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Abstract
One of the original goals of computer vision was to fully understand a natural
scene. This requires solving several sub-problems simultaneously, including ob-
ject detection, region labeling, and geometric reasoning.The last few decades
have seen great progress in tackling each of these problems in isolation. Only re-
cently have researchers returned to the difficult task of considering them jointly. In
this work, we consider learning a set of related models in such that they both solve
their own problem and help each other. We develop a frameworkcalled Cascaded
Classification Models (CCM ), where repeated instantiations of these classifiers
are coupled by their input/output variables in a cascade that improves performance
at each level. Our method requires only a limited “black box”interface with the
models, allowing us to use very sophisticated, state-of-the-art classifiers without
having to look under the hood. We demonstrate the effectiveness of our method
on a large set of natural images by combining the subtasks of scene categorization,
object detection, multiclass image segmentation, and 3d reconstruction.

1 Introduction
The problem of “holistic scene understanding” encompassesa number of notoriously difficult com-
puter vision tasks. Presented with an image, scene understanding involves processing the image to
answer a number of questions, including: (i) What type of scene is it (e.g., urban, rural, indoor)? (ii)
What meaningful regions compose the image? (iii) What objectsare in the image? (iv) What is the
3d structure of the scene? (See Figure 1). Many of these questions are coupled—e.g., a car present
in the image indicates that the scene is likely to be urban, which in turn makes it more likely to find
road or building regions. Indeed, this idea of communicating information between tasks is not new
and dates back to some of the earliest work in computer vision(e.g., [1]). In this paper, we present
a framework that exploits such dependencies to answer questions about novel images.

While our focus will be on image understanding, the goal of combining related classifiers is relevant
to many other machine learning domains where several related tasks operate on the same (or related)
raw data and provide correlated outputs. In the area of natural language processing, for instance,
we might want to process a single document and predict the part of speech of all words, correspond
the named entities, and label the semantic roles of verbs. Inthe area of audio signal processing, we
might want to simultaneously do speech recognition, sourceseparation, and speaker recognition.

In the problem of scene understanding (as in many others), state-of-the-art models already exist for
many of the tasks of interest. However, these carefully engineered models are often tricky to modify,
or even simply to re-implement from available descriptions. As a result, it is sometimes desirable to
treat these models as “black boxes,” where we have we have access only to a very simple input/output
interface. in short, we require only the ability to train on data and produce classifications for each
data instance; specifics are given in Section 3 below.

In this paper, we present the framework of Cascaded Classification Models (CCMs), where state-
of-the-art “black box” classifiers for a set of related tasksare combined to improve performance on
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(a) Detected Objects (b) Classified Regions (c) 3D Structure (d)CCM Framework

Figure 1: (a)-(c) Some properties of a scene required for holistic scene understanding that we seek to unify
using a cascade of classifiers. (d) TheCCM framework for jointly predicting each of these label types.

some or all tasks. Specifically, theCCM framework creates multiple instantiations of each classifier,
and organizes them into tiers where models in the first tier learn in isolation, processing the data to
produce the best classifications given only the raw instancefeatures. Lower tiers accept as input both
the features from the data instance, as well as features computed from the output classifications of
the models at the previous tier. While only demonstrated in the computer vision domain, we expect
theCCM framework have broad applicability to many applications inmachine learning.

We apply our model to the scene understanding task by combining scene categorization, object
detection, multi-class segmentation, and 3d reconstruction. We show how “black-box” classifiers
can be easily integrated into our framework. Importantly, in extensive experiments on large image
databases, we show that our combined model yields superior results onall tasks considered.

2 Related Work
A number of works in various fields aim to combine classifiers to improve final output accuracy.
These works can be divided into two broad groups. The first is the combination of classifiers that
predict thesame set of random variables. Here the aim is to improved classifications by combining
the outputs of the individual models. Boosting [6], in whichmany weak learners are combined into a
highly accurate classifier, is one of the most common and powerful such scemes. In computer vision,
this idea has been very successfully applied to the task of face detection using the so-called Cascade
of Boosted Ensembles (CoBE) [18, 2] framework. While similarto our work in constructing a
cascade of classifiers, their motivation was computationalefficiency, rather than a consideration
of contextual benefits. Tu [17] learns context cues by cascading models for pixel-level labeling.
However, the context is, again, limited to interactions between labels of the same type.

