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Abstract

Image captioning models are becoming increasingly successful at describing the
content of images in restricted domains. However, if these models are to function
in the wild — for example, as assistants for people with impaired vision — a much
larger number and variety of visual concepts must be understood. To address this
problem, we teach image captioning models new visual concepts from labeled
images and object detection datasets. Since image labels and object classes can be
interpreted as partial captions, we formulate this problem as learning from partially-
specified sequence data. We then propose a novel algorithm for training sequence
models, such as recurrent neural networks, on partially-specified sequences which
we represent using finite state automata. In the context of image captioning, our
method lifts the restriction that previously required image captioning models to be
trained on paired image-sentence corpora only, or otherwise required specialized
model architectures to take advantage of alternative data modalities. Applying our
approach to an existing neural captioning model, we achieve state of the art results
on the novel object captioning task using the COCO dataset. We further show that
we can train a captioning model to describe new visual concepts from the Open
Images dataset while maintaining competitive COCO evaluation scores.

1 Introduction

The task of automatically generating image descriptions, i.e., image captioning [1–3], is a long-
standing and challenging problem in artificial intelligence that demands both visual and linguistic
understanding. To be successful, captioning models must be able to identify and describe in natural
language the most salient elements of an image, such as the objects present and their attributes, as
well as the spatial and semantic relationships between objects [3]. The recent resurgence of interest
in this task has been driven in part by the development of new and larger benchmark datasets such as
Flickr 8K [4], Flickr 30K [5] and COCO Captions [6]. However, even the largest of these datasets,
COCO Captions, is still based on a relatively small set of 91 underlying object classes. As a result,
despite continual improvements to image captioning models and ever-improving COCO caption
evaluation scores [7–10], captioning models trained on these datasets fail to generalize to images
in the wild [11]. This limitation severely hinders the use of these models in real applications, for
example as assistants for people with impaired vision [12].

In this work, we use weakly-annotated data (readily available in object detection datasets and labeled
image datasets) to improve image captioning models by increasing the number and variety of visual
concepts that can be successfully described. Compared to image captioning datasets such as COCO
Captions, several existing object detection datasets [14] and labeled image datasets [15, 16] are much
larger and contain many more visual concepts. For example, the recently released Open Images
dataset V4 [14] contains 1.9M images human-annotated with object bounding boxes for 600 object
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Figure 1: Conceptual overview of partially-specified sequence supervision (PS3) applied to image
captioning. In Step 1 we construct finite state automata (FSA) to represent image captions partially-
specified by object annotations, and use constrained beam search (CBS) decoding [13] to find high
probability captions that are accepted by the FSA. In Step 2, we update the model parameters using
the completed sequences as a training targets.

classes, compared to the 165K images and 91 underlying object classes in COCO Captions. This
reflects the observation that, in general, object detection datasets may be easier to scale — possibly
semi-automatically [17, 18] — to new concepts than image caption datasets. Therefore, in order to
build more useful captioning models, finding ways to assimilate information from these other data
modalities is of paramount importance.

To train image captioning models on object detections and labeled images, we formulate the problem
as learning from partially-specified sequence data. For example, we might interpret an image labeled
with ‘scooter’ as a partial caption containing the word ‘scooter’ and an unknown number of other
missing words, which when combined with ‘scooter’ in the correct order constitute the complete
sequence. If an image is annotated with the object class ‘person’, this may be interpreted to suggest
that the complete caption description must mention ‘person’. However, we may also wish to consider
complete captions that reference the person using alternative words that are appropriate to specific
image contexts — such as ‘man’, ‘woman’, ‘cowboy’ or ‘biker’. Therefore, we characterize our
uncertainty about the complete sequence by representing each partially-specified sequence as a finite
state automaton (FSA) that encodes which sequences are consistent with the observed data. FSA
are widely used in natural language processing because of their flexibility and expressiveness, and
because there are well-known techniques for constructing and manipulating such automata (e.g.,
regular expressions can be compiled into FSA).

