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Abstract

One of the original goals of computer vision was to fully urelend a natural
scene. This requires solving several sub-problems simedtasly, including ob-
ject detection, region labeling, and geometric reasonifge last few decades
have seen great progress in tackling each of these probtersslation. Only re-
cently have researchers returned to the difficult task ofharing them jointly. In
this work, we consider learning a set of related models imsbat they both solve
their own problem and help each other. We develop a framewaltkd Cascaded
Classification Models@CM), where repeated instantiations of these classifiers
are coupled by their input/output variables in a cascadariaroves performance
at each level. Our method requires only a limited “black bamtérface with the
models, allowing us to use very sophisticated, state-efat classifiers without
having to look under the hood. We demonstrate the effeatisef our method
on a large set of natural images by combining the subtaskseofkscategorization,
object detection, multiclass image segmentation, and Sthsgruction.

1 Introduction

The problem of “holistic scene understanding” encompaasesmber of notoriously difficult com-
puter vision tasks. Presented with an image, scene unddistpinvolves processing the image to
answer a number of questions, including: (i) What type of sdstit (e.g., urban, rural, indoor)? (ii)
What meaningful regions compose the image? (iii) What objesn the image? (iv) What is the
3d structure of the scene? (See Figure 1). Many of theseiqnestre coupled—e.g., a car present
in the image indicates that the scene is likely to be urbarghnin turn makes it more likely to find
road or building regions. Indeed, this idea of communigatiformation between tasks is not new
and dates back to some of the earliest work in computer vigan, [1]). In this paper, we present
a framework that exploits such dependencies to answeriqnestbout novel images.

While our focus will be on image understanding, the goal of bimimg related classifiers is relevant
to many other machine learning domains where several tefasks operate on the same (or related)
raw data and provide correlated outputs. In the area of ablamguage processing, for instance,
we might want to process a single document and predict theopapeech of all words, correspond
the named entities, and label the semantic roles of verlthelarea of audio signal processing, we
might want to simultaneously do speech recognition, soseparation, and speaker recognition.

In the problem of scene understanding (as in many otheadg-sf-the-art models already exist for

many of the tasks of interest. However, these carefullyreegyied models are often tricky to modify,

or even simply to re-implement from available descriptiofis a result, it is sometimes desirable to
treat these models as “black boxes,” where we have we haessoaly to a very simple input/output

interface. in short, we require only the ability to train oata and produce classifications for each
data instance; specifics are given in Section 3 below.

In this paper, we present the framework of Cascaded Claasifict Models CCMs), where state-
of-the-art “black box” classifiers for a set of related tagks combined to improve performance on
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(a) Detected Objects (b) Classified Regions (c) 3D Structure CQ@iY Framework
Figure 1: (a)-(c) Some properties of a scene required for holistic scene siaaheling that we seek to unify
using a cascade of classifiers. (d) TREM framework for jointly predicting each of these label types.

some or all tasks. Specifically, tCM framework creates multiple instantiations of each classifi
and organizes them into tiers where models in the first timién isolation, processing the data to
produce the best classifications given only the raw instéeateires. Lower tiers accept as input both
the features from the data instance, as well as featuresutechfrom the output classifications of
the models at the previous tier. While only demonstratedéncttmputer vision domain, we expect
the CCM framework have broad applicability to many applicationsnachine learning.

We apply our model to the scene understanding task by conmtbiséene categorization, object
detection, multi-class segmentation, and 3d reconstmctiVe show how “black-box” classifiers
can be easily integrated into our framework. Importantlyextensive experiments on large image
databases, we show that our combined model yields supesatts orall tasks considered.

