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Abstract

Object detection and multi-class image segmentation avelwsely related tasks
that can be greatly improved when solved jointly by feedinfipimation from
one task to the other [10, 11]. However, current state-efdft models use a
separate representation for each task making joint inéerefumsy and leaving
the classification of many parts of the scene ambiguous.

In this work, we propose a hierarchical region-based amprda joint object
detection and image segmentation. Our approach simuliasheceasons about
pixels, regions and objects in a coherent probabilistic ehodPixel appearance
features allow us to perform well on classifying amorphoaskground classes,
while the explicit representation of regions facilitate tomputation of more so-
phisticated features necessary for object detection. traptly, our model gives
a single unified description of the scene—we expéiry pixel in the image and
enforce global consistency between all random variablesiirmodel.

We run experiments on the challenging Street Scene dasatd show signifi-
cant improvement over state-of-the-art results for olgjetéction accuracy.

1 Introduction

Object detection is one of the great challenges of complgon; having received continuous
attention since the birth of the field. The most common modgproaches scan the image for
candidate objects and score each one. This is typified bylithegswindow object detection ap-
proach [22, 20, 4], but is also true of most other detectidreses (such as centroid-based meth-
ods [13] or boundary edge methods [5]). The most succesgfuioaches combine cues from
inside the object boundary (local features) with cues framtside the object (contextual cues),
e.g., [9, 20, 6]. Recent works are adopting a more holistic@gch by combining the output of mul-
tiple vision tasks [10, 11] and are reminiscent of some ofghdiest work in computer vision [1].
However, these recent works use a different representfdioeach subtask, forcing information
sharing to be done through awkward feature mappings. Andiffeculty with these approaches
is that the subtask representations can be inconsistenexample, a bounding-box based object
detector includes many pixels within each candidate dieteetindow that are not part of the ob-
ject itself. Furthermore, multiple overlapping candiddétections contain many pixels in common.
How these pixels should be treated is ambiguous in such appes. A model that uniquely iden-
tifies each pixel is not only more elegant, but is also morelyikto produce reliable results since it
encodes a hias of the true world (i.e., a visible pixel befotogonly one object).

In this work, we propose a more integrated region-basedoagprthat combines multi-class im-
age segmentation with object detection. Specifically, veppse a hierarchical model that reasons
simultaneously about pixels, regions and objects in theyenaather than scanning arbitrary win-
dows. At the region level we label pixels as belonging to oha number of background classes
(currentlysky, tree, road, grass, water, building, mountain) or a single foreground class. The fore-
ground class is then further classified, at the object leméh one of our known object classes
(currentlycar andpedestrian) or unknown.



Our model builds on the scene decomposition model of Gowddl §f] which aims to decompose
an image into coherent regions by dynamically moving pixaieen regions and evaluating these
moves relative to a global energy objective. These bottpmixel moves result in regions with co-
herent appearance. Unfortunately, complex objects suple@sle or cars are composed of several
dissimilar regions which will not be combined by this bottaim approach. Our new hierarchi-
cal approach facilitates both bottom-up and top-down neiagoabout the scene. For example, we
can propose an entire object comprised of multiple regionlsexaluate this joint move against our
global objective. Thus, our hierarchical model enjoys testlof two worlds: Like multi-class image
segmentation, our model uniquely explains every pixel eithage and groups these into seman-
tically coherent regions. Like object detection, our maasds sophisticated shape and appearance
features computed over candidate object locations withigeeboundaries. Furthermore, our joint
model over regions and objects allows context to be encddedgh direct semantic relationships
(e.g., “car” is usually found on “road”).

2 Background and Related Work

Our method inherits features from the sliding-window objpetector works, such as Torralba et al.
[19] and Dalal and Triggs [4], and the multi-class image segtation work of Shotton et al. [16].
We further incorporate into our model many novel ideas fgprowing object detection via scene
context. The innovative works that inspire ours includedfring camera viewpoint for estimat-
ing the real world size of object candidates [12], relatitigirigs” (objects) to nearby “stuff” (re-
gions) [9], co-occurrence of object classes [15], and gdrseene “gist” [18].

Recent works go beyond simple appearance-based contexshamdthat holistic scene under-
standing (both geometric [11] and more general [10]) canifigg@ntly improve performance by
combining related tasks. These works use the output of @ke(¢éag., object detection) to provide
features for other related tasks (e.g., depth perceptifhjile they are appealing in their simplic-
ity, current models are not tightly coupled and may resulhaoherent outputs (e.g., the pixels in
a bounding box identified as “car” by the object detector, rhaylabeled as “sky” by an image
segmentation task). In our method, all tasks use the sar@nrbgsed representation which forces
consistency between variables. Intuitively this leads twewobust predictions.

