
Differentiable Optimisation in Deep Learning

Stephen Gould
stephen.gould@anu.edu.au

Australian National University

15 December, 2022

ISAAC 2022 1/111

Discovery of Ceres

x̂4

x3
x2

x1

ISAAC 2022 2/111

Discovery of Ceres

x̂4

x3
x2

x1

ISAAC 2022 2/111

Optimisation is Everywhere

I financial mathematics: maximise profits or minimise costs subject to constraints
on resources and budgets

I mechanical engineering: maximise the span of a bridge subject to load
constraints

I electrical engineering: minimise the size of a transistor in a circuit subject to
power and timing constraints

I logistics and planning: find the cheapest way to distribute goods from suppliers
to consumers across a network

I statistics/data science: curve fitting and data visualisation

I machine learning and deep learning: minimise loss functions with respect to
the parameters of our model

ISAAC 2022 3/111

Optimisation is Everywhere

I financial mathematics: maximise profits or minimise costs subject to constraints
on resources and budgets

I mechanical engineering: maximise the span of a bridge subject to load
constraints

I electrical engineering: minimise the size of a transistor in a circuit subject to
power and timing constraints

I logistics and planning: find the cheapest way to distribute goods from suppliers
to consumers across a network

I statistics/data science: curve fitting and data visualisation

I machine learning and deep learning: minimise loss functions with respect to
the parameters of our model

ISAAC 2022 3/111

Optimisation is Everywhere

I financial mathematics: maximise profits or minimise costs subject to constraints
on resources and budgets

I mechanical engineering: maximise the span of a bridge subject to load
constraints

I electrical engineering: minimise the size of a transistor in a circuit subject to
power and timing constraints

I logistics and planning: find the cheapest way to distribute goods from suppliers
to consumers across a network

I statistics/data science: curve fitting and data visualisation

I machine learning and deep learning: minimise loss functions with respect to
the parameters of our model

ISAAC 2022 3/111

Optimisation is Everywhere

I financial mathematics: maximise profits or minimise costs subject to constraints
on resources and budgets

I mechanical engineering: maximise the span of a bridge subject to load
constraints

I electrical engineering: minimise the size of a transistor in a circuit subject to
power and timing constraints

I logistics and planning: find the cheapest way to distribute goods from suppliers
to consumers across a network

I statistics/data science: curve fitting and data visualisation

I machine learning and deep learning: minimise loss functions with respect to
the parameters of our model

ISAAC 2022 3/111

Optimisation is Everywhere

I financial mathematics: maximise profits or minimise costs subject to constraints
on resources and budgets

I mechanical engineering: maximise the span of a bridge subject to load
constraints

I electrical engineering: minimise the size of a transistor in a circuit subject to
power and timing constraints

I logistics and planning: find the cheapest way to distribute goods from suppliers
to consumers across a network

I statistics/data science: curve fitting and data visualisation

I machine learning and deep learning: minimise loss functions with respect to
the parameters of our model

ISAAC 2022 3/111

Optimisation is Everywhere

I financial mathematics: maximise profits or minimise costs subject to constraints
on resources and budgets

I mechanical engineering: maximise the span of a bridge subject to load
constraints

I electrical engineering: minimise the size of a transistor in a circuit subject to
power and timing constraints

I logistics and planning: find the cheapest way to distribute goods from suppliers
to consumers across a network

I statistics/data science: curve fitting and data visualisation

I machine learning and deep learning: minimise loss functions with respect to
the parameters of our model

ISAAC 2022 3/111

Overview

I Introduction to Optimisation
I Formal definition
I Least squares
I Convex sets and functions
I Convex optimisation problems
I Lagrangian
I Optimality conditions
I Algorithms

I Differentiable Optimisation and
Deep Learning
I Machine learning from 10,000ft

I Automatic differentiation
I Forward and backward passes
I Imperative and declarative nodes
I Bi-level optimisation
I Implicit function theorem
I Differentiable optimisation results

