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ABSTRACT
Since generation of reliable ground truth annotation of fluo-
rescence microscopy sequences is usually a laborious and ex-
pensive task, many proposed detection and tracking methods
have been evaluated using synthetic data with known ground
truth. However, differences between real and synthetic im-
ages may lead to inaccurate judgment about the performance
of an algorithm. In this paper, we present a framework for
generating realistic synthetic sequences of total internal re-
flection fluorescence microscope (TIRFM) through simula-
tion of the image formation process and accurate measure-
ment and dynamic models. The sequences generated using
this framework appropriately reflect the complexities existing
in real TIRFM sequences.

Index Terms— TIRFM, Synthetic data, Background es-
timation, Vesicle shape deformation, Dynamic model.

1. INTRODUCTION

Total internal reflection fluorescence microscopy (TIRFM) is
an imaging technique that enables the selective excitation of
fluorophores within a few hundred nano-meters of the plasma
membrane of a cell. Therefore it is ideal for visualizing sub-
cellular structures such as vesicles that are on or close to the
plasma membrane [1]. Manual analysis of such data sets is
a laborious task which is subject to judgement bias. Hence,
the development of automated methodologies which are able
to detect and track subcellular structures would provide a cru-
cial framework for understanding many biological process.

Recently, many detection and tracking techniques have
been proposed in different fluorescence microscopy applica-
tions [2, 3, 4, 5, 6]. However, without the ground truth, the
performance of these method can not be correctly evaluated
on real sequences. But ground truth is difficult to obtain due to
lack of accuracy and speed in manual procedure. To this end,
the performance of these algorithms is quantitatively evalu-
ated using synthetic data where the ground truth is known.

In most previous works [2, 3, 4, 5], some simple assump-
tions are used in generating synthetic data such as sequences
with constant signal-to-noise ratio (SNR) and without back-
ground structures, particles with fixed shapes and with Gaus-
sian spatial intensity modeling point spread (PSF) function
of imaging system. Although these assumptions may ease
the procedure of generation of synthetic data, they do not re-
flect the complexities existing in real sequences. For exam-
ple, it has been shown that many detection algorithms fail in
presence of background structures (clutter) [2]. Furthermore,
since the algorithms’ parameters can be tuned for a specific
SNR, a synthetic data with constant SNR can not properly
challenge the algorithms whilst real data contains sequences
with spatiotemporally varying SNR.

In this paper, we propose a general framework for gener-
ating synthetic TIRFM sequences based on realistic measure-
ments and dynamics models. The sequences generated using
this framework appropriately reflect the difficulties existing in
real TIRFM sequences∗. Therefore, the sequences can be an
apt evaluator for detection and tracking methods.

2. METHODS

2.1. Measurement Model

TIRFM uses an evanescent field to exclusively illuminate the
sample within a few hundred nanometres from the imaging
surface [7]. In cell biology studies the evanescent field is pro-
duced at the surface of a glass cover-slip on which cells reside,
in some aqueous medium. The field behaves as a sheet of light
whose intensity decays exponentially with distance from the
imaging surface defined by Iz = I0 exp(−z/ζ), where Iz is
the intensity of the field at distance z, I0 is the intensity of the
field at its origin, z0, and ζ is the decay constant.

Real TIRFM sequences generally contain hundreds of
dynamic subcellular structures which appear as bright spot

∗The code and the generated sequences are available upon request by e-
mail to: hamid.rezatofighi@anu.edu.au, or at the first author’s website.



like objects,O, superimposed onto a spatially and temporally
varying background B. Noting this fact that the background
is additive to the sequences [2, 3], the noise-free intensity of
the sequences I observed at pixel X = (x, y)T and at time t
can be modeled using the following equation.

I(X, t) = B(X, t) +O(X, t), (1)

For TIRFM, the object intensity model observed at pixel
X and at time t can be mathematically defined as

O(X, t) =

nt∑
k=1

IO(zkt )
(
O(X; Xkt ,Σ

k
t ) ∗ Ps|z=zkt

)
(2)

where nt is number of objects at frame t, ∗ denotes the convo-
lution of the region occupied by an object, O, with the three-
dimensional point spread function (PSF), Ps, of the objective
lens at the object’s depth zkt . Xkt = (xkt , y

k
t )T is the position

of each object k at time t and Σkt is a shape matrix which can
be different for each object and evolves over the time with the
state of the object. IO(z) is the intensity of fluorescence of the
object obtained by the decaying exponential defined above.

In real sequences, it can be observed that subcellular
structures become elongated in the same direction of their
motions due to various biophysical factors. This phenomenon
is observable in dynamic vesicles as they are seen as elon-
gated ‘comet’ or ‘tear drop’ shaped objects when they move
(Fig. 3) [8, 9]. Therefore, to improve the particle model,
an evolving procedure for the shape matrix based on the
state of the object is proposed. In order to generate different
shapes such as circle, ellipse and tear drop using a model, the
shapes of objects are constructed in a piecewise manner using
two half ellipses with different shape matrices which can be
evolved based on their dynamics (Fig. 1).

