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Abstract. We propose a multi-target tracking method using an In-
teracting Multiple Model Joint Probabilistic Data Association (IMM-
JPDA) filter for tracking vesicles in Total Internal Reflection Fluores-
cence Microscopy (TIRFM) sequences. We enhance the accuracy and
reliability of the algorithm by tailoring an appropriate framework to this
application. Evaluation of our algorithm is performed on both realistic
synthetic data and real TIRFM data. Our results are compared against
related methods and a commercial tracking software.

Keywords: Multi-Target tracking, Bayesian tracking, IMM Filter, Data
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1 Introduction

Many biological mechanisms such as intracellular trafficking involve the in-
teraction of diverse subcellular components moving between different intracel-
lular locations and cellular membrane [1]. Analyzing these movements is an
essential preliminary step in understanding many biological processes. This spa-
tiotemporal analysis has become feasible using recent developments in time-lapse
fluorescence imaging, such as total internal reflection fluorescence microscopy
(TIRFM). However, manual scrutiny of hundreds of moving subcellular struc-
tures over numerous sequences is painstakingly slow and suffers from poor ac-
curacy and repeatability. Therefore, the development of a reliable automated
tracking algorithm is required for better biological exploration. However, many
challenging difficulties such as high levels of noise, high object densities and in-
tricate motion patterns confront the development of reliable automated tracking
algorithms. Moreover, the subcellular structures generally have complex inter-
actions while entering, exiting or temporarily disappearing from the frame [2].

Bayesian tracking approaches are a class of tracking algorithm that have be-
came popular for cell tracking applications in recent years [2–8]. These tracking
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methods can properly deal with the interaction between the targets and long dis-
appearance intervals by incorporating prior knowledge of object dynamics and
measurement models. Particle filtering (PF) methods are a type of Bayesian
tracking technique well suited to nonlinear models. Therefore, they have been
applied in many biological applications [3, 5]. However, the main weakness of
these methods is their high computation cost [3]. For this reason, Kalman filter-
ing based methods, such as the interacting multiple model (IMM) filter, which
are computationally effective, are still a popular alternative for biological appli-
cations [2, 4, 6]. In order to solve the measurement-to-target assignment problem,
accurate multi-target tracking also requires robust data association. Some ex-
amples of these algorithms used in cell tracking applications include multiple hy-
pothesis tracking (MHT) [7] and joint probabilistic data association (JPDA) [8].
MHT is a preferred technique for solving the data association problem due to
considering all possible measurement-to-track assignments for a number of suc-
cessive frames. However, it is computationally intensive, especially in the regions
with high target density [9]. JPDA is a special case of MHT and considers all
possible measurement-to-target assignments in each frame separately. In diverse
applications, this data association technique provides acceptable performance
whilst having significantly less processing time compared to the MHT algorithm.
Moreover, it has been shown that for tracking highly maneuvering targets in the
presence of clutter, the PDA-based filter in conjunction with the IMM filter
yields one of the best solutions and has comparable performance to MHT [9].

Since in our application the objects of interest embody nonlinear dynamics
we propose a combination of the IMM and the JPDA filters. The combination
of these filters, the so called IMM-JPDA filter, was first introduced by Bar-
Shalom et al. [10] and has been used in various applications such as radar [11]
and robotics [12]. However, to our knowledge, this is the first application of
the IMM-JPDA filter to biological imaging. As the main contribution of this
paper we tailor a framework for tracking vesicles in TIRFM images. We evaluate
the performance of our algorithm on realistic synthetic sequences as well as
a real TIRFM data set. In addition, our results are compared with those of
related methods and one popular commercial software package. The results show
that our algorithm is robust enough to track different vesicle dynamics whilst
maintaining tracks after their temporary disappearance.

2 Background

In this section, we briefly review the IMM and JPDA filters. For a complete
treatment see Blackman and Popoli [13]. The IMM filter is a Bayesian state esti-
mation algorithm which models nonlinear dynamic and measurement equations
using multiple switching linear models. For each model k, the posterior density
p(xt|zt, kt = k), where xt is the system state vector and zt is the measurement
vector at time t, evolves based on the Kalman filter equations [13]. The switch-
ing between models is regulated by a transition probability matrix. To this end,
IMM switching weights, so called IMM model probabilities λk

t , are calculated
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and updated at each time index t using this matrix. Next, these weights are
used for mixing the posterior densities of each model p(xt|zt, kt) and calculating
the final posterior density p(xt|zt).