Given training data where the captions are either complete sequences or FSA representing partially-
specified sequences, we propose a novel two-step algorithm inspired by expectation maximization
(EM) [19, 20] to learn the parameters of a sequence model such as a recurrent neural network (RNN)
which we will use to generate complete sequences at test time. As illustrated in Figure 1, in the first
step we use constrained beam search decoding [13] to find high probability complete sequences that
satisfy the FSA. In the second step, we learn or update the model parameters using the completed
dataset. We dub this approach PS3, for partially-specified sequence supervision. In the context of
image captioning, PS3 allows us to train captioning models jointly over both image caption and object
detection datasets. Our method thus lifts the restriction that previously required image captioning
models to be trained on paired image-sentence corpora only, or otherwise required specialized model
architectures to be used in order to take advantage of other data modalities [21–24].

Consistent with previous work [13, 21–24], we evaluate our approach on the COCO novel object
captioning splits in which all mentions of eight selected object classes have been eliminated from the
caption training data. Applying PS3 to an existing open source neural captioning model [10], and
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Figure 2: PS3 is a general approach to training RNNs on partially-specified sequences. Here we
illustrate some examples of partially-specified sequences that can be represented with finite state
automata. Unlabeled edges indicate ‘default transitions’, i.e., an unlabeled edge leaving a node n is
implicitly labeled with Σ \ S, where S is the set of symbols on labeled edges leaving n and Σ is the
complete vocabulary.

training on auxiliary data consisting of either image labels or object annotations, we achieve state
of the art results on this task. Furthermore, we conduct experiments training on the Open Images
dataset, demonstrating that using our method a captioning model can be trained to identify new visual
concepts from the Open Images dataset while maintaining competitive COCO evaluation scores.

Our main contributions are threefold. First, we propose PS3, a novel algorithm for training sequence
models such as RNNs on partially-specified sequences represented by FSA (which includes sequences
with missing words as a special case). Second, we apply our approach to the problem of training
image captioning models from object detection and labeled image datasets, enabling arbitrary image
captioning models to be trained on these datasets for the first time. Third, we achieve state of the art
results for novel object captioning, and further demonstrate the application of our approach to the
Open Images dataset. To encourage future work, we have released our code and trained models via
the project website2. As illustrated by the examples in Figure 2, PS3 is a general approach to training
sequence models that may be applicable to various other problem domains with partially-specified
training sequences.

2 Related work

Image captioning The problem of image captioning has been intensively studied. More recent
approaches typically combine a pretrained Convolutional Neural Network (CNN) image encoder with
a Recurrent Neural Network (RNN) decoder that is trained to predict the next output word, conditioned
on the previous output words and the image [1, 25–28], optionally using visual attention [2, 7–10].
Like other sequence-based neural networks [29–32], these models are typically decoded by searching
over output sequences either greedily or using beam search. As outlined in Section 3, our proposed
partially-supervised training algorithm is applicable to this entire class of sequence models.

Novel object captioning A number of previous works have studied the problem of captioning
images containing novel objects (i.e., objects not present in training captions) by learning from image
labels. Many of the proposed approaches have been architectural in nature. The Deep Compositional
Captioner (DCC) [21] and the Novel Object Captioner (NOC) [22] both decompose the captioning
model into separate visual and textual pipelines. The visual pipeline consists of a CNN image
classifier that is trained to predict words that are relevant to an image, including the novel objects.
The textual pipeline is a RNN trained on language data to estimate probabilities over word sequences.
Each pipeline is pre-trained separately, then fine-tuned jointly using the available image and caption
data. More recently, approaches based on constrained beam search [13], word copying [33] and

2www.panderson.me/constrained-beam-search
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neural slot-filling [24] have been proposed to incorporate novel word predictions from an image
classifier into the output of a captioning model. In contrast to the specialized architectures previously
proposed for handling novel objects [21–24], we present a general approach to training sequence
models on partially-specified data that uses constrained beam search [13] as a subroutine.