The decomposition of a scene into regions to provide theslfasivision tasks exists in some
scene parsing works. Notably, Tu et al. [21] describe anagr for identifying regions in the
scene. Their approach has only be shown to be effective dratekfaces, leaving much of the
image unexplained. Sudderth et al. [17] relate scenesctsbfnd parts in a single hierarchical
framework, but do not provide an exact segmentation of tregen Gould et al. [7] provides a com-
plete description of the scene using dynamically evolviegainpositions that explain every pixel
(both semantically and geometrically). However, the métbannot distinguish between between
foreground objects and often leaves them segmented intipheudissimilar pieces. Our work builds
on this approach with the aim of classifying objects.

Other works attempt to integrate tasks such as object dmtembd multi-class image segmenta-
tion into a single CRF model. However, these models eithelaudifferent representation for object
and non-object regions [23] or rely on a pixel-level repréaton [16]. The former does not enforce
label consistency between object bounding boxes and therlyimy pixels while the latter does not
distinguish between adjacent objects of the same class.

Recent work by Gu et al. [8] also use regions for object detedhstead of the traditional sliding-
window approach. However, unlike our method, they use deioger-segmentation of the image
and make the strong assumption that each segment reprag@ntdbabilistically) recognizable ob-
ject part. Our method, on the other hand, assembles objutskh{ackground regions) using seg-
ments from multiple different over-segmentations. Thetipld over-segmentations avoids errors
made by any one segmentation. Furthermore, we incorpoaatebound regions which allows us to
eliminate large portions of the image thereby reducing tmalrer of component regions that need
to be considered for each object.

Liu et al. [14] use a non-parametric approach to image lagddly warping a given image onto a
large set of labeled images and then combining the resuiis.ig a very effective approach since it
scales easily to a large number of classes. However, theoghélttes not attempt to understand the
scene semantics. In particular, their method is unabledalbthe scene into separate objects (e.g., a
row of cars will be parsed as a single region) and cannot capgtambinations of classes not present
in the training set. As a result, the approach performs gamrimost foreground object classes.



3 Region-based Model for Object Detection

We now present an overview of our joint object detection arehe segmentation model. This model
combines scene structure and semantics in a coherent €nargipn.

3.1 Energy Function

Our model builds on the work of Gould et al. [7] which aims t@dmpose a scene into a numba?)(
of semantically consistent regions. In that work, eachlpixe the imageZ belongs to exactly one
region, identified by its region-correspondence varidblec {1,..., K}. Ther-th region is then
simply the set of pixel®, whose region-correspondence variable equale., P, = {p : R, = r}.
In our notation we will always useandq to denote pixels; ands to denote regions, angto denote
objects. Double indices indicate pairwise terms betweggcadt entities (e.gng or rs).

Regions, while visually coherent, may not encompass eolijects. Indeed, in the work of Gould
et al. [7] foreground objects tended to be over-segmentedrultiple regions. We address this defi-
ciency by allowing an object to be composed of many regicathér than trying to force dissimilar
regions to merge). The object to which a region belongs i®ehby its object-correspondence

variableO, € {@,1,...,N}. Some regions, such as background, do not belong to anytobjec
which we denote by), = @. Like regions, the set of pixels that comprise thtéh object is de-
noted byP, = |J,., _, P». Currently, we do not allow a single region or object to be posed of

multiple dlsconnected components.

Random variables are associated with the various entipigel§, regions and objects) in our
model. Each pixel has a local appearance feature vegtor R™ (see [7]). Each region has an
appearance variablé, that summarizes the appearance of the region as a whole,ansertiass
label S, (such as “road” or “foreground object”), and an object-espondence variabl@,.. Each
object, in turn, has an associated object class l&helsuch as “car” or “pedestrian”). The final
component in our model is the horizon which captures glokealngetry information. We assume
that the image was taken by a camera with horizontal axisllphta the ground and model the
horizonv" ¢ [0, 1] as the normalized row in the image corresponding to its iooatVe quantize
v" into the same number of rows as the image.