Suppose E(X; M,Σ) =
{

X | (X − M)TΣ−1(X − M) 6 1
}

and S(X; M, C) =
{

X | CT (X − M) > 0
}

represent an ellip-
soids volume (elliptical surface in 2D case), and a half space,
respectively. Then O can be obtained as follows.

O(X; Xkt ,Σ
k
t ) = E(X; Xkt ,Σ

k
t,1) ∩ S(X; Xkt , Cθ)

∪E(X; Xkt ,Σ
k
t,2) ∩ S(X; Xkt ,−Cθ)

(3)

where

Cθ = [cos θkt sin θkt ]T , tan θkt =
ẏkt
ẋkt
, (4)

and
Σkt,l =

(
Θk
t

)T
Γkt,lΘ

k
t , l = 1, 2. (5)

Parameters Θk
t and Γkt are the rotation and axes matrices re-

spectively and calculated as

Θk
t =

[
cos θkt sin θkt
− sin θkt cos θkt

]
,

Γkt,1 =

[
(σkx)2 0

0 (σky )2f̄(‖Ẋ
k
t ‖)

]
,

Γkt,2 =

[
(σkx)2f(‖Ẋ

k
t ‖) 0

0 (σky )2f̄(‖Ẋ
k
t ‖)

]
.

(6)

(a) (b)
Fig. 1. The proposed evolving shape procedure for a object
(a) before any motion and (b) after movement in direction θt.

The σkx and σky determine initial size of each object for each
axis prior to any motion. The Ẋ

k
t = (ẋkt , ẏ

k
t )T is the veloc-

ity element of each object at frame t. The f(.) and f̄(.) are
deformation functions which distort the shape based on the
magnitude of velocity υ = ‖Ẋ‖. To keep the rate of change of
axes constant, the f̄(.) should be equal to f−1(.). Moreover,
the function must fulfill the f(0) = f̄(0) = 1. The form of
this function is different for each biological application and
depends on many biophysical factors such as viscosity, elas-
ticity and osmotic pressure of the membrane of the structures
[8, 9]. In this paper, we simplify this complexity and approx-
imate it by a quadratic exponential function as the follows.

f(‖Ẋ
k
t ‖) = exp

(
(ẋkt )2 + (ẏkt )2

γ2

)
, (7)

The parameter γ summarizes all biophysical factors in a value
and controls the effect of the velocity on this deformation.

In this paper, the point spread function is modeled us-
ing an analytical expression for the diffraction pattern of light
through a pupil with a perfect aberration free lens [10].

Ps(u, v) =
∣∣∣2 ∫ 1

0
P (ρ)J0(ρv) exp(iuρ2/2)ρdρ

∣∣∣2
u = 2πNA2z/λ, v = 2πNAr/λ

(8)

where P (ρ) is a pupil function with an aperture radius
R, J0(.) is a first order Bessel function, ρ = r/R, r =√
x2 + y2, NA is the numerical aperture of the lens, λ is

wavelength of the light diffracted by aperture.
This function simulates the slight defocus effects of parti-

cles at different distances from the focal plane which are seen
when ζ is large (∼ 200 − 300 nm). These are observable
in real TIRFM for bright particles relatively distant from the
evanescent field origin.

To extract the background of real TIRFM sequences, we
use the maximum possible h-dome (MPHD) method [11].
This method extracts all regional peaked domes from each
frame and enhances them to their maximum possible height.
Since the objects of interest appear as regional domes (the
second term, O, in Eq. 1, we can estimate the background of
each real sequence B̂(., t) by substraction of these extracted
domes from the sequence.

Fluorescence microscopy images are distorted by two
main sources of noise; namely, photon noise (Poisson) and
readout noise (Gaussian). Therefore, the stochastic model for
these is be represented by a Mixed-Poisson-Gaussian (MPG)



process [12]. Because these are generated from two different
sources, these noise processes are mutually independent. To
generate Poisson noise, the noise-free intensity of each pixel
I(X, t) is supposed as the mean λ of Poisson process P(λ).
The readout noise can be generated by adding a gaussian
noise with known mean µ and variance σ2. The final noisy
intensity of each pixel Iη(X, t) is obtained as follows.

Iη(X, t) = αIP(X, t) + IN (X, t), (9)

where α > 0 is the overall gain of the imaging detector,
IP(X, t) ∼ P (I(X, t)) and IN (X, t) ∼ N (µ, σ2).

Due to non-homogeneous backgrounds of the sequences
and dynamic intensity of structures, the SNR of images is not
constant. Instead, it can be modeled by a range between a
minimum and maximum SNR. In order to fix the SNR be-
tween any desirable range, we can combine the estimated
background and the generated objects using coefficients a and
b such that I = aO + bB̂. Therefore these coefficient can be
calculated such that the SNR is set between a desirable range.