The other broad group of works that combine classifiers is aimed at using the classifiers as compo-
nents in large intelligent systems. Kumar and Hebert [9], for example, develop a large MRF-based
probabilistic model linking multiclass segmentation and object detection. Such approaches have also
been used in the natural language processing literature. For example, the work of Sutton and McCal-
lum [15] combines a parsing model with a semantic role labeling model into a unified probabilistic
framework that solves both simultaneously. While technically-correct probabilistic representations
are appealing, it is often painful to fit existing methods into a large, complex, highly interdepen-
dent network. By leveraging the idea of cascades, our methodprovides a simplified approach that
requires minimal tuning of the components.

The goal of holistic scene understanding dates back to the early days of computer vision, and is
highlighted in the “intrinsic images” system proposed by Barrow and Tenenbaum [1], where maps
of various image properties (depth, reflectance, color) arecomputed using information present in
other maps. Over the last few decades, however, researchershave instead targeted isolated computer
vision tasks, with considerable success in improving the state-of-the-art. For example, in our work,
we build on the prior work in scene categorization of Li and Perona [10], object detection of Dalal
and Triggs [4], multi-class image segmentation of Gould et al. [7], and 3d reconstruction of Saxena
et al. [13]. Recently, however, researchers have returned to the question of how one can benefit from
exploiting the dependencies between different classifiers.

Torralba et al. [16] use context to significantly boost object detection performance, and Sudderth
et al. [14] use object recognition for 3d structure estimation. In independent contemporary work,
Hoiem et al. [8] propose an innovative system for integrating the tasks of object recognition, surface
orientation estimation, and occlusion boundary detection. Like ours, their system is modular and
leverages state-of-the-art components. However, their work has a strong leaning towards 3d scene
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reconstruction rather than understanding, and their algorithms contain many steps that have been
specialized for this purpose. Their training also requiresintimate knowledge of the implementation
of each module, while ours is more flexible allowing integration of many related vision tasks regard-
less of their implementation details. Furthermore, we consider a broader class of images and object
types, and label regions with specific classes, rather than generic properties.

3 Cascaded Classification Models
Our goal is to classify various characteristics of our data using state-of-the-art methods in a way
that allows the each model to benefit from the others’ expertise. We are interested in using proven
“off-the-shelf” classifiers for each subtask. As such theseclassifiers will be treated as “black boxes,”
each with its own (specialized) data structures, feature sets, and inference and training algorithms.

To fit into our framework, we only require that each classifierprovides a mechanism for including
additional (auxiliary) features from other modules. Many state-of-the-art models lend themselves
to the easy addition of new features. In the case of “intrinsic images” [1], the output of each com-
ponent is converted into an image-sized feature map (e.g., each “pixel” contains the probability that
it belongs to a car). These maps can easily be fed into the other components as additional image
channels. In cases where this cannot be done, it is trivial toconvert the original classifier’s output to
a log-odds ratio and use it along with features from their other classifiers in a simple logistic model.

A standard setup has, say, two models that predict the variablesYD andYS respectively for the
same input instanceI. For example,I might be an image, andYD could be the locations of all cars
in the image, whileYS could be a map indicating which pixels are road. Most algorithms begin
by processingI to produce a set of features, and then learn a function that maps these features into
a predicted label (and in some cases also a confidence estimate). Cascaded Classification Models
(CCMs) is a joint classification model that shares information between tasks by linking component
classifiers in order to leverage their relatedness. Formally:

Definition 3.1: An L-tier Cascaded Classification Model (L-CCM ) is a cascade of classifiers of the
target labelsY = {Y1, . . . ,YK}L (L “copies” of each label) consisting ofindependentclassifiers
fk,0(φk(I); θk,0) → Ŷ0

k and a series ofconditional classifiersfk,ℓ(φk(I,yℓ−1

−k ); θc,ℓ) → Ŷℓ
k,

indexed byℓ, indicating the “tier” of the model, wherey
−k indicates the assignment to all labels

other than yk. The labels at the final tier (L − 1) represent the final classification outputs.

A CCM usesL copies of each component model, stacked into tiers, as depicted in Figure 1(d). One
copy of each model lies in the first tier, and learns with only the image features,φk(I), as input.
Subsequent tiers of models accepts a feature vector,φk(I,yℓ−1

−k ), containing the original image
features and additional features computed from the outputsof models in the preceeding tier. Given
a novel test instance, classification is performed by predicting the most likely (MAP) assignment to
each of the variables in the final tier.

We learn ourCCM in a feed-forward manner. That is, we begin from the top level, training the
independent (fk,0) classifiers first, in order to maximize the classification performance on the train-
ing data. Because we assume a learning interface into each model, we simply supply the subset of
data that has ground labels for that model to its learning function. For learning each componentk in
each subsequent levelℓ of theCCM , we first perform classification using the(ℓ− 1)-tier CCM that
has already been trained. From these output assignments, each classifier can compute a new set of
features and perform learning using the algorithm of choicefor that classifier.