We combine the variables in our model into a single coherpatgy function that captures the
structure and semantics of the scene. The energy functidudies terms for modeling the location
of the horizon, region label preferences, region boundaslity, object labels, and contextual re-
lationships between objects and regions. These terms aceilded in detail below. The combined
energy function®(R, S, O, C,v" | Z, 0) has the form:

E = (") + D s, o) + 3wt + Y (Co,0™) + ZW (Co,Sr) (1)

where for notational clarity the subscripts on the factodédate that they are functlons of the pixels
(appearance and shape) belonging to the regions)}&is also a function o, etc. It is assumed
that all terms are conditioned on the observed imAgsd model parametes The summation
over context terms includes all ordered pairs of adjacejgatd and regions, while the summation
over boundary terms is over unordered pairs of regions. lastition of the variables in the energy
function is shown in Figure 1.

The first three energy terms are adapted from the model o¥\&]briefly review them here:

Horizon term. The " term captures the a priori location of the horizon in the scamd, in our
model, is implemented as a log-gaussidi(v"?) = —log N (v"%; i, o) with parameterg ando
learned from labeled training images.

Knowing the location of the horizon allows us to compute tralds height of an object in the
scene. Using the derivation from Hoiem et al. [12], it can beven that the heighg, of an object
(or region) in the scene can be approximateg;ass h—- “b whereh is the height of the camera
origin above the ground, ang andv, are the row of the top -most and bottom-most pixels in the
object/region, respectively. In our current work, we assuhmat all images were taken from the
same height above the ground, allowing us togrgéji as a feature in our region and object terms.

Region term. The region term)™9 in our energy function captures the preference for a region
to be assigned different semantic labels (curreskyy tree, road, grass, water, building, mountain,
foreground). For convenience we include thé? variable in this term to provide rough geometry
information. If a region is associated with an object, thenaenstrain the assignment of its class
label toforeground (e.g., a “sky” region cannot be part of a “car” object).



Procedurescenel nference
Generate over-segmentation diction&ry
Initialize R,, using any of the over-segmentations
Repeat until convergence
Phase 1:
Propose a pixel movéR,, : p € w} «— r
Update region and boundary features
Run inference over regior® andv"
Phase 2:
Propose a pixe{ Ry, } < r or region move{O,.} < o
Update region, boundary and object features
Run inference over regions and objet®& C) anduv"™
Compute total energy
If (E < E™) then )
Accept move and seE™" = E
pixels Else reject move

regions

Figure 1: lllustration of the entities in our model (left) and inference algorithm (rigee text for details.

More formally, letN, be the number of pixels in region i.e., N, = > 1{R, = r}, and let
O (PT, th,I) — R™ denote the features for theth region. The region term is then

reg hoy | 00 if O, # @ andS,. # foreground
b (S, ) = { —1"®9N, log o (S, | ¢r;0"9) otherwise @
whereo () is the multi-class logit (y | z; ) = _ow{oye} andn"9is the relative weight of the

W exp{@? 1}
region term versus the other terms in the model.

Boundary term. The termy®dY penalizes two adjacent regions with similar appearancea |
of boundary contrast. This helps to merge coherent pixétsarsingle region. We combine two
metrics in this term: the first captures region similarityaaghole, the second captures contrast along
the common boundary between the regions. Specifically (ety; S) = v/(z — y)TS~1(z — y)
denote the Mahalanobis distance between vectandy, and&,s be the set of pixels along the
boundary. Then the boundary term is

bdr 1 . 2 _1 . 2
w?gry — ,'7A y . ‘5T8| e Qd(AT,AS,EA) + nbdry e Qd(apvaqua) (3)

«
(P,q)EErs

where theX , andX,, are the image-specific pixel appearance covariance matnspated over all
pixels and neighboring pixels, respectively. In our expenits we restricE 4 to be diagonal and set
Yo = Bl with 3 = E [||oy, — a]|%] as in Shotton et al. [16]. The parametgP&” and;2™ encode
the trade-off between the region similarity and boundamntiast terms and weight them against the
other terms in the energy function (Equation 1).

Note that the boundary term does not include semantic clasbject information. The term
purely captures segmentation coherence in terms of app=ara

Object term. Going beyond the model in [7], we include object teri?8 in our energy function
that score the likelihood of a group of regions being assigagiven object label. We currently
classify objects as eithear, pedestrian or unknown. Theunknown class includes objects like trash
cans, street signs, telegraph poles, traffic cones, bigyete. Like the region term, the object term
is defined by a logistic function that maps object featurgs (7?0, vh{I) — R"™ to probability of
each object class. However, since our region layer alredeiytifies foreground regions, we would
like our energy to improve only when we recognize known obfdasses. We therefore bias the
object term to give zero contribution to the energy for tresstinknown.? Formally we have

PRIy, ") = —n®IN,, (log o (Co | ¢o; 0°P) — log o (unknown | ¢,; 6°%)) (4)
whereN, is the number of pixels belonging to the object.