2.2. Dynamic Models

In this study we use statistical models to simulate vesicle mo-
tion dynamics. It has been shown that two linear dynamic
models including random walk and nearly constant velocity
motion with small accelerations can properly mimic the non-
linear motion of the vesicles in TIRFM sequences [4, 5, 6].
Random walk and constant velocity models resemble vesicle
motion patterns described as tethering and docking, and lin-
ear movements, respectively [1, 6]. In addition, some vesicles
appear to be stationary for long periods of time. This is due
to their strong attachment to the cell membrane. Hence, they
are seen as immobile structures with subtle jittering motion.

As well as vesicles, there are other membrane bound sub-
cellular structures, such as endosomes, close enough to the
plasma membrane to appear in TIRFM images. Large endo-
somes appear as bigger structures and are usually relatively
immobile. In addition, they may spawn or absorb the small
structures. Thus, our sequences include these large structures.

Due to the 3-D dimensional motion of vesicles, they may
exit from evanescent field. Therefore, they may either tem-
porarily or permanently disappear from the sequences. In
this simulation, we allow the structures to move outside the
evanescent field and re-enter again later, thus, re-appear again
in the image. Our simulation also contains new vesicles, grad-
ually moving from outside into inside the TIRF zone.

3. EXPERIMENTAL RESULTS

3.1. Parameter settings

Generally, the framework introduced in this paper provides
a simulation package which is capable of generating di-
verse TIRFM sequences with different quality by changing
the parameters. As a sample (Fig. 2), we simulate a synthetic

TIRFM video with spatial resolution of 158nm/pixel and tem-
poral resolution 9 fps. Each sequence contains on average,
80 percent small structures and 20 percent large structures.
All structures are located and move inside a cell membrane
(an estimated background) that is extracted from real TIRFM
sequences. The small structures are generated as round or
moderately elongated objects in different sizes (250–450
nm). These structures move through the sequences using two
dynamic models introduced in §2.2. Moreover, the shapes of
vesicles are deformed using Eqs. 3–7 with deforming constant
γ = 8um/s. In addition, the decay constant ζ = 100nm is
used to change the intensity of moving structures. The PSF is
also generated using equation 8 for an objective lens with NA
= 1.46, and λ = 520nm, using the same x-y pixel resolution.
The large endosomes also appears as round or moderately
elongated objects generated in different sizes (700–1600nm).
These structures are stationary or have very slight jittering
motion. In our simulation, these structures are able to spawn
the small structures. Moreover, the small structures may be
randomly fused to these large structures if they coincide in
the same position. The average numbers of existing objects
in each frame is 250. In this simulation, the SNR are fixed to
be between 1.5 and 8.5.

Fig. 2. A frame of the generated TIRFM sequences using the
proposed framework and the aforementioned parameters.

3.2. Evaluation

Unfortunately, there is no straightforward way to qualitatively
compare the simulated sequences with real sequences. There-
fore, generated synthetic sequences were visually inspected
by expert biologists and it was confirmed that our simulations
are convincingly similar to real image sequences by consid-
ering both the measurement and dynamic models. Further-
more, these simulations were deemed an improvement on the
current, more simplistic, synthetic models. To maximize the
credibility of our simulation framework, we visually represent
some of the aforementioned assumptions about the dynamic
and measurement models in real TIRFM sequences and com-
pare them with our simulation. In Fig. 3, the shape defor-
mation of vesicles in real and synthetic sequences are shown.



Fig. 3. Two consecutive frames from a real data ((a)-(b)) and
from a synthetic data ((c)-(d)). The shapes of the vesicles de-
form as elongated objects with a comet tail when they move.

In order to show the accuracy of the estimator, we calcu-
late the mean intensity of each frame for the real sequence
and its estimated background. Fig. 4 shows that the estimated
background accurately follows the intensity fluctuation in real
TIRFM. The difference between the mean intensities is due to
the removed structures (spots).
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Fig. 4. The mean pixel intensity for each frame for the real
data (red), and the estimated background using the MPHD
method (blue).

Fig. 5(a)-(c) shows the three different dynamics com-
monly observed in TIRFM sequences: stationary, tethering
and docking, and linear motion. Fig. 5(c) also demonstrates
an example of switching dynamics of vesicles. It can be seen
that the simulated dynamics using random walk and constant
velocity appropriately mimic the dynamics of vesicles in real
TIRFM (Fig. 5(d)-(f)).

4. CONCLUSIONS

Our framework greatly improve the quality of synthetically
generated TIRFM sequences. However, the framework can
still be improved with further simulations. Based on the imag-
ing system and the types of green fluorescent protein, fusion
of vesicles with the plasma membrane can be observed by
TIRFM sequences. These fusion events are seen as sudden
brightening and a rapid spreading of the intensity. In addi-
tion, other than heaped structures, there are other objects such
as tubular structures in real TIRFM sequences. These struc-
tures usually have more nonlinear dynamics and complex in-
teractions with other structures. Thus, our future work will be

Fig. 5. (a)-(c) Manual trajectories of three different vesicles
on real data and (d)-(f) its corresponding simulated trajecto-
ries on synthetic data using the proposed framework.

dissection and simulation of these processes.
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