Sequence learning with partial supervision Many previous works on semi-supervised sequence
learning focus on using unlabeled sequence data to improve learning, for example by pre-training
RNNs [34, 35] or word embeddings [36, 37] on large text corpora. Instead, we focus on the scenario
in which the sequences are incomplete or only partially-specified, which occurs in many practical
applications ranging from speech recognition [38] to healthcare [39]. To the best of our knowledge
we are the first to consider using finite state automata as a new way of representing labels that strictly
generalizes both complete and partially-specified sequences.

3 Partially-specified sequence supervision (PS3)

In this section, we describe how partially-specified data can be incorporated into the training of a
sequence prediction model. We assume a model parameterized by θ that represents the distribution
over complete output sequences y = (y1, . . . , yT ),y ∈ Y as a product of conditional distributions:

pθ(y) =

T∏
t=1

pθ(yt | y1:t−1) (1)

where each yt is a word or other token from vocabulary Σ. This model family includes recurrent neural
networks (RNNs) and auto-regressive convolutional neural networks (CNNs) [29] with application to
tasks such as language modeling [30], machine translation [31, 32], and image captioning [1–3]. We
further assume that we have a dataset of partially-specified training sequences X = {x0, . . . ,xm},
and we propose an algorithm that simultaneously estimates the parameters of the model θ and the
complete sequence data Y .

3.1 Finite state automaton specification for partial sequences

Traditionally partially-specified data X is characterized as incomplete data containing missing
values [19, 40], i.e., some sequence elements are replaced by an unknown word symbol <unk>.
However, this formulation is insufficiently flexible for our application, so we propose a more general
representation that encompasses missing values as a special case. We represent each partially-
specified sequence xi ∈ X with a finite state automaton (FSA) Ai that recognizes sequences that are
consistent with the observed partial information. Formally, Ai = (Σ, Si, si0, δ

i, F i) where Σ is the
model vocabulary, Si is the set of automaton states, si0 ∈ Si is the initial state, δi : Si × Σ→ Si is
the state-transition function that maps states and words to states, and F i ⊆ Si is the set of final or
accepting states [41].

As illustrated in Figure 2, this approach can encode very expressive uncertainties about the partially-
specified sequence. For example, we can allow for missing subsequences of unknown or bounded
length, negative information, and observed constraints in the form of conjunctions of disjunctions or
partial orderings. Given this flexibility, from a modeling perspective the key challenge in implement-
ing the proposed approach will be determining the appropriate FSA to encode the observed partial
information. We discuss this further from the perspective of image captioning in Section 4.

3.2 Training algorithm

We now present a high level specification of the proposed PS3 training algorithm. Given a dataset of
partially-specified training sequences X and current model parameters θ, then iteratively perform the
following two steps:

Step 1. Estimate the complete data Y by setting yi ← argmaxy pθ(y | Ai) for all xi ∈ X
Step 2. Learn the model parameters by setting θ ← argmaxθ

∑
y∈Y log pθ(y)

Step 1 can be skipped for complete sequences, but for partially-specified sequences Step 1 requires
us to find the most likely output sequence that satisfies the constraints specified by an FSA. As
it is typically computationally infeasible to solve this problem exactly, we use constrained beam
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Algorithm 1 Beam search decoding

1: procedure BS(Θ, b, T,Σ) . With beam size b and vocabulary Σ
2: B ← {ε} . ε is the empty string
3: for t = 1, . . . , T do
4: E ← {(y, w) | y ∈ B,w ∈ Σ} . All one-word extensions of sequences in B
5: B ← argmaxE′⊂E,|E′|=b

∑
y∈E′ Θ(y) . The b most probable extensions in E

6: return argmaxy∈B Θ(y) . The most probable sequence

Algorithm 2 Constrained beam search decoding [13]

1: procedure CBS(Θ, b, T,A = (Σ, S, s0, δ, F )) . With finite state recognizer A
2: for s ∈ S do
3: Bs ← {ε} if s = s0 else ∅ . Each state s has a beam Bs