The JPDA filter is a method of associating the detected measurements in the
current frame with existing targets using a joint probabilistic score. This score
is calculated based on the set of all valid joint associations, Θji, which assign
measurement j to target i. Here, a set of all possible measurement-to-track
hypotheses are first generated such that each detected measurement is uniquely
chosen by one track in each hypothesis. A null assignment ∅, representing the
assignment of no observation to a given track, is also considered. Next, the
probability P (θ|zt) corresponding to each hypothesis, θ, is calculated. In the
case of linear Gaussian models, this probability can be calculated as P (θ|zt) ∝∏

(i,j)∈θ gij , where gij is a likelihood function,

gij =

⎧
⎨

⎩

1 − P (D) if j = ∅,
exp(−d2

ij/2)
(2π)M/2

√
|S| otherwise,

(1)

where P (D) is the probability of detection, M is dimension of the measurement,
and S is innovation covariance matrix of the Kalman filter. Here dij is the
normalized statistical distance between track i and measurement j using the
innovation covariance matrix S.

Consequently, the joint probabilistic score, βji, that measurement j was gen-
erated by track i is obtained by

∑
θ∈Θji

P (θ|zt). Finally, tracks are updated with
a weighted sum of measurements where the weights are the score probabilities.

3 Method

An accurate multiple target tracking algorithm requires robust detection for
track initialization, initiation, and termination. To this end, we use the maximum
possible h-dome (MPHD) method [14]. This detection method is accurate enough
to detect most of targets with a low false detection rate. The output of the
algorithm is a set of detected positions and an estimated background Bt in frame
t (see Rezatofighi et al. [14] for details). Then, we use an enhanced IMM-JPDA
filter along with a track management procedure as follows.

3.1 An Enhanced IMM-JPDA Filter

Since the data in our case consists of two dimensional sequences, the state vec-
tor and the measurement vector are typically defined as xt = (xt, ẋt, yt, ẏt),
including positions x́t = (xt, yt) and velocities ẋt = (ẋt, ẏt), and zt = (x̂t, ŷt)
respectively. In the IMM-JPDA filter, the prediction density of the state xt ∈ R

4

in each model is first estimated based on each linear dynamic model of the IMM
filter. Next, each density is updated by the JPDA filter. Last, the posterior den-
sity p(xt|zt) is calculated based on a weighted combination of posterior densities
p(xt|zt, kt) using the IMM model probabilities. To improve the performance of
this filter in TIRFM sequences, we tailor the framework as described below.
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IMM with a State Dependent Transition Probability Matrix. To deal
with nonlinear dynamics of the biological structures, different numbers of linear
dynamic models have been proposed in the literature [3, 4, 6]. Although, a large
number of linear dynamics [4, 6] may result a better estimation of these non-
linear dynamics, they are more computationally demanding. In addition, more
dynamic models increase the uncertainty of the estimated state; because in the
IMM filter, a mixture of weighted Gaussian posterior densities results in higher
variance. For these reasons, we use the two dynamic models defined by Smal et
al. [3] including random walk and nearly constant velocity motion with small ac-
celerations. These two types of dynamics properly model the nonlinear motion of
the vesicles in TIRFM sequences. The random walk and constant velocity models
resemble vesicle motion patterns described as tethering and docking, and linear
movements, respectively [1]. Also for abrupt changes in direction, the random
walk model operates as the transition state between two linear movements.

Traditionally, the elements of the transition probability matrix (TPM) are
almost always considered as constant and chosen empirically. In Li et al. [4],
these values are adaptively improved using an online minimum mean-square
error estimation. However, it is still a shared matrix for all targets and requires
an assumed distribution for probabilities of TPM. In contrast, we use an adaptive
transition probability matrix which evolves based on the state of each target in
the previous frame. Biologically, a vesicle can occasionally switch between these
two states based on its kinetic energy. In other words, a vesicle with low velocity is
more likely to either remain in the first model (docking and tethering dynamics)
(kt = kt−1 = 1) or switch from the linear movement model (kt−1 = 2) to the
first model. The transition probability for the above states can be modeled by
a decreasing function of the velocity of each target in the previous frame ẋt−1.
Here, we define this function by a Gaussian-like probability function as