I Examples and Applications
I Least squares
I Optimal transport
I Blind perspective-n-point

accompanying lecture notes available at
https://users.cecs.anu.edu.au/~sgould

ISAAC 2022 4/111

https://users.cecs.anu.edu.au/~sgould

lecture 1

ISAAC 2022 5/111

Lecture 1: Introduction to Optimisation

ISAAC 2022 6/111

Assumed Background

ISAAC 2022 7/111

Optimisation Problems

find the assignment to variables that minimises
a measure of cost subject to some constraints1

1In these lectures we will be concerned with continuous-valued variables
ISAAC 2022 8/111

Optimisation Problems

minimize (over x) objective(x)
subject to constraints(x)

ISAAC 2022 8/111

Optimisation Problems

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , p

hi(x) = 0, i = 1, . . . , q

I x = (x1, . . . , xn) ∈ Rn — optimisation variables

I f0 : Rn → R — objective (or cost or loss) function

I fi : Rn → R, i = 1, . . . , p — inequality constraint functions

I hi : Rn → R, i = 1, . . . , q — equality constraint functions

ISAAC 2022 8/111

Solution and Optimal Value

A point x is feasible if x ∈ dom (f0) and it satisfies the constraints.

A solution, or optimal point, x? has the smallest value of f0 among all feasible x.

The optimal value is1

p? = inf
x∈D

{
f0(x)

∣∣∣∣ fi(x) ≤ 0, i = 1, . . . , p
hi(x) = 0, i = 1, . . . , q

}
.

I p? and is equal to f0(x?) when x? exists

I p? =∞ if the problem is infeasible (no x satisfies the constraints)

I p? = −∞ if the problem is unbounded below

1Warning: notation clash between p and p?!
ISAAC 2022 9/111

Solution and Optimal Value

A point x is feasible if x ∈ dom (f0) and it satisfies the constraints.

A solution, or optimal point, x? has the smallest value of f0 among all feasible x.

The optimal value is1

p? = inf
x∈D

{
f0(x)

∣∣∣∣ fi(x) ≤ 0, i = 1, . . . , p
hi(x) = 0, i = 1, . . . , q

}
.

I p? and is equal to f0(x?) when x? exists

I p? =∞ if the problem is infeasible (no x satisfies the constraints)

I p? = −∞ if the problem is unbounded below

1Warning: notation clash between p and p?!
ISAAC 2022 9/111

Locally Optimal Points

A point x is locally optimal if there is an R > 0 such that z = x is optimal for

minimize (over z) f0(z)
subject to fi(z) ≤ 0 i = 1, . . . , p

hi(z) = 0 i = 1, . . . , q
‖z − x‖2 ≤ R.

ISAAC 2022 10/111

Examples (1D)

f0:

1/x − log x x log x x3 − 3x

dom (f0): R++ R++ R++ R
p?: 0 −∞ −1/e −∞
x?: none none 1/e x = 1 locally

ISAAC 2022 11/111

Examples (2D)

x?

x2

x1

x?

x2

x1

x?

x2

x1

ISAAC 2022 12/111

Least Squares

minimize ‖Ax− b‖22

I unique solution if ATA is invertible, x? =
(
ATA

)−1
AT b

I solution via SVD, A = UΣV T , if ATA not invertible, x? = V Σ−1UT b
I in fact, x? + w for any w ∈ N (A) also a solution

I solution via QR factorisation, x? = R−1QT b

I solved in O(n2m) time, less if structured

I typically use iterative solver

ISAAC 2022 13/111

Least Squares

minimize ‖Ax− b‖22

I unique solution if ATA is invertible, x? =
(
ATA

)−1
AT b

I solution via SVD, A = UΣV T , if ATA not invertible, x? = V Σ−1UT b
I in fact, x? + w for any w ∈ N (A) also a solution

I solution via QR factorisation, x? = R−1QT b

I solved in O(n2m) time, less if structured

I typically use iterative solver

ISAAC 2022 13/111

Example: Polynomial Curve Fitting

fit n-th order polynomial fa(x) =
∑n
k=0 akx

k to set of noisy points {(xi, yi)}mi=1

minimize (over a)
∑m
i=1 (fa(xi)− yi)2

minimize

∥∥∥∥∥∥∥∥∥


1 x1 x21 . . . xn1
1 x2 x22 . . . xn2
...