4: for t = 1, . . . , T do
5: for s ∈ S do . Extend sequences through state-transition function δ
6: Es ← ∪s′∈S{(y, w) | y ∈ Bs′ , w ∈ Σ, δ(s′, w) = s}
7: Bs ← argmaxE′⊂Es,|E′|=b

∑
y∈E′ Θ(y) . The b most probable extensions in Es

8: return argmaxy∈
⋃

s∈F B
s Θ(y) . The most probable accepted sequence

search [13] to find an approximate solution. In Algorithms 1 and 2 we provide an overview of
the constrained beam search algorithm, contrasting it with beam search [42]. Both algorithms take
as inputs a scoring function which we define by Θ(y) = log pθ(y), a beam size b, the maximum
sequence length T and the model vocabulary Σ. However, the constrained beam search algorithm
additionally takes a finite state recognizer A as input, and guarantees that the sequence returned will
be accepted by the recognizer. Refer to Anderson et al. [13] for a more complete description of
constrained beam search. We also note that other variations of constrained beam search decoding
have been proposed [43–45]; we leave it to future work to determine if they could be used here.

Online version The PS3 training algorithm, as presented so far, is inherently offline. It requires
multiple iterations through the training data, which can become impractical with large models and
datasets. However, our approach can be adapted to an online implementation. For example, when
training neural networks, Steps 1 and 2 can be performed for each minibatch, such that Step 1
estimates the complete data for the current minibatch Y ′ ⊂ Y , and Step 2 performs a gradient update
based on Y ′. In terms of implementation, Steps 1 and 2 can be implemented in separate networks
with tied weights, or in a single network by backpropagating through the resulting search tree in the
manner of Wiseman and Rush [46]. In our GPU-based implementation, we use separate networks
with tied weights. This is more memory efficient when the number of beams b and the number of
states |S| is large, because performing the backward pass in the smaller Step 2 network means that it
is not necessary to maintain the full unrolled history of the search tree in memory.

Computational complexity Compared to training on complete sequence data, PS3 performs addi-
tional computation to find a high-probability complete sequence for each partial sequence specified
by an FSA. Because constrained beam search maintains a beam of b sequences for each FSA state,
this cost is given by |S| · b · γ, where |S| is the number of FSA states, b is the beam size parameter,
and γ is the computational cost of a single forward pass through an unrolled recurrent neural network
(e.g., the cost of decoding a single sequence). Although the computational cost of training increases
linearly with the number of FSA states, for any particular application FSA construction is a modeling
choice and there are many existing FSA compression and state reduction methods available.

4 Application to image captioning

In this section, we describe how image captioning models can be trained on object annotations and
image tags by interpreting these annotations as partially-specified caption sequences.
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Captioning model For image captioning experiments we use the open source bottom-up and top-
down attention captioning model [10], which we refer to as Up-Down. This model belongs to the
class of ‘encoder-decoder’ neural architectures and recently achieved state of the art results on the
COCO test server [6]. The input to the model is an image, I . The encoder part of the model consists
of a Faster R-CNN object detector [47] based on the ResNet-101 CNN [48] that has been pre-trained
on the Visual Genome dataset [49]. Following the methodology in Anderson et al. [10], the image I
is encoded as a set of image feature vectors, V = {v1, . . . ,vk},vi ∈ RD, where each vector vi is
associated with an image bounding box. The decoder part of the model consists of a 2-layer Long
Short-Term Memory (LSTM) network [50] combined with a soft visual attention mechanism [2]. At
each timestep t during decoding, the decoder takes as input an encoding of the previously generated
word given by WeΠt, where We ∈ RM×|Σ| is a word embedding matrix for a vocabulary Σ with
embedding size M , and Πt is one-hot encoding of the input word at timestep t. The model outputs a
conditional distribution over the next word output given by p(yt | y1:t−1) = softmax (Wpht + bp),
where ht ∈ RN is the LSTM output and Wp ∈ R|Σ|×N and bp ∈ R|Σ| are learned weights and
biases. The decoder represents the distribution over complete output sequences using Equation 1.