P (kt|kt−1 = k, ẋt−1) =

⎧
⎪⎨

⎪⎩

Sk exp(−1
2
ẋt−1

(Ak
)−1

ẋt−1), kt = 1,

1 − Sk exp(−1
2
ẋt−1

(Ak
)−1

ẋt−1), kt = 2,
(2)

where Sk is the maximum switching probability from model kt−1 to model kt and
Ak is a user specified positive semi-definite matrix. In our work, we set Ak = σkI,
where I is the identity matrix. These parameters are fixed for each model based
on prior knowledge. Finally, the elements of the transition probability matrix
can be obtained by marginalization over ẋt−1:

P (kt|kt−1, zt−1) =
∫

P (kt|kt−1, ẋt−1)p(ẋt−1|zt−1, kt−1)dẋt−1 . (3)

Since p(ẋt−1|zt−1, kt−1 = k) is a Gaussian with mean μ̇k
t−1 and covariance Σ̇k

t−1,
P (kt|kt−1 = k, zt−1) can be written in a closed form as

Sk

√
|Ak|

|Σ̇k
t−1+Ak| exp(−1

2
(μ̇k

t−1)
T (Σ̇k

t−1 + Ak)−1(μ̇k
t−1)), for kt = 1. (4)

For the case kt = 2, this probability is simply one minus the above.
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An Enhanced JPDA for Vesicle Tracking. The performance of the JPDA
algorithm is enhanced if the probability of detection in Equation 1 is a function of
the position of each target. The detection of each target directly depends on the
performance of the detection algorithm. In MPHD, a missed detection is more
likely to occur at the edge of background structures. Therefore, the distribution
of this probability can be modeled as a function of the background Bt estimated
by the MPHD method. In this paper, we define this probability as P (D|x́k

t|t−1) =
1 − Ω(‖∇Bt(x́)‖)x́=x́k

t|t−1
, where ‖∇.‖ is the gradient magnitude operator and

Ω(·) is a function that normalizes its argument to the interval [0, 1]. Because a
closed form for the probability of detection by marginalization over x́

k
t|t−1 can

not be calculated, we approximate it by the point estimate P (D|μ́k
t|t−1).

In the 2D TIRFM imaging system, the emitting intensity of each fluorescence
object is a nonlinear function of its depth as zt − z0 = ζ log(I0/It), where ζ is
a decaying factor and z0 and I0 are a known depth and its equivalent intensity,
respectively. Therefore, we can use the relative changes in the target’s depth
movement to better assign each measurement to its corresponding targets. To
this end, we assume that the maximum intensity (Imax) corresponds to z0 = 0.
By extending the state vector to xt = (xt, ẋt, yt, ẏt, zt, żt) and the measurement
vector to zt = (x̂t, ŷt, ẑt = ζ log(Imax/It)), the performance of the JPDA algo-
rithm is enhanced.

3.2 Track Management

Initialization and Track Initiation. In order to initialize the trajectories, we
apply the MPHD method for the first two consecutive sequences. The positions
are initialized with the output of this method for the first frame. The initial
velocities are estimated as the difference between the detected positions in the
first frame and the nearest corresponding detected positions in the second frame.
For track initiation of newly appearing targets, we use the joint probabilistic
score described in §2. To this end, a total joint probabilistic score βK

ji is first
calculated as

∑2
k=1 λk

t βk
ji, where βk

ji is the joint probabilistic score of each model
and λk

t are the IMM weights. Next, the detected measurements in frame t with
the highest total score are considered as the most plausible measurements for
the existing targets in this frame. The remaining detected measurements are
initiated as new born targets.

Temporary Target Disappearance and Track Termination. Due to the
depth movements of the targets in TIRFM sequences, they can temporarily
disappear for several sequential frames. In this situation, the first element of the
total joint probabilistic score (βK

∅i) representing the missed detection probability
is maximum in the frames where a target has either disappeared or was not
detected. To deal with this temporary disappearance, our algorithm is allowed to
continue tracking missed detections for up to N consecutive frames. Otherwise,
the track is terminated from the last frame where the maximum score is not
allotted to the βK

∅i.
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4 Experimental Results

The proposed tracking algorithm was evaluated using synthetic data (with ground
truth) and also real TIRFM sequences. To show the efficacy of the combination
of IMM and JPDA filters, we compared the performance of the proposed method
(IMM-JPDA) with those of two related methods including the JPDA filter with
a small acceleration dynamic model [8] and IMM filter along with a data associa-
tion technique using the innovation matrix [6]. We also validate our experiments
against a state-of-the-art commercial tracking software package (ImarisTrack).