2 Related Work

A number of works in various fields aim to combine classifi@rsnmprove final output accuracy.
These works can be divided into two broad groups. The firdtéscombination of classifiers that
predict thesame set of random variables. Here the aim is to improved clasgifins by combining
the outputs of the individual models. Boosting [6], in whitlany weak learners are combined into a
highly accurate classifier, is one of the most common and gahsich scemes. In computer vision,
this idea has been very successfully applied to the taskcefdatection using the so-called Cascade
of Boosted Ensembles (CoBE) [18, 2] framework. While simtarour work in constructing a
cascade of classifiers, their motivation was computatieffidiency, rather than a consideration
of contextual benefits. Tu [17] learns context cues by casgachodels for pixel-level labeling.
However, the context is, again, limited to interactionsaesn labels of the same type.

The other broad group of works that combine classifiers isdiat using the classifiers as compo-
nents in large intelligent systems. Kumar and Hebert [9] gfaample, develop a large MRF-based
probabilistic model linking multiclass segmentation abgeat detection. Such approaches have also
been used in the natural language processing literatureexample, the work of Sutton and McCal-
lum [15] combines a parsing model with a semantic role laigethodel into a unified probabilistic
framework that solves both simultaneously. While techiyeabrrect probabilistic representations
are appealing, it is often painful to fit existing methodsiatlarge, complex, highly interdepen-
dent network. By leveraging the idea of cascades, our mgthmddes a simplified approach that
requires minimal tuning of the components.

The goal of holistic scene understanding dates back to thg @ays of computer vision, and is
highlighted in the “intrinsic images” system proposed byrBa& and Tenenbaum [1], where maps
of various image properties (depth, reflectance, color)caraputed using information present in
other maps. Over the last few decades, however, reseattia@snstead targeted isolated computer
vision tasks, with considerable success in improving thtesbf-the-art. For example, in our work,
we build on the prior work in scene categorization of Li anddP@ [10], object detection of Dalal
and Triggs [4], multi-class image segmentation of Gould €& and 3d reconstruction of Saxena
et al. [13]. Recently, however, researchers have retumétketquestion of how one can benefit from
exploiting the dependencies between different classifiers

Torralba et al. [16] use context to significantly boost objgetection performance, and Sudderth
et al. [14] use object recognition for 3d structure estimmti In independent contemporary work,
Hoiem et al. [8] propose an innovative system for integathre tasks of object recognition, surface
orientation estimation, and occlusion boundary detectioke ours, their system is modular and
leverages state-of-the-art components. However, theik Was a strong leaning towards 3d scene



reconstruction rather than understanding, and their @lgns contain many steps that have been
specialized for this purpose. Their training also requinginate knowledge of the implementation
of each module, while ours is more flexible allowing integmtof many related vision tasks regard-
less of their implementation details. Furthermore, we marsa broader class of images and object
types, and label regions with specific classes, rather teaenir properties.

3 Cascaded Classification Models

Our goal is to classify various characteristics of our datmg state-of-the-art methods in a way
that allows the each model to benefit from the others’ expertiVe are interested in using proven
“off-the-shelf” classifiers for each subtask. As such theassifiers will be treated as “black boxes,”
each with its own (specialized) data structures, featus aad inference and training algorithms.

To fit into our framewaork, we only require that each classifiesvides a mechanism for including
additional (auxiliary) features from other modules. Mamgts-of-the-art models lend themselves
to the easy addition of new features. In the case of “intcimsiages” [1], the output of each com-
ponent is converted into an image-sized feature map (egh ixel” contains the probability that
it belongs to a car). These maps can easily be fed into the ottmponents as additional image
channels. In cases where this cannot be done, it is triviebtwert the original classifier's output to
a log-odds ratio and use it along with features from theieotiassifiers in a simple logistic model.