Finite state automaton construction To train image captioning models on datasets of object
detections and labeled images, we construct finite state automata as follows. At each training iteration
we select three labels at random from the labels assigned to each image. Each of the three selected
labels is mapped to a disjunctive set Di containing every word in the vocabulary Σ that shares
the same word stem. For example, the label bike maps to { bike, bikes, biked, biking }.
This gives the captioning model the freedom to choose word forms. As the selected image labels
may include redundant synonyms such as bike and bicycle, we only enforce that the generated
caption mentions at least two of the three selected image labels. We therefore construct a finite state
automaton that accepts strings that contain at least one word from at least two of the disjunctive sets.
As illustrated in Figure 2(c), the resulting FSA contains eight states (although the four accepting
states could be collapsed into one). In initial experiments we investigated several variations of this
simple construction approach (e.g., randomly selecting two or four labels, or requiring more or fewer
of the selected labels to be mentioned in the caption). These alternatives performed slightly worse
than the approach described above. However, we leave a detailed investigation of more sophisticated
methods for constructing finite state automata encoding observed partial information to future work.

Out-of-vocabulary words One practical consideration when training image captioning models on
datasets of object detections and labeled images is the presence of out-of-vocabulary words. The
constrained decoding in Step 1 can only produce fluent sentences if the model can leverage some side
information about the out-of-vocabulary words. To address this problem, we take the same approach
as Anderson et al. [13], adding pre-trained word embeddings to both the input and output layers of
the decoder. Specifically, we initialize We with pretrained word embeddings, and add an additional
output layer such that vt = tanh (Wpht + bp) and p(yt | y1:t−1) = softmax (WT

e vt). For the word
embeddings, we concatenate GloVe [37] and dependency-based [51] embeddings, as we find that the
resulting combination of semantic and functional context improves the fluency of the constrained
captions compared to using either embedding on its own.

Implementation details In all experiments we initialize the model by training on the available
image-caption dataset following the cross-entropy loss training scheme in the Up-Down paper [10],
and keeping pre-trained word embeddings fixed. When training on image labels, we use the online
version of our proposed training algorithm, constructing each minibatch of 100 with an equal number
of complete and partially-specified training examples. We use SGD with an initial learning rate
of 0.001, decayed to zero over 5K iterations, with a lower learning rate for the pre-trained word
embeddings. In beam search and constrained beam search decoding we use a beam size of 5. Training
(after initialization) takes around 8 hours using two Titan X GPUs.

5 Experiments

5.1 COCO novel object captioning

Dataset splits To evaluate our proposed approach, we use the COCO 2014 captions dataset [52]
containing 83K training images and 41K validation images, each labeled with five human-annotated
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Table 1: Impact of training and decoding with image labels on COCO novel object captioning
validation set scores. All experiments use the same finite state automaton construction. On out-of-
domain images, imposing label constraints during training using PS3 always improves the model
(row 3 vs. 1, 4 vs. 2, 6 vs. 5), and constrained beam search (CBS) decoding is no longer necessary
(row 4 vs. 3). The model trained using PS3 and decoded with standard beam search (row 3) is closest
to the performance of the model trained with the full set of image captions (row 7).

Training PS3 CBS Out-of-Domain Scores In-Domain Scores

Captions Labels Labels SPICE METEOR CIDEr F1 SPICE METEOR CIDEr

1 G# 14.4 22.1 69.5 0.0 19.9 26.5 108.6
2 G# N 15.9 23.1 74.8 26.9 19.7 26.2 102.4
3 G#  18.3 25.5 94.3 63.4 18.9 25.9 101.2
4 G#  N 18.2 25.2 92.5 62.4 19.1 25.9 99.5

5 G# F 18.0 24.5 82.5 30.4 22.3 27.9 109.7
6 G#  F 20.1 26.4 95.5 65.0 21.7 27.5 106.6
7  20.1 27.0 111.5 69.0 20.0 26.7 109.5

 = full training set, G# = impoverished training set, N= constrained beam search (CBS) decoding with
predicted labels, F= CBS decoding with ground-truth labels

Table 2: Performance on the COCO novel object captioning test set. ‘+ CBS’ indicates that a model
was decoded using constrained beam search [13] to force the inclusion of image labels predicted by
an external model. On standard caption metrics, our generic training algorithm (PS3) applied to the
Up-Down [10] model outperforms all prior work.