In the first experiment, the tracking methods were tested using realistic syn-
thetic sequences. The synthetic data consists of 80 targets moving through 40
frames inside a 450×450 pixel region. The spatial intensity profile of the targets
were modeled by a 2D Gaussian distribution and were generated in different sizes
similar to the size of the vesicles in the real TIRFM. Furthermore, due to the
3-D dimensional motion of the targets, their intensity is modulated according
to their depth (see §3.1). To add an appropriate background, the background
of a real TIRFM image estimated using the MPHD method [14], was added to
the generated synthetic sequences. Next, the sequences were contaminated with
Poisson noise. The dynamics of the targets were modeled using two aforemen-
tioned models. Also, targets can switch between these two dynamics (Fig. 1).

In order to quantitatively assess the performance of the tracking methods, we
need an appropriate measure to characterize different aspects of tracking perfor-
mance such as track accuracy, track truncation, data association and missed or
false tracks. Metrics used in previous works [2–8] can not properly represent the
performance of a multi-target tracking algorithm. Recently, a metric based on
optimal subpattern assignment (OSPA) has been introduced by Risitc et al. [15]
that captures the aforementioned aspects by a single value. This value can be
seen as the sum of two errors including cardinality and location errors. The car-
dinality error can be interpreted as errors related to missed or false tracks while
location error shows track accuracy error and labeling error. In other words,
the accuracy of a tracking filter in tracking of a target and the performance of
its data association technique are better shown by location error. On the other
hand, a truncated track increases both cardinality and location errors because
of missed tracks in the gaps and labeling error of truncated tracks.

In Table 1, the performance of the IMM, JPDA, IMM-JPDA and ImarisTrack
for realistic synthetic data is compared using OSPA metric. For the first three
methods, same detection scheme (MPHD) was used. As a result, they track
similar false targets and have similar cardinality error. Differences in this error
are due to their performance in filling the gaps between two tracks (missed track
error). This error is noticeably higher for the ImarisTrack software because of
its different detection scheme. The location error in this table demonstrates
the performance of both the tracking filter and data association technique. As
expected, selection of the JPDA filter as data association technique enhances
the performance of the tracking system. However, the JPDA filter can not track
nonlinear dynamics as well as the IMM-JPDA filter. Fig. 1 (b)-(e) shows results
from the IMM-JPDA method for some complex situations.
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Table 1. Comparison of the performance of the IMM, JPDA, IMM-JPDA and Imaris-
Track for realistic synthetic data using OSPA metric (lower value is better)

Methods IMM [6] JPDA [8] IMM-JPDA ImarisTrack

OSPA [15] 7.81 5.78 5.45 13.61

Cardinality error 2.68 2.65 2.36 6.75

Location error 5.13 3.13 3.09 6.86

(a)

(b) (c)

(d) (e)

Fig. 1. (a) A part of the realistic synthetic data with locally varying SNR= 2− 6. (b)-
(e) The result of tracking using the proposed algorithm (dashed line) and the ground
truth (solid line): (b) a complex assignment, (c) a temporary disappearance (between
two red lines), (d) a maneuvering motion, and (e) a switching dynamics

Fig. 2. Tracking result of the proposed method for 80 real TIRFM sequences

The described tracking methods were also tested on real TIRFM sequences
(Fig. 2). Since the ground truth was not available for these real data, the results
of the tracking were only visually evaluated by expert biologist. Our method in
many cases such as temporary disappearance of the targets and their maneuver-
ing or switching dynamics outperforms the other methods.
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5 Conclusion

Due to complex interaction of subcellular structures, the performance of track-
ing systems can be noticeably affected by their method for data association. Our
results show that the combination of IMM with JPDA can be effective in both
tracking nonlinear dynamics and solving the complex measurement-to-track as-
signment problem. Moreover, our method has significantly lower processing time
with comparable performance to particle filter based approaches. Specifically, it
takes only few minutes to track hundreds of targets using our method. This sug-
gests that our method can be used as a reliable algorithm for tracking hundreds
moving targets in long TIRFM sequences.
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