A standard setup has, say, two models that predict the Vasidb, andY ¢ respectively for the
same input instancgé. For exampleZ might be an image, an¥ ,, could be the locations of all cars
in the image, whileY s could be a map indicating which pixels are road. Most alpang begin
by processing to produce a set of features, and then learn a function thpsiteese features into
a predicted label (and in some cases also a confidence estin@dscaded Classification Models
(CCMs) is a joint classification model that shares informatiotwieen tasks by linking component
classifiers in order to leverage their relatedness. Foymall

Definition 3.1: An L-tier Cascaded Classification Moddl{CCM) is a cascade of classifiers of the
target label®) = {Y1,..., Yx }* (L “copies” of each label) consisting afdependentclassifiers
Fr0(6x(Z);0r0) — YO and a series otonditional classifiersfy ((éx(Z,y . ); 0e0) — Y&,
indexed by, indicating the “tier” of the model, wherg_; indicates the assignment to all labels
other than y. The labels at the final tied(— 1) represent the final classification outpuls.

A CCM usesL copies of each component model, stacked into tiers, asteegit Figure 1(d). One
copy of each model lies in the first tier, and learns with oty image features); (Z), as input.
Subsequent tiers of models accepts a feature vegidf, yf_‘kl), containing the original image
features and additional features computed from the outgfutsodels in the preceeding tier. Given
a novel test instance, classification is performed by ptedjche most likely (MAP) assignment to
each of the variables in the final tier.

We learn ourCCM in a feed-forward manner. That is, we begin from the top letraiining the
independent ;o) classifiers first, in order to maximize the classificationfpenance on the train-
ing data. Because we assume a learning interface into eadbljwee simply supply the subset of
data that has ground labels for that model to its learningtfan. For learning each componéhin
each subsequent levebf the CCM, we first perform classification using tfié— 1)-tier CCM that
has already been trained. From these output assignmentsckssifier can compute a new set of
features and perform learning using the algorithm of chéic¢hat classifier.

For learning &CCM, we assume that we have a dataset of fully or partially anedtmstances. It
is not necessary for every instance to have groundtrutiddbeevery component, and our method
works even when the training sets are disjoint. This is alipgaince the prevalence of large,
volunteer-annotated datasets (e.g., the LabelMe datB&Fin vision or the Penn Treebank [11] in
language processing), is likely to provide large amountssdérogeneously labeled data.

4 CCM for Holistic Scene Understanding

Our scene understanding model use8@M to combine various subsets of four computer vision
tasks: scene categorization, multi-class image segniemtabject detection, and 3d reconstruction.
We first introduce the notation for the target labels and theefly describe the specifics of each
component. Consider an imageOur scene categorization classifier produces a scenedatrein
one of a small number of classes. Our multi-class segmentatiodel produces a class lals|
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Figure 2: (left,middle) Two exmaple features used by the “context” aware objetator. (right) Relative
location maps showing the relative location of regions (columns) to objents). Each map shows the preva-
lence of the region relative to the center of object. For example, the toghows that cars are likely to have
road beneath and sky above, while the bottom rows show that cows aed ate often surrounded by grass.

for each of a predefined set of regiofgn the image. The base object detectors produce a set of
scored windows{/, ;) that potentially contain an object of tyjpe We attach a labeD. ; to each
window, that indicates whether or not the window contairesdbject. Our last component module

is monocular 3d reconstruction, which produces a deftfor every pixeli in the image.

Scene CategorizatiorOur scene categorization module is a simple multi-classiimgmodel that
classifies the entire scene into one of a small number ofetasBhe base model uses a 13 dimen-
sional feature vectos(Z) with elements based on mean and variance of RGB and YCrCh colo
channels over the entire image, plus a bias term. In the tondl model, we include features that
indicate the relative proportions of each region label &dgram ofS; values) in the image, plus
counts of the number of objects of each type detected, piogacfinal feature vector of length 26.

Multiclass Image SegmentationThe segmentation module aims to assign a label to each pifeel.
base our model on the work of Gould et al. [7] who make use atikad location—the preference for
classes to be arranged in a consistent configuration witfect$o one another (e.g., cars are often
found above roads). Each image is pre-partitioned into 4$gt. . ., S } of regions (superpixels)
and the pixels are labeled by assigning a class to each régiomhe method employs a pairwise
conditional Markov random field (CRF) constructed over theespixels with node potentials based
on appearance features and edge potentials encoding sgmeddor smoothness.