Out-of-Domain Scores In-Domain Scores

Model CNN SPICE METEOR CIDEr F1 SPICE METEOR CIDEr

DCC [21] VGG-16 13.4 21.0 59.1 39.8 15.9 23.0 77.2
NOC [22] VGG-16 - 21.3 - 48.8 - - -
C-LSTM [23] VGG-16 - 23.0 - 55.7 - - -
LRCN + CBS [13] VGG-16 15.9 23.3 77.9 54.0 18.0 24.5 86.3
LRCN + CBS [13] Res-50 16.4 23.6 77.6 53.3 18.4 24.9 88.0
NBT [24] VGG-16 15.7 22.8 77.0 48.5 17.5 24.3 87.4
NBT + CBS [24] Res-101 17.4 24.1 86.0 70.3 18.0 25.0 92.1
PS3 (ours) Res-101 17.9 25.4 94.5 63.0 19.0 25.9 101.1

captions. We use the splits proposed by Hendricks et al. [21] for novel object captioning, in which
all images with captions that mention one of eight selected objects (including synonyms and plural
forms) are removed from the caption training set, which is reduced to 70K images. The original
COCO validation set is split 50% for validation and 50% for testing. As such, models are required to
caption images containing objects that are not present in the available image-caption training data.
For analysis, we further divide the test and validation sets into their in-domain and out-of-domain
components. Any test or validation image with a reference caption that mentions a held-out object is
considered to be out-of-domain. The held-out objects classes selected by Hendricks et al. [21], are
BOTTLE, BUS, COUCH, MICROWAVE, PIZZA, RACKET, SUITCASE, and ZEBRA.

Image labels As with zero-shot learning [53], novel object captioning requires auxiliary information
in order to successfully caption images containing novel objects. In the experimental procedure
proposed by Hendricks et al. [21] and followed by others [13, 22, 23], this auxiliary information is
provided in the form of image labels corresponding to the 471 most common adjective, verb and noun
base word forms extracted from the held-out training captions. Because these labels are extracted
from captions, there are no false positives, i.e., all of the image labels are salient to captioning.
However, the task is still challenging as the labels are pooled across five captions per image, with the
number of labels per image ranging from 1 to 27 with a mean of 12.

Evaluation To evaluate caption quality, we use SPICE [54], CIDEr [55] and METEOR [56]. We
also report the F1 metric for evaluating mentions of the held-out objects. The ground truth for an
object mention is considered to be positive if the held-out object is mentioned in any reference
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zebra bus couch microwave

Baseline: A close up of
a giraffe with its head.

Baseline: A food truck
parked on the side of a
road.

Baseline: A living room
filled with lots of furni-
ture.

Baseline: A picture of
an oven in a kitchen.

Ours: A couple of zebra
standing next to each
other.

Ours: A white bus driv-
ing down a city street.

Ours: A brown couch
sitting in a living room.

Ours: A microwave sit-
ting on top of a counter.

pizza racket suitcase bottle

Baseline: A collage of
four pictures of food.

Baseline: A young girl
is standing in the tennis
court.

Baseline: A group of
people walking down a
street.

Baseline: A woman in
the kitchen with a tooth-
brush in her hand.

Ours: A set of pictures
showing a slice of pizza.

Ours: A little girl hold-
ing a tennis racket.

Ours: A group of peo-
ple walking down a city
street.

Ours: A woman wear-
ing a blue tie holding a
yellow toothbrush.