Context term. Intuitively, contextual information which relates objetb their local background
can improve object detection. For example, Heitz and KdB¢ishowed that detection rates im-
prove by relating “things” (objects) to “stuff” (backgrodp Our model has a very natural way of

This results in the technical condition of allowind. to take the values for unknown foreground regions
without affecting the energy.



encoding such relationships through pairwise energy téehseen object€’, and regionss,.. We
do not encode contextual relationships between regioseta§.e.,S, and S,) since these rarely
help? Contextual relationships between foreground objects, (iig and C,,,) may be beneficial
(e.g., people found on bicycles), but are not consideredigvtork. Formally, the context term is

SUCy, Sr) = =™ og o (Co x Sy | Por; 0°) )

whereg,, : (P,,Pr,Z) — R™ is a pairwise feature vector for objeetand regionr, o(-) is the
multi-class logit, and;®™ weights the strength of the context term relative to othengein the
energy function. Since the pairwise context term is betwagncts and (background) regions it
grows linearly with the number of object classes. This hasstindt advantage over approaches
which include a pairwise term between all classes resuitirggiadratic growth.

3.2 Object Detectors

Performing well at object detection requires more than gm@gion appearance features. Indeed,
the power of state-of-the-art object detectors is theilitgtio model localized appearance and gen-
eral shape characteristics of an object class. Thus, itiaddd raw appearance features, we append
to our object feature vectaf, features derived from such object detection models. Waudsstwo
methods for adapting state-of-the-art object detectdmtelogies for this purpose.

In the first approach, we treat the object detector as a agkthat returns a score per (rectan-
gular) candidate window. However, recall that an objectun model is defined by a contiguous
set of pixelsP,, not a rectangular window. In the black-box approach, weataiplace a bounding
box (at the correct aspect ratio) around these pixels arssifjathe entire contents of the box. To
make classification more robust we search candidate wingosvsmall neighborhood (defined over
scale and position) around this bounding box, and take afeaturre the output of highest scoring
window. In our experiments we test this approach using th&Hi®tector of Dalal and Triggs [4]
which learns a linear SVM classifier over feature vectorsstmeted by computing histograms of
gradient orientations in fixed-size overlapping cells witthe candidate window.

Note that in the above black-box approach many of the pixélsimvthe bounding box are not
actually part of the object (consider, for example, an Lpstbregion). A better approach is to mask
out all pixels not belonging to the object. In our implemeiota, we use a soft mask that attenuates
the intensity of pixels outside the object based on thetadise to the object boundary (see Figure 2).
This has the dual advantage of preventing hard edge astidact being less sensitive to segmentation
errors. The masked window is used at both training and test. tin our experiments we test this
more integrated approach using the patch-based featuresraibaet al. [19, 20]. Here features
are extracted by matching small rectangular patches aiustdcations within the masked window
and combining these weak responses using boosting. Olgpeteance and shape are captured by
operating on both the original (intensity) image and theeefilgered image.

For both approaches, we append the score (for each object}fre object detection classifiers—
linear SVM or boosted decision trees—to the object featuctove,.

.
(a) full window  (b) hard region mask (c) hard window (d) soft reginask  (e) soft window

Figure2: lllustration of soft mask for proposed object regions.

An important parameter for sliding-window detectors is lfase scale at which features are ex-
tracted. Scale-invariance is achieved by successivel\nekampling the image. Below the base-
scale, feature matching becomes inaccurate, so most oieteel only find objects above some
minimum size. Clearly there exists a trade-off between th&rd to detect small objects, feature
quality, and computational cost. To reduce the computatiarden of running our model on
high-resolution images while still being able to identifpall objects, we employ a multi-scale ap-
proach. Here we run our scene decomposition algorithm omvadsolution 20 x 240) version
of the scene, but extract features from the original higdeltgtion version. That is, when we extract
object-detector features we map the object pigelento the original image and extract our features
at the higher resolution.

2The most informative region-to-region relationship is tdattends to be above grouncbéd, grass, or
water). This information is already captured by including the horizon in our reggom.