In our work we wish to model the relative location betweeredttd objects and region labels. This
has the advantage of being able to encode scale, which wamasible in [7]. The right side of
Figure 2 shows the relative location maps learned by our mo@ikese maps model the spatial
location of all classes given the location and scale of detkabjects. Because the detection model
provides probabilities for each detection, we actually tserelative location maps multiplied by
the probability that each detection is a true detectionlifieary results showed an improvement
in using these soft detections over hard (thresholdedxtietss.

Object DetectorsOur detection module builds on the HOG detector of Dalal anggs [4]. For
each class, the HOG detector is trained on a set of imagesrdi§jiom our datasets below. This
detector is then applied to all images in our dataset withnatloeshold that produces an overde-
tection. For each imagé, and each object clags we typically find 10-100 candidate detection
windows W, ;. Our independent detector model learns a logistic model awenall feature vector
¢.,; that can be extracted directly from the candidate window.

Our conditional classifier seeks to improve the accurachefHOG detector by using image seg-
mentation (denoted by; for each regiory), 3d reconstruction of the scene, with depthg)(for
each region, and a categorization of the scene as a wlbladq improve the results of the HOG
detector. Thus, the output from other modules and the image@mnbined into a feature vector
ox(Z,C,S,Z). A sampling of some features used are shown in Figure 2. Tugmanted feature
vector is used in a logistic model as in the independent ¢asit the independent and context aware
logistics are regularized with a small ridge term to prevarerfitting.

Reconstruction ModuleOur reconstruction module is based on the work of Saxena Et3jl Our
Markov Random Field (MRF) approach models the 3d reconstnugi.e., depthsZ at each point
in the image) as a function of the image features and also Indide relations between depths at
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CAR | PEDES. | BIKE | BOAT | SHEEP | Cow | Mean || Segment|| Category
HOG 0.39| 0.29 0.13 | 0.11 0.19 | 0.28 | 0.23 N/A N/A
Independent | 0.55 | 0.53 0.57 | 0.31 0.39 | 0.49 | 0.47 72.1% 70.6%
2-CCM 0.58 | 0.55 0.65 | 0.48 0.45 | 0.53 | 0.54 75.0% 77.3%
5-CCM 0.59 0.56 0.63 | 0.47 0.40 | 0.54 | 0.53 75.8% 76.8%
Ground 0.49 | 0.53 0.62 | 0.35 | 0.40 | 0.51| 0.48 73.6% 69.9%
Ideal Input 0.63| 0.64 0.56 | 0.65 | 0.45 | 0.56 | 0.58 78.4% 86.7%

Table 1: Numerical evaluation of our various training regimes for b®1 dataset. We show average precision
(AP) for the six classes, as well as the mean. We also show segmentadisnene categorization accuracy.

various points in the image. For example, unless there ision, it is more likely that two nearby
regions in the image would have similar depths.

More formally, our variables are continuous, i.e., at a péithe depthZ; € R. Our baseline model
consists of two types of terms. The first terms model the dap#each point as a linear function
of the local image features, and the second type modelsaeddiips between neighboring points,
encouraging smoothness. Our conditional model includesiditional set of terms that models the
depth at each point as a function of the features computed &o image segmentatid in the
neighborhood of a point. By including this third term, our deb benefits from the segmentation
outputs in various ways. For example, a classification ofgimplies a horizontal surface, and a
classification of sky correlates with distant image pointghile detection outputs might also help
reconstruction, we found that most of the signal was presghte segmentation maps, and therefore
dropped the detection features for simplicity.