For learning aCCM , we assume that we have a dataset of fully or partially annotated instances. It
is not necessary for every instance to have groundtruth labels for every component, and our method
works even when the training sets are disjoint. This is appealing since the prevalence of large,
volunteer-annotated datasets (e.g., the LabelMe dataset [12] in vision or the Penn Treebank [11] in
language processing), is likely to provide large amounts ofheterogeneously labeled data.

4 CCM for Holistic Scene Understanding
Our scene understanding model uses aCCM to combine various subsets of four computer vision
tasks: scene categorization, multi-class image segmentation, object detection, and 3d reconstruction.
We first introduce the notation for the target labels and thenbriefly describe the specifics of each
component. Consider an imageI. Our scene categorization classifier produces a scene labelC from
one of a small number of classes. Our multi-class segmentation model produces a class labelSj
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Figure 2: (left,middle) Two exmaple features used by the “context” aware object detector. (right) Relative
location maps showing the relative location of regions (columns) to objects (rows). Each map shows the preva-
lence of the region relative to the center of object. For example, the top rowshows that cars are likely to have
road beneath and sky above, while the bottom rows show that cows and sheep are often surrounded by grass.

for each of a predefined set of regionsj in the image. The base object detectors produce a set of
scored windows (Wc,i) that potentially contain an object of typec. We attach a labelDc,i to each
window, that indicates whether or not the window contains the object. Our last component module
is monocular 3d reconstruction, which produces a depthZi for every pixeli in the image.

Scene CategorizationOur scene categorization module is a simple multi-class logistic model that
classifies the entire scene into one of a small number of classes. The base model uses a 13 dimen-
sional feature vectorφ(I) with elements based on mean and variance of RGB and YCrCb color
channels over the entire image, plus a bias term. In the conditional model, we include features that
indicate the relative proportions of each region label (a histogram ofSj values) in the image, plus
counts of the number of objects of each type detected, producing a final feature vector of length 26.

Multiclass Image SegmentationThe segmentation module aims to assign a label to each pixel.We
base our model on the work of Gould et al. [7] who make use of relative location—the preference for
classes to be arranged in a consistent configuration with respect to one another (e.g., cars are often
found above roads). Each image is pre-partitioned into a set{S1, . . . , SN} of regions (superpixels)
and the pixels are labeled by assigning a class to each regionSj . The method employs a pairwise
conditional Markov random field (CRF) constructed over the superpixels with node potentials based
on appearance features and edge potentials encoding a preference for smoothness.

In our work we wish to model the relative location between detected objects and region labels. This
has the advantage of being able to encode scale, which was notpossible in [7]. The right side of
Figure 2 shows the relative location maps learned by our model. These maps model the spatial
location of all classes given the location and scale of detected objects. Because the detection model
provides probabilities for each detection, we actually usethe relative location maps multiplied by
the probability that each detection is a true detection. Preliminary results showed an improvement
in using these soft detections over hard (thresholded) detections.

Object DetectorsOur detection module builds on the HOG detector of Dalal and Triggs [4]. For
each class, the HOG detector is trained on a set of images disjoint from our datasets below. This
detector is then applied to all images in our dataset with a low threshold that produces an overde-
tection. For each imageI, and each object classc, we typically find 10-100 candidate detection
windowsWc,i. Our independent detector model learns a logistic model over a small feature vector
φc,i that can be extracted directly from the candidate window.

Our conditional classifier seeks to improve the accuracy of the HOG detector by using image seg-
mentation (denoted bySj for each regionj), 3d reconstruction of the scene, with depths (Zj) for
each region, and a categorization of the scene as a whole (C), to improve the results of the HOG
detector. Thus, the output from other modules and the image are combined into a feature vector
φk(I, C,S,Z). A sampling of some features used are shown in Figure 2. This augmented feature
vector is used in a logistic model as in the independent case.Both the independent and context aware
logistics are regularized with a small ridge term to preventoverfitting.

Reconstruction ModuleOur reconstruction module is based on the work of Saxena et al. [13]. Our
Markov Random Field (MRF) approach models the 3d reconstruction (i.e., depthsZ at each point
in the image) as a function of the image features and also models the relations between depths at
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CAR PEDES. BIKE BOAT SHEEP COW Mean Segment Category
HOG 0.39 0.29 0.13 0.11 0.19 0.28 0.23 N/A N/A
Independent 0.55 0.53 0.57 0.31 0.39 0.49 0.47 72.1% 70.6%
2-CCM 0.58 0.55 0.65 0.48 0.45 0.53 0.54 75.0% 77.3%
5-CCM 0.59 0.56 0.63 0.47 0.40 0.54 0.53 75.8% 76.8%
Ground 0.49 0.53 0.62 0.35 0.40 0.51 0.48 73.6% 69.9%
Ideal Input 0.63 0.64 0.56 0.65 0.45 0.56 0.58 78.4% 86.7%

Table 1: Numerical evaluation of our various training regimes for theDS1dataset. We show average precision
(AP) for the six classes, as well as the mean. We also show segmentation and scene categorization accuracy.

various points in the image. For example, unless there is occlusion, it is more likely that two nearby
regions in the image would have similar depths.