4 Inferenceand Learning
We now describe how we perform inference and learn the paeasef our energy function.

4.1 Inference

We use a modified version of the hill-climbing inference aithon described in Gould et al. [7],
which uses multiple over-segmentations to propose larggeemim the energy space. An overview
of this procedure is shown in the right of Figure 1. We inidalthe scene by segmenting the
image using an off-the-shelf unsupervised segmentatgorighm (in our experiments we use mean-
shift [3]). We then run inference using a two-phased apgroac

In the first phase, we want to build up a good set of initialoaegibefore trying to classify them as

objects. Thus we remove the object varialeandC from the model and artificially increase the

boundary term weightsnﬂdry andngdry) to promote merging. In this phase, the algorithm behaves

exactly as in [7] by iteratively proposing re-assignmerftpigels to regions (variableR) and re-
computes the optimal assignment to the remaining varigBlasdv™). If the overall energy for the
new configuration is lower, the move is accepted, otherwiseptevious configuration is restored
and the algorithm proposes a different move. The algorithoegeds until no further reduction in
energy can be found after exhausting all proposal moves &pne-defined set (see Section 4.2).

In the second phase, we anneal the boundary term weightsvaoduce object variables over
all foreground regions. We then iteratively propose meiyes splits of objects (variable®) as
well as high-level proposals (see Section 4.2 below) of remjions generated from sliding-window
object candidates (affecting bol and O). After a move is proposed, we recompute the optimal
assignment to the remaining variabl& C andv"). Again, this process repeats until the energy
cannot be reduced by any of the proposal moves.

Since only part of the scene is changing during any iteratienonly need to recompute the
features and energy terms for the regions affected by a nttmeever, inference is still slow given
the sophisticated features that need to be computed andripe humber of moves considered.
To improve running time, we leave the context terr¥&! out of the model until the last iteration
through the proposal moves. This allows us to maximize eaglon term independently during
each proposal step—we use an iterated conditional modes)(iPhate to optimize" after the
region labels have been inferred. After introducing theterinterm, we use max-product belief
propagation to infer the optimal joint assignmenstandC. Using this approach we can process
an image in under five minutes.

4.2 Proposal Moves

We now describe the set of pixel and region proposal movesidered by our algorithm. These

moves are relative to the current best scene decompositibmi@ designed to take large steps in
the energy space to avoid local minima. As discussed abaeh, move is accepted if it results in a
lower overall energy after inferring the optimal assigntrfenthe remaining variables.

The main set of pixel moves are described in [7] but brieflyeetpd here for completeness.
The most basic move is to merge two adjacent regions. Morkistigated moves involve local
re-assignment of pixels to neighboring regions. These mave proposed from a pre-computed
dictionary of image segmenf. The dictionary is generated by varying the parameters afran
supervised over-segmentation algorithm (in our case nsbdhf3]) and adding each segmento
the dictionary. During inference, these segments are wspdopose a re-assignment of all pixels
in the segment to a neighboring region or creation of neworegrhese bottom-up proposal moves
work well for background classes, but tend to result in aegmented foreground classes which
have heterogeneous appearance, for example, one woulgpeitehe wheels and body of a car to
be grouped together by a bottom-up approach.

An analogous set of moves can be used for merging two adjadgetts or assigning regions
to objects. However, if an object is decomposed into mtiglgions, this bottom-up approach is
problematic as multiple such moves may be required to pmdwomplete object. When performed
independently, these moves are unlikely to improve theggnewe get around this difficulty by
introducing a new set of powerful top-down proposal movesedaon object detection candidates.
Here we use pre-computed candidates from a sliding-windeteador to propose new foreground
regions with corresponding object variable. Instead oppsing the entire bounding-box from the
detector, we propose the set of intersecting segments @roraegmentation dictionaty) that are
fully contained within the bounding-box in a single move.
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Figure 3: PR curves for car (left) and pedestrian (right) detection on the StreeteStataset [2]. The table
shows 11-pt average precision for variants of the baseline slidingewiaehd our region-based (RB) approach.

4.3 Learning

We learn the parameters of our model from labeled traininig ohaa piecewise fashion. First, the
individual terms are learned using the maximum-likelihaxgective for the subset of variables
within each term. The relative weightg'{®, 7,°%, etc.) between the terms are learned through cross-
validation on a subset of the training data. Boosted pixpkapance features (see [7]) and object
detectors are learned separately and their output proasl@put features to the combined model.