5 Experiments

We perform experiments on two subsets of images. The firgtetlts1 contains 422 fully-labeled
images of urban and rural outdoor scenes. Each image isness@gcategoryufban, rural, water,
other). We hand label each pixel as belonging to one tofe, road, grass, water, sky, building
andforeground. The foreground class captures detectable objects, &aidl@lass (not used during
training or evaluation) allows for the small number of raggaot fitting into one of these classes
(e.g., mountain) to be ignored. This is standard practicéi® pixel-labeling task (e.qg., see [3]). We
also annotate the location of six different object categgar, pedestrian, motorcycle, boat, sheep,
andcow) by drawing a tight bounding box around each object. We usealtitaset to demonstrate the
combining of three vision tasks: object detection, mulliss segmentation, and scene categorization
using the models described above.

Our much larger second datag¥2was assembled by combining 362 images fromD8d dataset
(including either the segmentation or detection labelspoti both), 296 images from the Microsoft
Research Segmentation dataset [3] (labeled with segmé&ig)images from the PASCAL VOC
2005 and 2006 challenges [5] (labeled with objects), andis#ges with ground truth depth in-
formation. This results in 1749 images with disjoint labgk (no image contains groundtruth la-
bels for more than one task). Combining these datasetstseaub34 reconstruction images with
groundtruth depths obtained by laser range-finder (sglit 490 training and 134 test), 596 images
with groundtruth detections (same 6 classes as aboveijrgpl297 train and 299 test), and 615 with
groundtruth segmentations (300 train and 315 test). Thissghdemonstrates the typical situation
in learning related tasks whereby it is difficult to obtaimgi fully-labeled datasets. We use this
dataset to demonstrate the power of our method in leveratji@glata from these three tasks to
improve performance.

5.1 DSI1 Dataset

Experiments with théDS1 dataset were performed using 5-fold cross validation, aedreport
the mean performance results across folds. We compare diveéng/testing regimes (see Table 1).
Independentlearns parameters ortaTier (independentLCM, where no information is exchanged
between tasks. We compare two levels of complexity for outhod, a2-CCM and a5-CCM

to test how the depth of the cascade affects performance. |aBhéwo training/testing regimes
involve using groundtruth information at every stage faining and for both training and testing,
respectively. Groundtruth trains a5-CCM using groundtruth inputs for the feature construction
(i.e., as if each tier received perfect inputs from abova),ib evaluated with real inputs. Thdeal
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Figure 3: Results for the DS1 dataset. (a-c,e-g) show precision-recall cfovéise six object classes that we
consider, while (d) shows our accuracy on the scene categorizatloartdgh) our accuracy in labeling regions
in one of seven classes.

Input experiment uses th@roundtruth model and also uses the groundtruth input to eachatier
testing time. We could do this since, for this dataset, we had access liplalleled groundtruth.
Obviously this is not a legitimate operating mode, but daesige an interesting upper bound on
what we might hope to achieve.

To quantitatively evaluate our method, we consider metgpropriate to the tasks in question.

For scene categorization, we report an overall accuracpdsigning the correct scene label to an
image. For segmentation, we compute a per-segment accwieye each segment is assigned the
groundtruth label that occurs for the majority of pixels iretregion. For detection, we consider a
particular detection correct if the overlap score is larti@m 0.2 (overlap score equals the area of
intersection divided by the area of union between the detklsbunding box and the groundtruth).

We plot precision-recall (PR) curves for detections, anmbrethe average precision of these curves.
AP is a more stable version of the area under the PR curve.

Our numerical results are shown in Table 1, and the corredipgrgraphs are given in Figure 3. The
PR curves compare the HOG detector results tdiedependentresults and to ou2-CCM results.

It is interesting to note that a large gain was achieved byradthe independent features to the
object detectors. While the HOG score looks at only the pikedgle the target window, the other
features take into account the size and location of the wina@tlowing our model to capture the
fact that foreground object tend to occur in the middle ofithage and at a relatively small range
of scales. On top of this, we were able to gain an additionaéfiethrough the use of context in the
CCM framework. For the categorization task, we gained 7% udied>CM framework, and for
segmentationCCM afforded a 3% improvement in accuracy. Furthermore, fa thsk, running an
additional three tiers, for a &CM, produced an additional 1% improvement.