Figure 3: Examples of generated captions for images containing novel objects. The baseline Up-
Down [10] captioning model performs poorly on images containing object classes not seen in the
available image-caption training data (top). Incorporating image labels for these object classes into
training using PS3 allows the same model to produce fluent captions for the novel objects (bottom).
The last two examples may be considered to be failure cases (because the novel object classes,
suitcase and bottle, are not mentioned).

captions. For consistency with previous work, out-of-domain scores are macro-averaged across the
held-out classes, and CIDEr document frequency statistics are determined across the entire test set.

Results In Table 1 we show validation set results for the Up-Down model with various combinations
of PS3 training and constrained beam search decoding (top panel), as well as performance upper
bounds using ground-truth data (bottom panel). For constrained beam search decoding, image label
predictions are generated by a linear mapping from the mean-pooled image feature 1

k

∑k
i=1 vi to

image label scores which is trained on the entire training set. The results demonstrate that, on
out-of-domain images, imposing the caption constraints during training using PS3 helps more than
imposing the constraints during decoding. Furthermore, the model trained with PS3 has assimilated
all the information available from the external image labeler, such that using constrained beam search
during decoding provides no additional benefit (row 3 vs. row 4). Overall, the model trained on image
labels with PS3 (row 3) is closer in performance to the model trained with all captions (row 7) than it
is to the baseline model (row 1). Evaluating our model (row 3) on the test set, we achieve state of the
art results on the COCO novel object captioning task, as illustrated in Table 2. In Figure 3 we provide
examples of generated captions, including failure cases. In Figure 4 we visualize attention in the
model (suggesting that image label supervision can successfully train a visual attention mechanism
to localize new objects).

5.2 Preliminary experiments on Open Images

Our primary motivation in this work is to extend the visual vocabulary of existing captioning models
by making large object detection datasets available for training. Therefore, as a proof of concept
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A woman holding a tennis racket on a court.

Figure 4: To further explore the impact of training using PS3, we visualize attention in the Up-
Down [10] model. As shown in this example, using only image label supervision (i.e., without
caption supervision) the model still learns to ground novel object classes (such as racket) in the
image.

tiger monkey rhino rabbit

Baseline: A zebra is lay-
ing down in the grass.

Baseline: A black ele-
phant laying on top of a
wooden surface.

Baseline: A man taking
a picture of an old car.

Baseline: A cat that is
laying on the grass.

Ours: A tiger that is sit-
ting in the grass.

Ours: A monkey that is
sitting on the ground.

Ours: A man sitting in
a car looking at an ele-
phant.

Ours: A squirrel that is
sitting in the grass.

Figure 5: Preliminary experiments on Open Images. As expected, the baseline Up-Down [10] model
trained on COCO performs poorly on novel object classes from the Open Images dataset (top).
Incorporating image labels from 25 selected classes using PS3 leads to qualitative improvements
(bottom). The last two examples are failure cases (but no worse than the baseline).

we train a captioning model simultaneously on COCO Captions [6] and object annotation labels
for 25 additional animal classes from the Open Images V4 dataset [14]. In Figure 5 we provide
some examples of the generated captions. We also evaluate the jointly trained model on the COCO
‘Karpathy’ val split [27], achieving SPICE, METEOR and CIDEr scores of 18.8, 25.7 and 103.5,
respectively, versus 20.1, 26.9 and 112.3 for the model trained exclusively on COCO.

6 Conclusion

We propose a novel algorithm for training sequence models on partially-specified data represented
by finite state automata. Applying this approach to image captioning, we demonstrate that a generic
image captioning model can learn new visual concepts from labeled images, achieving state of the art
results on the COCO novel object captioning splits. We further show that we can train the model to
describe new visual concepts from the Open Images dataset while maintaining competitive COCO
evaluation scores. Future work could investigate training captioning models on finite state automata
constructed from scene graph and visual relationship annotations, which are also available at large
scale [14, 49].
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