	1	∞ 0
b	1	4
С	1	2
s a b c d	0	4 2 2
t	0	0

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	1	0
b	1	4
c d	1	0
d	0	3
t	0	1

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	1	0
s a b c d	1	4
С	1	0 3
d	1	3
t	0	1

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	1	0
b	1	4
s a b c d	1	0
d	1	3
t	0	1

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	1	0
s a b	1	4
c d t	1	0
d	1	0
t	0	4

notation

edge with capacity c, current flow f.

state

		$h(\cdot)$	$e(\cdot)$
	S	6	∞
	а	1	0
	b	2	4
	c d	1	0
	d	1	0
Į	t	0	4

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
a b	1	0
b	2	4
c d	1	0
d	1	0
t	0	4

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
a b	1	∞ 3
b	2	1
c d	1	0
d	1	0
t	0	4

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	6 2 2	∞ 3
s a b c d	2	1
С	1	0
d	1	0
t	0	4

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	6 2 2	∞ 3
s a b c d	2	1
С	1	0
d	1	0
t	0	4

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	6 2 2	0
a b c d	2	1
С	1	3
d	1	0
t	0	4

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	6 2 2	0
a b c d	2	1
С	1	3
d	1	0
t	0	4

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
a b	2 2	0
	2	1
c d	1	1
d	1	0
t	0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6 2	∞
а	2	∞
s a b c d	7	1
С	1	1
d	1	0
t	0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	6 2	0
s a b c d	7	1
С	1	1
d	1	0 6
t	0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6 2	∞
а	2	∞
s a b c d	7	0
С	1	1
d	1	0 6
t	0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6 2	∞
а	2	0
b	7	0
c d	3	1
	1	0
t	0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	2	0
s a b c d	7	0
С	3	1
d	1	0
t	0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	2	1
b	7	0
c d	3	0
d	1	0
t	0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	4	1
b	7	0
С	3	0
s a b c d	1	0
t	0	6

notation

edge with capacity c, current flow f.

state

		$h(\cdot)$	$e(\cdot)$
I	S	6	∞
	а	4	1
	a b	7	0
	c d	3	0
	d	1	0
	t	0	6

notation

edge with capacity c, current flow f.

state

		$h(\cdot)$	$e(\cdot)$
S		6	∞
а		4	∞
b)	7	0
С		3	1
a b c d		1	0
t		0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	4	0
s a b	7	0
С	5	1
c d t	1	0 6
t	0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	4	0
s a b c d	7	0
С	5	1
d	1	0
t	0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	4	1
b	7	0
c d	5	0
	1	0
t	0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	6	1
s a b c d	7	0
С	5	0
d	1	0
t	0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	6	1
s a b c d	7	0
С	5	0
d	1	0
t	0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
a b	6	0
b	7	0
c d t	5	1
d	1	0
t	0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	6	0
a b c d	7	0
С	7	1
d	1	0
t	0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	6	0
s a b c d	7	0
С	7	1
d	1	0
t	0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	6	1
b	7	0
c d	7	0
d	1	0
t	0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	7	1
b	7	0
c d	7	0
d	1	0
t	0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
s a b	7	1
b	7	0
c d t	7	0
d	1	0
t	0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	7	0
b	7	0
c d	7	0
d	1	0
t	0	6

notation

edge with capacity c, current flow f.

state

	$h(\cdot)$	$e(\cdot)$
S	6	∞
а	7	0
b	7	0
c d	7	0
d	1	0
t	0	6

notation

edge with capacity c, current flow f.

Comparison of Maximum Flow Algorithms

Current state-of-the-art algorithm for exact minimization of general submodular pseudo-Boolean functions is $O(n^5T + n^6)$, where T is the time taken to evaluate the function [Orlin, 2007].

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣へ○

Stephen Gould

[†]assumes integer capacities

Comparison of Maximum Flow Algorithms

Current state-of-the-art algorithm for exact minimization of general submodular pseudo-Boolean functions is $O(n^5T + n^6)$, where T is the time taken to evaluate the function [Orlin, 2007].

Algorithm	Complexity
Ford-Fulkerson	$O(E \max f)^{\dagger}$
Edmonds-Karp (BFS)	$O(VE^2)$
Push-relabel	$O(V^3)$
Boykov-Kolmogorov	$O(V^2E \max f)$
	$(\sim O(V)$ in practice)

 $^{^{\}dagger}$ assumes integer capacities

growth stage

search trees from s and t grow until they touch

イロト 4回ト 4 差ト 4 差ト 差 めなべ

growth stage

search trees from s and t grow until they touch

augmentation stage

the path found is augmented

◆ロト < 部 > < き > < き > こ を の < で </p>

growth stage

search trees from s and t grow until they touch

augmentation stage

the path found is augmented; trees break into forests

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

growth stage

search trees from s and t grow until they touch

augmentation stage

the path found is augmented; trees break into forests

adoption stage

trees are restored

◆ロト ◆部 ト ◆恵 ト ◆恵 ト ・恵 ・ 釣 へ ○

Reparameterization of Energy Functions

$$E(y_1, y_2) = 2y_1 + 5\bar{y}_1 + 3y_2 + \bar{y}_2 + 3\bar{y}_1y_2 + 4y_1\bar{y}_2$$

$$E(y_1, y_2) = 6\bar{y}_1 + 5y_2 + 7y_1\bar{y}_2$$

Stephen Gould 30/41

Big Picture: Where are we now?