More formally, our variables are continuous, i.e., at a point i, the depthZi ∈ R. Our baseline model
consists of two types of terms. The first terms model the depthat each point as a linear function
of the local image features, and the second type models relationships between neighboring points,
encouraging smoothness. Our conditional model includes anadditional set of terms that models the
depth at each point as a function of the features computed from an image segmentationS in the
neighborhood of a point. By including this third term, our model benefits from the segmentation
outputs in various ways. For example, a classification of grass implies a horizontal surface, and a
classification of sky correlates with distant image points.While detection outputs might also help
reconstruction, we found that most of the signal was presentin the segmentation maps, and therefore
dropped the detection features for simplicity.

5 Experiments
We perform experiments on two subsets of images. The first subsetDS1contains 422 fully-labeled
images of urban and rural outdoor scenes. Each image is assigned a category (urban, rural, water,
other). We hand label each pixel as belonging to one of:tree, road, grass, water, sky, building
andforeground. The foreground class captures detectable objects, and avoid class (not used during
training or evaluation) allows for the small number of regions not fitting into one of these classes
(e.g., mountain) to be ignored. This is standard practice for the pixel-labeling task (e.g., see [3]). We
also annotate the location of six different object categories (car, pedestrian, motorcycle, boat, sheep,
andcow) by drawing a tight bounding box around each object. We use this dataset to demonstrate the
combining of three vision tasks: object detection, multi-class segmentation, and scene categorization
using the models described above.

Our much larger second datasetDS2was assembled by combining 362 images from theDS1dataset
(including either the segmentation or detection labels, but not both), 296 images from the Microsoft
Research Segmentation dataset [3] (labeled with segments), 557 images from the PASCAL VOC
2005 and 2006 challenges [5] (labeled with objects), and 534images with ground truth depth in-
formation. This results in 1749 images with disjoint labelings (no image contains groundtruth la-
bels for more than one task). Combining these datasets results in 534 reconstruction images with
groundtruth depths obtained by laser range-finder (split into 400 training and 134 test), 596 images
with groundtruth detections (same 6 classes as above, splitinto 297 train and 299 test), and 615 with
groundtruth segmentations (300 train and 315 test). This dataset demonstrates the typical situation
in learning related tasks whereby it is difficult to obtain large fully-labeled datasets. We use this
dataset to demonstrate the power of our method in leveragingthe data from these three tasks to
improve performance.

5.1 DS1 Dataset
Experiments with theDS1 dataset were performed using 5-fold cross validation, and we report
the mean performance results across folds. We compare five training/testing regimes (see Table 1).
Independentlearns parameters on a0-Tier (independent)CCM , where no information is exchanged
between tasks. We compare two levels of complexity for our method, a2-CCM and a5-CCM
to test how the depth of the cascade affects performance. Thelast two training/testing regimes
involve using groundtruth information at every stage for training and for both training and testing,
respectively.Groundtruth trains a5-CCM using groundtruth inputs for the feature construction
(i.e., as if each tier received perfect inputs from above), but is evaluated with real inputs. TheIdeal
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(a) Cars (b) Pedestrians (c) Motorbikes (d) Categorization

(e) Boats (f) Sheep (g) Cows (h) Segmentation

Figure 3: Results for the DS1 dataset. (a-c,e-g) show precision-recall curvesfor the six object classes that we
consider, while (d) shows our accuracy on the scene categorization task and (h) our accuracy in labeling regions
in one of seven classes.

Input experiment uses theGroundtruth model and also uses the groundtruth input to each tierat
testing time. We could do this since, for this dataset, we had access to fully labeled groundtruth.
Obviously this is not a legitimate operating mode, but does provide an interesting upper bound on
what we might hope to achieve.

To quantitatively evaluate our method, we consider metricsappropriate to the tasks in question.
For scene categorization, we report an overall accuracy forassigning the correct scene label to an
image. For segmentation, we compute a per-segment accuracy, where each segment is assigned the
groundtruth label that occurs for the majority of pixels in the region. For detection, we consider a
particular detection correct if the overlap score is largerthan 0.2 (overlap score equals the area of
intersection divided by the area of union between the detected bounding box and the groundtruth).
We plot precision-recall (PR) curves for detections, and report the average precision of these curves.
AP is a more stable version of the area under the PR curve.