...
...

. . .
...

1 xm x2m . . . xnm



a0
a1
...
an

−

y1
y2
...
ym


∥∥∥∥∥∥∥∥∥

2

2

I special case of convex optimisation

fa(x)

x

y

ISAAC 2022 14/111

Lines and Line Segments

I a line through two points x1 and x2

x = θx1 + (1− θ)x2, (θ ∈ R)

x1

x2

I an affine set contains the line through
any two distinct points in the set

I an affine hull the set formed by taking all
lines through points in a set

I a line segment between x1 and x2

x = θx1 + (1− θ)x2, (0 ≤ θ ≤ 1)

x1

x2

I a convex set contains the line segment
between any two distinct points in the set

I an convex hull the set formed by taking
all line segments between points in a set

ISAAC 2022 15/111

Lines and Line Segments

I a line through two points x1 and x2

x = θx1 + (1− θ)x2, (θ ∈ R)

x1

x2

I an affine set contains the line through
any two distinct points in the set

I an affine hull the set formed by taking all
lines through points in a set

I a line segment between x1 and x2

x = θx1 + (1− θ)x2, (0 ≤ θ ≤ 1)

x1

x2

I a convex set contains the line segment
between any two distinct points in the set

I an convex hull the set formed by taking
all line segments between points in a set

ISAAC 2022 15/111

Convex Sets

x1, x2 ∈ convex set C =⇒ θx1 + (1− θ)x2 ∈ C for all 0 ≤ θ ≤ 1

convex nonconvex

common examples in machine learning:

I nonnegative orthant, Rn+ = {x | xi ≥ 0, i = 1, . . . , n}
I positive semindefinite matrices, Sn+ = {X | zTXz ≥ 0, z ∈ Rn}

ISAAC 2022 16/111

More Examples

a a

hyperplane, halfspace, polyhedron,
{x | aTx = b} {x | aTx ≤ b} {x | Ax � b, Cx = d}

norm ball, ellipsoid, Lorentz cone,
{x | ‖x− xc‖p ≤ r} {Ax+ b | ‖x‖2 ≤ 1} {(x, t) | ‖x‖ ≤ t}

ISAAC 2022 17/111

Convex Functions

A function f : Rn → R is convex if dom (f) is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom (f) , 0 ≤ θ ≤ 1.

(x, f(x))

(y, f(y))

I f is concave if −f is convex

ISAAC 2022 18/111

Examples

ax+ b ex x log x

x3
log x

a− be−x2

ISAAC 2022 19/111

Weighted Sum and Pointwise Maximum Preserve Convexity

ax+ b
exx
2

sum ax+ b

ex
x2

max

ISAAC 2022 20/111

Convex, Strictly Convex, and Strongly Convex

f1(x)
f2(x)

f3(x)

f4(x)

I f1 is smooth and convex: f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)y
I f2 is non-differentiable and convex: f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)y
I f3 is strictly convex: f(θx+ (1− θ)y) < θf(x) + (1− θ)y
I f4 is strongly convex: ∃m s.t. m(y − x)2 ≤ f(y)− f(x)

ISAAC 2022 21/111

Epigraph

The epigraph of function f : Rn → R is the set

epi(f) = {(x, t) ∈ Rn+1 | x ∈ dom (f) , f(x) ≤ t}.