We can perform inference in submodular binary pairwise Markov random fields exactly.

$$\{0,1\}^n \to \mathbb{R}$$

Big Picture: Where are we now?

We can perform inference in submodular binary pairwise Markov random fields exactly.

$$\{0,1\}^n \to \mathbb{R}$$

What about...

- non-submodular binary pairwise Markov random fields?
- multi-label Markov random fields?
- higher-order Markov random fields? (part 3)

4日ト 4部ト 4 恵ト 4 恵ト 恵 めのの

Non-submodular Binary Pairwise MRFs

Non-submodular binary pairwise MRFs have potentials that do not satisfy $\psi_{ii}^P(0,1) + \psi_{ii}^P(1,0) \ge \psi_{ii}^P(1,1) + \psi_{ii}^P(0,0)$.

They are often handled in one of the following ways:

- approximate the energy function by one that is submodular (i.e., project onto the space of submodular functions);
- solve a relaxation of the problem using QPBO (Rother et al., 2007) or dual-decomposition (Komodakis et al., 2007).

◆ロト ◆個ト ◆差ト ◆差ト 差 り へ ○

Approximating Non-submodular Binary Pairwise MRFs

Consider the non-submodular potential

Α	В	wi+h
C	D	witr

$$A+D>B+C$$

We can project onto a submodular potential by modifying the coefficients as follows:

$$\Delta = A + D - C - B$$

$$A \leftarrow A - \frac{\Delta}{3}$$

$$C \leftarrow C + \frac{\Delta}{3}$$

$$B \leftarrow B + \frac{\Delta}{3}$$

◆ロ → ←部 → ← き → ・ ● ・ り へ ()

QPBO (Roof Duality) [Rother et al., 2007]

Consider the energy function

$$E(\mathbf{y}) = \sum_{i \in \mathcal{V}} \psi_i^{U}(y_i) + \sum_{ij \in \mathcal{E}} \psi_{ij}^{P}(y_i, y_j) + \sum_{ij \in \mathcal{E}} \tilde{\psi}_{ij}^{P}(y_i, y_j)$$
submodular
non-submodular

We can introduce duplicate variables \bar{y}_i into the energy function, and write

$$E'(\mathbf{y}, \bar{\mathbf{y}}) = \sum_{i \in \mathcal{V}} \frac{\psi_i^U(y_i) + \psi_i^U(1 - \bar{y}_i)}{2} + \sum_{ij \in \mathcal{E}} \frac{\psi_{ij}^P(y_i, y_j) + \psi_{ij}^P(1 - \bar{y}_i, 1 - \bar{y}_j)}{2} + \sum_{ii \in \mathcal{E}} \frac{\tilde{\psi}_{ij}^P(y_i, 1 - \bar{y}_j) + \tilde{\psi}_{ij}^P(1 - \bar{y}_i, y_j)}{2}$$

Stephen Gould 34/41

QPBO (Roof Duality)

$$\begin{split} E'(\mathbf{y}, \bar{\mathbf{y}}) &= \sum_{i \in \mathcal{V}} \frac{1}{2} \psi_i^U(y_i) + \frac{1}{2} \psi_i^U(1 - \bar{y}_i) \\ &+ \sum_{ij \in \mathcal{E}} \frac{1}{2} \psi_{ij}^P(y_i, y_j) + \frac{1}{2} \psi_{ij}^P(1 - \bar{y}_i, 1 - \bar{y}_j) \\ &+ \sum_{ii \in \mathcal{E}} \frac{1}{2} \tilde{\psi}_{ij}^P(y_i, 1 - \bar{y}_j) + \frac{1}{2} \tilde{\psi}_{ij}^P(1 - \bar{y}_i, y_j) \end{split}$$

Observations

- if $y_i = 1 \bar{y_i}$ for all i, then $E(\mathbf{y}) = E'(\mathbf{y}, \bar{\mathbf{y}})$.
- $E'(\mathbf{y}, \bar{\mathbf{y}})$ is submodular.