Interestingly, the&Groundtruth method performs little better thandependentfor these three tasks.
This shows that it is better to train the models using inpatudees that are closer to the features it
will see at test time. In this way, the downstream tiers canrldo ignore signals that the upstream
tiers are bad at capturing, or even take advantage of censigpstream bias. Also, thdeal Input
results show thaECM s have made significant progress towards the best we can tiofperh these
models.

5.2 DS2 Dataset

For this dataset we combine the three subtasks of recotistiusegmentation, and object detec-
tion. Furthermore, as described above, the labels for @imitrg data are disjoint. We trained an
Independentmodel and a ZZCM on this data. Quantitatively, CM outperformedndependent
on segmentation by 2% (75% vs. 73% accuracy), on detectidn(d8/(0.33 vs. 0.31 mean average
precision), and on depth reconstruction by 1.3 meters (1$.46.7 root mean squared error).
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Figure 4: (top two rows) three cases wheB€M improved results for all tasks. In the first, for instance, the
presence of grass allows ti&CM to remove the boat detections. The next four rows show four examples
where detections are improved and four examples where segmentatioinsproved.

Figure 4 shows example outputs from each component. Thetest (top two rows) show images
where all components improved over the independent modehd top left our detectors removed
some false boat detections which were out of context andrdeted that the watery appearance
of the bottom of the car was actually foreground. Also by fulong a sky segment, our method
allowed the 3d reconstruction model to infer that those Ipireust be very distant (red). The next
two examples show similar improvement for detections oftbaad water.

The remaining examples show how separate tasks improveity idormation from the others. In
each example we show results from the independent modéiéaask in question, the independent
contextual task and the Q€M output. The first four examples show that our method was able
to make correct detections whereas the independent modéd cot. The last examples show
improvements in multi-class image segmentation.
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6 Discussion

In this paper, we have presented the Cascaded Classifiddtidals CCM) method for combining

a collection of state-of-the-art classifiers toward imgngvthe results of each. We demonstrated
our method on the task of holistic scene understanding bybating scene categorization, object
detection, multi-class segmentation and depth recortgirnyand improving on all. Our results are
consistent with other contemporary research, includirgwiork of Hoiem et al. [8], which uses
different components and a smaller number of object classes

Importantly, our framework is very general and can be apptieea number of machine learning
domains. This result provides hope that we can improve byboaimg our complex models in

a simple way. The simplicity of our method is one of its mospegling aspects. Cascades of
classifiers have been used extensively within a particakls, tand our results suggest that this should
generalize to work between tasks. In addition, we showeidGlaM s can benefit from the cascade
even with disjoint training data, e.g., no images contajii@bels for more than one subtask.

In our experiments, we passed relatively few features betvilee tasks. Due to the homogeneity of
our data, many of the features carried the same signal éehigh probability of an ocean sceneis a
surrogate for a large portion of the image containing watgians). For larger, more heterogeneous
datasets, including more features may improve performahtaddition, larger datasets will help
prevent the overfitting that we experienced when trying tdude a large number of features.

Itis an open question how deefC&M is appropriate in a given scenario. Overfitting is anticigat
for very deep cascades. Furthermore, because of limitseircdimtext signal, we cannot expect to
get unlimited improvements. Further exploration of caségeng this combination is appropriate is
an important future direction. Another exciting avenuehis idea of feeding back information from
the later classifiers to the earlier ones. Intuitively, tatlassifier might encourage earlier ones to
focus its effort on fixing certain error modes, or allow theliea classifiers to ignore mistakes that
do not hurt “downstream.” This also should allow componenit little training data to optimize
their results to be most beneficial to other modules, whileryig less about their own task.
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