I f is a convex function if and only if epi(f) is a convex set

ISAAC 2022 22/111

First-order Condition

differentiable f with convex domain is convex iff

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom (f)

(x, f(x))

f(y)

f(x) +∇f(x)T (y − x)

I first-order approximation of (convex) f is a global under estimator

ISAAC 2022 23/111

Second-order Condition

f1(x)
f2(x)

f3(x)

f4(x)

twice differentiable f with convex domain is convex iff

∇2f(x) � 0 for all x ∈ dom (f)

I if ∇2f(x) � 0 for all x ∈ dom (f), then f is strictly convex

I if ∇2f(x) � mI for some m > 0 and all x ∈ dom (f), then f is strongly convex

I strongly convex functions have a unique minimum

ISAAC 2022 24/111

Worked Example: log-sum-exp is Convex

f(x) = log

n∑
k=1

expxk

Proof. Start by computing the gradient and Hessian,
which is true by the Cauchy-Schwarz inequality, ‖a‖22‖b‖22 ≥ (aT b)2, with a = (

√
z1, . . . ,

√
zn) and

b = (
√
z1v1, . . . ,

√
znvn).

ISAAC 2022 25/111

Worked Example: log-sum-exp is Convex

f(x) = log

n∑
k=1

expxk

Proof. Start by computing the gradient and Hessian,

∂f(x)

∂xi
=

expxi∑n
k=1 expxk

(derivative of log(z), z′/z)

∂2f(x)

∂xi∂xj
=

(∑n
k=1 expxk

)
[[i = j]] expxi − expxi expxj(∑n
k=1 expxk

)2 (quotient rule,
v · du− u · dv

v2
)

which is true by the Cauchy-Schwarz inequality, ‖a‖22‖b‖22 ≥ (aT b)2, with a = (
√
z1, . . . ,

√
zn) and

b = (
√
z1v1, . . . ,

√
znvn).

ISAAC 2022 25/111

Worked Example: log-sum-exp is Convex

f(x) = log

n∑
k=1

expxk

Proof. Start by computing the gradient and Hessian,

∂f(x)

∂xi
=

zi

1T z
(zk = expxk)

∂2f(x)

∂xi∂xj
=

(
1T z

)
[[i = j]]zi − zizj(

1T z
)2

which is true by the Cauchy-Schwarz inequality, ‖a‖22‖b‖22 ≥ (aT b)2, with a = (
√
z1, . . . ,

√
zn) and

b = (
√
z1v1, . . . ,

√
znvn).

ISAAC 2022 25/111

Worked Example: log-sum-exp is Convex

f(x) = log

n∑
k=1

expxk

Proof. Start by computing the gradient and Hessian,

∇f(x) =
1

1T z
z (zk = expxk)

∇2f(x) =
1(

1T z
)2 ((1T z)diag(z)− zzT

)

which is true by the Cauchy-Schwarz inequality, ‖a‖22‖b‖22 ≥ (aT b)2, with a = (
√
z1, . . . ,

√
zn) and

b = (
√
z1v1, . . . ,

√
znvn).

ISAAC 2022 25/111

Worked Example: log-sum-exp is Convex

f(x) = log

n∑
k=1

expxk

Proof. Start by computing the gradient and Hessian,

∇2f(x) =
1(

1T z
)2 ((1T z)diag(z)− zzT

)
(zk = expxk)

To show that ∇2f(x) � 0, we must verify that vT∇2f(x)v ≥ 0 for all v.

which is true by the
Cauchy-Schwarz inequality, ‖a‖22‖b‖22 ≥ (aT b)2, with a = (

√
z1, . . . ,

√
zn) and b = (

√
z1v1, . . . ,

√
znvn).

ISAAC 2022 25/111

Worked Example: log-sum-exp is Convex

f(x) = log

n∑
k=1

expxk

Proof. Start by computing the gradient and Hessian,

∇2f(x) =
1(

1T z
)2 ((1T z)diag(z)− zzT

)
(zk = expxk)

To show that ∇2f(x) � 0, we must verify that vT∇2f(x)v ≥ 0 for all v.

vT∇2f(x)v =
1(

1T z
)2 vT((1T z)diag(z)− zzT

)
v

=
1(

1T z
)2 ((1T z)vT diag(z)v − vT zzT v

)

which is true by the Cauchy-Schwarz inequality, ‖a‖22‖b‖22 ≥ (aT b)2, with a = (
√
z1, . . . ,

√
zn) and

b = (
√
z1v1, . . . ,

√
znvn).