4 ロ ト 4 間 ト 4 三 ト 4 三 ・ 9 Q ()

QPBO (Roof Duality)

$$\begin{split} E'(\mathbf{y}, \bar{\mathbf{y}}) &= \sum_{i \in \mathcal{V}} \frac{1}{2} \psi_i^U(y_i) + \frac{1}{2} \psi_i^U(1 - \bar{y}_i) \\ &+ \sum_{ij \in \mathcal{E}} \frac{1}{2} \psi_{ij}^P(y_i, y_j) + \frac{1}{2} \psi_{ij}^P(1 - \bar{y}_i, 1 - \bar{y}_j) \\ &+ \sum_{ii \in \mathcal{E}} \frac{1}{2} \tilde{\psi}_{ij}^P(y_i, 1 - \bar{y}_j) + \frac{1}{2} \tilde{\psi}_{ij}^P(1 - \bar{y}_i, y_j) \end{split}$$

Observations

- if $y_i = 1 \bar{y_i}$ for all i, then $E(\mathbf{y}) = E'(\mathbf{y}, \bar{\mathbf{y}})$.
- $E'(\mathbf{y}, \bar{\mathbf{y}})$ is submodular.

Ignore the constraint on \bar{y}_i and solve anyway. Result satisfies partial optimality: if $\bar{y}_i = 1 - y_i$ then y_i is the optimal label.

Stephen Gould 35/41

Multi-label Markov Random Fields

The quadratic pseudo-Boolean optimization techniques described above cannot be applied directly to multi-label MRFs.

However...

- ...for certain MRFs we can transform the multi-label problem into a binary one exactly.
- ...we can project the multi-label problem onto a series of binary problems in a so-called move-making algorithm.

The "Battleship" Transform [Ishikawa, 2003]

If the multi-label MRFs has pairwise potentials that are convex functions over the label differences, i.e., $\psi_{ij}^P(y_i, y_j) = g(|y_i - y_j|)$ where $g(\cdot)$ is convex, then we can transform the energy function into an equivalent binary one.

$$y = 1 \Leftrightarrow \mathbf{z} = (0, 0, 0)$$

$$y = 2 \Leftrightarrow \mathbf{z} = (1, 0, 0)$$

$$y = 3 \Leftrightarrow \mathbf{z} = (1, 1, 0)$$

$$y = 4 \Leftrightarrow \mathbf{z} = (1, 1, 1)$$

Stephen Gould

The "Battleship" Transform [Ishikawa, 2003]

If the multi-label MRFs has pairwise potentials that are convex functions over the label differences, i.e., $\psi_{ij}^P(y_i, y_j) = g(|y_i - y_j|)$ where $g(\cdot)$ is convex, then we can transform the energy function into an equivalent binary one.

$$y = 1 \Leftrightarrow \mathbf{z} = (0, 0, 0)$$

$$y = 2 \Leftrightarrow \mathbf{z} = (1, 0, 0)$$

$$y = 3 \Leftrightarrow \mathbf{z} = (1, 1, 0)$$

$$y = 4 \Leftrightarrow \mathbf{z} = (1, 1, 1)$$

Move-making Inference

Idea:

- initialize y^{prev} to any valid assignment
- restrict the label-space of each variable y_i from \mathcal{L} to $\mathcal{Y}_i \subseteq \mathcal{L}$ (with $y_i^{\mathrm{prev}} \in \mathcal{Y}_i$)
- transform $E: \mathcal{L}^n \to \mathbb{R}$ to $\hat{E}: \mathcal{Y}_1 \times \cdots \times \mathcal{Y}_n \to \mathbb{R}$
- find the optimal assignment $\hat{\mathbf{y}}$ for \hat{E} and repeat

each move results in an assignment with lower energy

Iterated Conditional Modes [Besag, 1986]

Reduce multi-variate inference to solving a series of univariate inference problems.

ICM move

For one of the variables y_i , set $\mathcal{Y}_i = \mathcal{L}$. Set $\mathcal{Y}_j = \{y_j^{\text{prev}}\}$ for all $j \neq i$ (i.e., hold all other variables fixed).

< ロ > ∢回 > ∢回 > ∢ 回 > ∢ 回 > √ □ > √ □ >

Iterated Conditional Modes [Besag, 1986]

Reduce multi-variate inference to solving a series of univariate inference problems.

ICM move

For one of the variables y_i , set $\mathcal{Y}_i = \mathcal{L}$. Set $\mathcal{Y}_j = \{y_i^{\text{prev}}\}$ for all $i \neq i$ (i.e., hold all other variables fixed).

Can be used for arbitrary energy functions.

39/41

Alpha Expansion and Alpha-Beta Swap [Boykov et al., 2001]

Reduce multi-label inference to solving a series of binary (submodular) inference problems.

α -expansion move

Choose some $\alpha \in \mathcal{L}$. Then for all variables, set $\mathcal{Y}_i = \{\alpha, y_i^{\text{prev}}\}$.

αeta -swap move

Choose two labels $\alpha, \beta \in \mathcal{L}$. Then for each variable y_i such that $y_i^{\text{prev}} \in \{\alpha, \beta\}$, set $\mathcal{Y}_i = \{\alpha, \beta\}$. Otherwise set $\mathcal{Y}_i = \{y_i^{\text{prev}}\}$.

◀□▶◀鬪▶◀臺▶◀臺▶ 臺 ∽잇윿♡

end of part 2