Our numerical results are shown in Table 1, and the corresponding graphs are given in Figure 3. The
PR curves compare the HOG detector results to ourIndependentresults and to our2-CCM results.
It is interesting to note that a large gain was achieved by adding the independent features to the
object detectors. While the HOG score looks at only the pixelsinside the target window, the other
features take into account the size and location of the window, allowing our model to capture the
fact that foreground object tend to occur in the middle of theimage and at a relatively small range
of scales. On top of this, we were able to gain an additional benefit through the use of context in the
CCM framework. For the categorization task, we gained 7% using theCCM framework, and for
segmentation,CCM afforded a 3% improvement in accuracy. Furthermore, for this task, running an
additional three tiers, for a 5-CCM , produced an additional 1% improvement.

Interestingly, theGroundtruth method performs little better thanIndependentfor these three tasks.
This shows that it is better to train the models using input features that are closer to the features it
will see at test time. In this way, the downstream tiers can learn to ignore signals that the upstream
tiers are bad at capturing, or even take advantage of consistent upstream bias. Also, theIdeal Input
results show thatCCMs have made significant progress towards the best we can hope for from these
models.

5.2 DS2 Dataset

For this dataset we combine the three subtasks of reconstruction, segmentation, and object detec-
tion. Furthermore, as described above, the labels for our training data are disjoint. We trained an
Independentmodel and a 2-CCM on this data. Quantitatively, 2-CCM outperformedIndependent
on segmentation by 2% (75% vs. 73% accuracy), on detection by0.02 (0.33 vs. 0.31 mean average
precision), and on depth reconstruction by 1.3 meters (15.4vs. 16.7 root mean squared error).
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Figure 4: (top two rows) three cases whereCCM improved results for all tasks. In the first, for instance, the
presence of grass allows theCCM to remove the boat detections. The next four rows show four examples
where detections are improved and four examples where segmentationsare improved.

Figure 4 shows example outputs from each component. The firstthree (top two rows) show images
where all components improved over the independent model. In the top left our detectors removed
some false boat detections which were out of context and determined that the watery appearance
of the bottom of the car was actually foreground. Also by providing a sky segment, our method
allowed the 3d reconstruction model to infer that those pixels must be very distant (red). The next
two examples show similar improvement for detections of boats and water.

The remaining examples show how separate tasks improve by using information from the others. In
each example we show results from the independent model for the task in question, the independent
contextual task and the 2-CCM output. The first four examples show that our method was able
to make correct detections whereas the independent model could not. The last examples show
improvements in multi-class image segmentation.
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6 Discussion
In this paper, we have presented the Cascaded ClassificationModels (CCM ) method for combining
a collection of state-of-the-art classifiers toward improving the results of each. We demonstrated
our method on the task of holistic scene understanding by combining scene categorization, object
detection, multi-class segmentation and depth reconstruction, and improving on all. Our results are
consistent with other contemporary research, including the work of Hoiem et al. [8], which uses
different components and a smaller number of object classes.

Importantly, our framework is very general and can be applied to a number of machine learning
domains. This result provides hope that we can improve by combining our complex models in
a simple way. The simplicity of our method is one of its most appealing aspects. Cascades of
classifiers have been used extensively within a particular task, and our results suggest that this should
generalize to work between tasks. In addition, we showed that CCMs can benefit from the cascade
even with disjoint training data, e.g., no images containing labels for more than one subtask.

In our experiments, we passed relatively few features between the tasks. Due to the homogeneity of
our data, many of the features carried the same signal (e.g.,a high probability of an ocean scene is a
surrogate for a large portion of the image containing water regions). For larger, more heterogeneous
datasets, including more features may improve performance. In addition, larger datasets will help
prevent the overfitting that we experienced when trying to include a large number of features.

It is an open question how deep aCCM is appropriate in a given scenario. Overfitting is anticipated
for very deep cascades. Furthermore, because of limits in the context signal, we cannot expect to
get unlimited improvements. Further exploration of cases where this combination is appropriate is
an important future direction. Another exciting avenue is the idea of feeding back information from
the later classifiers to the earlier ones. Intuitively, a later classifier might encourage earlier ones to
focus its effort on fixing certain error modes, or allow the earlier classifiers to ignore mistakes that
do not hurt “downstream.” This also should allow componentswith little training data to optimize
their results to be most beneficial to other modules, while worrying less about their own task.
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