ISAAC 2022 25/111

Worked Example: log-sum-exp is Convex

f(x) = log

n∑
k=1

expxk

Proof. Start by computing the gradient and Hessian,

∇2f(x) =
1(

1T z
)2 ((1T z)diag(z)− zzT

)
(zk = expxk)

vT∇2f(x)v =
1(

1T z
)2 vT((1T z)diag(z)− zzT

)
v

=
1(

1T z
)2 ((1T z)vT diag(z)v − vT zzT v

)
Therefore we need to show that (1T z)vT diag(z)v ≥ (vT z)2 for all v.

which is true by the Cauchy-Schwarz
inequality, ‖a‖22‖b‖22 ≥ (aT b)2, with a = (

√
z1, . . . ,

√
zn) and b = (

√
z1v1, . . . ,

√
znvn).

ISAAC 2022 25/111

Worked Example: log-sum-exp is Convex

f(x) = log

n∑
k=1

expxk

Proof. Start by computing the gradient and Hessian,

∇2f(x) =
1(

1T z
)2 ((1T z)diag(z)− zzT

)
(zk = expxk)

Therefore we need to show that (1T z)vT diag(z)v ≥ (vT z)2 for all v.

which is true by the Cauchy-Schwarz
inequality, ‖a‖22‖b‖22 ≥ (aT b)2, with a = (

√
z1, . . . ,

√
zn) and b = (

√
z1v1, . . . ,

√
znvn).

ISAAC 2022 25/111

Worked Example: log-sum-exp is Convex

f(x) = log

n∑
k=1

expxk

Proof. Start by computing the gradient and Hessian,

∇2f(x) =
1(

1T z
)2 ((1T z)diag(z)− zzT

)
(zk = expxk)

Therefore we need to show that (1T z)vT diag(z)v ≥ (vT z)2 for all v. That is, we need to show

(
n∑
k=1

zk

)(
n∑
k=1

zkv
2
k

)
≥
(

n∑
k=1

vkzk

)2

which is true by the Cauchy-Schwarz inequality, ‖a‖22‖b‖22 ≥ (aT b)2, with a = (
√
z1, . . . ,

√
zn) and

b = (
√
z1v1, . . . ,

√
znvn).

ISAAC 2022 25/111

Worked Example: log-sum-exp is Convex

f(x) = log

n∑
k=1

expxk

Proof. Start by computing the gradient and Hessian,

∇2f(x) =
1(

1T z
)2 ((1T z)diag(z)− zzT

)
(zk = expxk)

Therefore we need to show that (1T z)vT diag(z)v ≥ (vT z)2 for all v. That is, we need to show

(
n∑
k=1

zk

)(
n∑
k=1

zkv
2
k

)
≥
(

n∑
k=1

vkzk

)2

which is true by the Cauchy-Schwarz inequality, ‖a‖22‖b‖22 ≥ (aT b)2, with a = (
√
z1, . . . ,

√
zn) and

b = (
√
z1v1, . . . ,

√
znvn).

ISAAC 2022 25/111

Convex Optimisation

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , p

aTi x = bi, i = 1, . . . , q

I f0, f1, . . . , fp are convex

I hi(x) , aTi x− bi are affine, often written as Ax = b

minimise a convex objective over a convex feasible set

ISAAC 2022 26/111

Local Optima are Global Optima

any local minimum of a convex problem is (globally) optimal

Proof Sketch.

I towards contradiction, suppose x is locally optimal, but there
exists a feasible y with lower objective

I since x is locally optimally there exists a radius R such that
no other point within R of x has lower objective

I (so y must be further than R from x)

I pick a point z on the line segment between x and y and
within R of x

I so z must be feasible and have objective no lower than x

I but, by the basic inequality of convex functions,

f0(θx+ (1− θ)y) ≤ θf0(x) + (1− θ)f0(y),

the objective value at z must be between that at x and y,
i.e., lower than f0(x)

I we have a contradiction

x

y

z

full proof

ISAAC 2022 27/111

Local Optima are Global Optima

any local minimum of a convex problem is (globally) optimal

Proof Sketch.