For both the base object detectors and the parameters oédgimrand object terms, we use a
closed-loop learning technique where we first learn anaih#ét of parameters from training data.
We then run inference on our training set and record mistaleete by the algorithm (false-positives
for object detection and incorrect moves for the full alor). We augment the training data with
these mistakes and re-train. This process gives a sigrifitgmovement to the final results.

5 Experiments

We conduct experiments on the challenging Street Scensadd®]. This is a dataset consisting of
3547 high-resolution images of urban environments. Wealedcthe images t820 x 240 before
running our algorithm. The dataset comes with hand-anedtagion labels and object boundaries.
However, the annotations use rough overlapping polygansjesused Amazon’s Mechanical Turk
to improve the labeling of the background classes only. Vi #ee original object polygons to be
consistent with other results on this dataset.

We divided the dataset into five folds—the first fold (710 imgjgeas used for testing and the
remaining four used for training. The multi-class imagensegtation component of our model
achieves an overall pixel-level accuracy of 84.2% acrosseifjht semantic classes compared to
83.0% for the pixel-based baseline method described iniéfe interesting was our object detec-
tion performance. The test set contained 1183 cars and 2B&p&@ns with average size & x 48
and22 x 49 pixels, respectively. Many objects are occluded making éhery difficult dataset.

Since our algorithm produces MAP estimation for the scenecanot simply generate a
precision-recall curve by varying the object classifieetiirold as is usual for reporting object detec-
tion results. Instead we take the max-marginals for €3chariable at convergence of our algorithm
and sweep over thresholds for each object separately toajersecurve. An attractive aspect of this
approach is that our method does not have overlapping catedidnd hence does not require arbi-
trary post-processing such as non-maximal suppressididofgswindow detections.

Our results are shown in Figure 3. We also include a compatstwvo baseline sliding-window
approaches. Our method significantly improves over thelin@sefor car detection. For pedestrian
detection, our method shows comparable performance to @@ blaseline which has been specif-
ically engineered for this task. Notice that our method doatsachieve 100% recall (even at low
precision) due to the curves being generated from the MARg@®s®nt in which pixels have already
been grouped into regions. Unlike the baselines, this foordy one candidate object per region.
However, by trading-off the strength (and hence operatigtpof the energy terms in our model
we can increase the maximum recall for a given object class, (& increasing the weight of the
object term by a factor of 30 we were able to increase pedestecall from 0.556 to 0.673).

Removing the pairwise context term does not have a signtfigiiect on our results. This is
due to the encoding of semantic context through the region gnd the fact that all images were
of urban scenes. However, we believe that on a dataset with wasied backgrounds (e.g., rural
scenes) context would play a more important role.

We show some example output from our algorithm in Figure 4e fiitst row shows the original
image (left) together with annotated regions and objeciddte-left), regions (middle-right) and
predicted horizon (right). Notice how multiple regions gebuped together into a single object.
The remaining rows show a selection of results (image andtated output) from our method.
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Figure 4: Qualitative results from our experiments. Top row shows original imagaptated regions and
objects, region boundaries, and predicted horizon. Other exampbdes atiginal image (left) and overlay
colored by semantic class and detected objects (right).

6 Discussion

In this paper we have presented a hierarchical model for @iject detection and image segmenta-
tion. Our novel approach overcomes many of the problemsaged with trying to combine related
vision tasks. Importantly, our method explains every pine¢he image and enforces consistency be-
tween random variables from different tasks. Furthermoue model is encapsulated in a modular
energy function which can be easily analyzed and improveteascomputer vision technologies
become available.

One of the difficulties in our model is learning the tradewdtween energy terms—too strong a
boundary penalty and all regions will be merged togetheilentbo weak a penalty and the scene
will be split into too many segments. We found that a clossapllearning regime where mistakes
from running inference on the training set are used to irserdhe diversity of training examples
made a big difference to performance.

Our work suggests a number of interesting directions farriitvork. First, our greedy inference
procedure can be replaced with a more sophisticated agptbatmakes more global steps. More
importantly, our region-based model has the potential foriging holistic unified understanding
of an entire scene. This has the benefit of eliminating manthefimplausible hypotheses that
plague current computer vision algorithms. Furthermoyeglbarly delineating what is recognized,
our framework directly present hypotheses for objects #natcurrently unknown providing the
potential for increasing our library of characterized abgeusing a combination of supervised and
unsupervised techniques.
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