I towards contradiction, suppose x is locally optimal, but there
exists a feasible y with lower objective

I since x is locally optimally there exists a radius R such that
no other point within R of x has lower objective

I (so y must be further than R from x)

I pick a point z on the line segment between x and y and
within R of x

I so z must be feasible and have objective no lower than x

I but, by the basic inequality of convex functions,

f0(θx+ (1− θ)y) ≤ θf0(x) + (1− θ)f0(y),

the objective value at z must be between that at x and y,
i.e., lower than f0(x)

I we have a contradiction

x

y

z

full proof

ISAAC 2022 27/111

Optimality Criterion for Differentiable f0

x is optimal if and only if it is feasible and ∇f0(x)T (y − x) ≥ 0 for all feasible y

X x

−∇f0(x)

if nonzero,

I ∇f0(x) defines a supporting hyperplane to feasible set X at x

I f0 cannot be improved by moving in a direction where x stays feasible

ISAAC 2022 28/111

Lagrangian
Standard form problem (not necessarily convex),

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , p

hi(x) = 0, i = 1, . . . , q

variable x ∈ Rn, domain D, optimal value p?

Lagrangian: L : Rn × Rp × Rq → R, with dom (L) = D × Rp × Rq,

L(x, λ, ν) = f0(x) +

p∑
i=1

λifi(x) +

q∑
i=1

νihi(x)

I weighted sum of objective and constraint functions

I λi is the Lagrange multiplier (dual variable) associated with fi(x) ≤ 0

I νi is the Lagrange multiplier (dual variable) associated with hi(x) = 0

duality

ISAAC 2022 29/111

Lagrangian
Standard form problem (not necessarily convex),

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , p

hi(x) = 0, i = 1, . . . , q

variable x ∈ Rn, domain D, optimal value p?

Lagrangian: L : Rn × Rp × Rq → R, with dom (L) = D × Rp × Rq,

L(x, λ, ν) = f0(x) +

p∑
i=1

λifi(x) +

q∑
i=1

νihi(x)

I weighted sum of objective and constraint functions

I λi is the Lagrange multiplier (dual variable) associated with fi(x) ≤ 0

I νi is the Lagrange multiplier (dual variable) associated with hi(x) = 0

duality

ISAAC 2022 29/111

Karush-Kuhn-Tucker (KKT) Conditions

The following four conditions are called KKT conditions (for differentiable fi, hi):

I primal feasible:
fi(x) ≤ 0, i = 1, . . . , p
hi(x) = 0, i = 1, . . . , q

I dual feasible: λ � 0

I complementary slackness: λifi(x) = 0 for i = 1, . . . , p

I gradient of Lagrangian with respect to x vanishes,

∇f0(x) +

p∑
i=1

λi∇fi(x) +

q∑
i=1

νi∇hi(x) = 0

Generalizes optimality condition ∇f0(x) = 0 for unconstrained problems.

ISAAC 2022 30/111

Gradient Descent

minimize f0(x)

I f0 convex, twice continuously differentiable

I we assume optimal value p? = infx f0(x) is attained (and finite)

Gradient descent:

1. given a starting point x ∈ dom (f0)

2. repeat x := x− t∇f0(x). (choose step size, t)

3. until stopping criterion satisfied, e.g., ‖∇f0(x)‖2 ≤ ε.

I variants of gradient descent define step direction ∆x different to −∇f0(x)

ISAAC 2022 31/111

Gradient Descent

minimize f0(x)

I f0 convex, twice continuously differentiable

I we assume optimal value p? = infx f0(x) is attained (and finite)

Gradient descent:

1. given a starting point x ∈ dom (f0)

2. repeat x := x− t∇f0(x). (choose step size, t)

3. until stopping criterion satisfied, e.g., ‖∇f0(x)‖2 ≤ ε.

I variants of gradient descent define step direction ∆x different to −∇f0(x)

ISAAC 2022 31/111

Choosing Step Size
fixed schedule: set t to a small constant or decay with each iteration

exact line search: t = argmint>0f0(x+ t∆x)

backtracking line search (with parameters α ∈ (0, 1/2), β ∈ (0, 1))

I starting at t = 1 with search direction ∆x, repeat t := βt until

f0(x+ t∆x) < f0(x) + αt∇f0(x)T∆x

f0(x+ t∆x)

f0(x) + t∇f0(x)T∆x

f0(x) + αt∇f0(x)T∆x

t0 1
t

ISAAC 2022 32/111

Choosing Step Size
fixed schedule: set t to a small constant or decay with each iteration

exact line search: t = argmint>0f0(x+ t∆x)

backtracking line search (with parameters α ∈ (0, 1/2), β ∈ (0, 1))

I starting at t = 1 with search direction ∆x, repeat t := βt until

f0(x+ t∆x) < f0(x) + αt∇f0(x)T∆x

f0(x+ t∆x)

f0(x) + t∇f0(x)T∆x

f0(x) + αt∇f0(x)T∆x

t0 1
t

ISAAC 2022 32/111

Example

Gradient descent (even with exact line search) can be slow. E.g.,

f0(x) = x2
1 + γx2

2, γ � 1

xinit

ISAAC 2022 33/111

Newton’s Method

∆xnt = −∇2f0(x)−1∇f0(x)

I x+ ∆xnt minimizes the second-order approximation of f0 at x,

f̂(x+ v) = f0(x) +∇f0(x)T v +
1

2
vT∇2f0(x)v

Newton’s method:

1. given a starting point x ∈ dom (f0).

2. repeat x := x+ t∆xnt. (choose step size, t)

3. until stopping criterion satisfied.

ISAAC 2022 34/111

Equality Constrained Methods

minimize f0(x)
subject to Ax = b

I f0 convex, twice continuously differentiable

I A ∈ Rq×n with rank(A) = q (and b ∈ range(A))

I we assume p? is finite and attained

optimality condition: x? is optimal iff there exists a ν? such that

∇f0(x?) +AT ν? = 0, Ax? = b

ISAAC 2022 35/111

Equality Constrained Methods

minimize f0(x)
subject to Ax = b

I f0 convex, twice continuously differentiable

I A ∈ Rq×n with rank(A) = q (and b ∈ range(A))

I we assume p? is finite and attained

optimality condition: x? is optimal iff there exists a ν? such that

∇f0(x?) +AT ν? = 0, Ax? = b

ISAAC 2022 35/111

Newton Step for Equality Constrained Optimisation

Newton step ∆xnt of f0 at feasible x is given by solution v of

[
∇2f0(x) AT

A 0

] [
v
w

]
=

[
−∇f0(x)

0

]

I second row ensures that x iterates stay feasible

I solves quadratic approximation of optimisation problem

minimize f̂(x+ v) , f0(x) +∇f0(x)T v + 1
2v

T∇2f0(x)v
subject to A(x+ v) = b

I solves linear approximation of optimality condition

ISAAC 2022 36/111

The Barrier Method

For inequality constrained problems,

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , p

Ax = b

we reformulate using an indicator function,

minimize f0(x) +
∑p
i=1 IR−(fi(x))

subject to Ax = b

where IR−(u) = 0 if u ≤ 0 and IR−(u) = ∞ otherwise,
which we approximate with a logarithmic barrier

minimize f0(x)− 1
t

∑p
i=1 log(−fi(x))

subject to Ax = b

to get an equality constrained approximation.

−3 −2 −1 1

5

10
− 1
t log(−u)

ISAAC 2022 37/111

The Barrier Method

For inequality constrained problems,

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , p

Ax = b

we reformulate using an indicator function,

minimize f0(x) +
∑p
i=1 IR−(fi(x))

subject to Ax = b

where IR−(u) = 0 if u ≤ 0 and IR−(u) = ∞ otherwise,

which we approximate with a logarithmic barrier

minimize f0(x)− 1
t

∑p
i=1 log(−fi(x))

subject to Ax = b

to get an equality constrained approximation.

−3 −2 −1 1

5

10
− 1
t log(−u)

ISAAC 2022 37/111

The Barrier Method

For inequality constrained problems,

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , p

Ax = b

we reformulate using an indicator function,

minimize f0(x) +
∑p
i=1 IR−(fi(x))

subject to Ax = b

where IR−(u) = 0 if u ≤ 0 and IR−(u) = ∞ otherwise,
which we approximate with a logarithmic barrier

minimize f0(x)− 1
t

∑p
i=1 log(−fi(x))

subject to Ax = b

to get an equality constrained approximation.

−3 −2 −1 1

5

10
− 1
t log(−u)

ISAAC 2022 37/111

The Barrier Method

For inequality constrained problems,

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , p

Ax = b

we reformulate using an indicator function,

minimize f0(x) +
∑p
i=1 IR−(fi(x))

subject to Ax = b

where IR−(u) = 0 if u ≤ 0 and IR−(u) = ∞ otherwise,
which we approximate with a logarithmic barrier

minimize f0(x)− 1
t

∑p
i=1 log(−fi(x))

subject to Ax = b

to get an equality constrained approximation.

−3 −2 −1 1

5

10
− 1
t log(−u)

ISAAC 2022 37/111

Algorithms for Large Scale Problems
I for large scale problems, e.g., deep learning, Newton’s method is too expensive

I even computing the true gradient may be too expensive

I many loss functions in machine learning decompose over train data {(xi, yi)}mi=1,

L(θ) =

m∑
i=1

`(f(xi; θ), yi)

I SGD approximates the gradient on mini-batches I ⊆ {1, . . . ,m}

∇̂θL =
∑
i∈I
∇θ`(f(xi; θ), yi)

I under mild assumptions E
[
∇̂θL

]
= ∇θL

I for constrained problems can project back onto feasible set

Many, many other schemes and variations!

ISAAC 2022 38/111

lecture 2

ISAAC 2022 39/111

Lecture 2: Differentiable Optimisation and Deep Learning

ISAAC 2022 40/111

Machine Learning from 10,000ft

f : X → Y

minimize (over θ)
∑

(x,y)∼X×Y L(fθ(x), y)

I loss L — what to do

I model fθ — how to do it

I optimised by gradient descent

ISAAC 2022 41/111

Machine Learning from 10,000ft

fθ : X × Ω→ Y

minimize (over θ)
∑

(x,y)∼X×Y L(fθ(x), y)

I loss L — what to do

I model fθ — how to do it

I optimised by gradient descent

ISAAC 2022 41/111

Deep Learning as an End-to-end Computation Graph
Deep learning does this by defining a function (equiv. computation graph) composed
of many simple parametrized functions (equiv. computation nodes).

f1

f2 f3 f4

f5 f6 f7

f8x y

θ1

θ2 θ3 θ4

θ5 θ6 θ7

θ8

y = f8(f4(f3(f2(f1(x)))), f7(f6(f5(f1(x)))))

(parameters θi omitted for brevity)
ISAAC 2022 42/111

Backward Pass

f1

f2 f3 f4

f5 f6 f7

f8x

z7

y

θ1

θ2 θ3 θ4

θ5 θ6 θ7

θ8

Example 1.

∂L

∂θ7
=
∂L

∂y

∂y

∂z7

∂z7

∂θ7

ISAAC 2022 43/111

Backward Pass

f1

f2 f3 f4

f5 f6 f7

f8x

z1

z4 z3

z4

z1

z5 z6

z7

y

θ1

θ2 θ3 θ4

θ5 θ6 θ7

θ8

Example 2.

∂L

∂θ1
=
∂L

∂y

(
∂y

∂z4

∂z4

∂z3

∂z3

∂z2

∂z2

∂z1
+
∂y

∂z7

∂z7

∂z6

∂z6

∂z5

∂z5

∂z4

)
∂z1

∂θ1

ISAAC 2022 44/111

Deep Learning Node

f̃ output, yinput, x

parameters, θ

d
dyL

d
dxK

d
dθL

I Forward pass: compute output y as a
function of the input x (and model
parameters θ).

I Backward pass: compute the
derivative of the loss with respect to
the input x (and model parameters θ)
given the derivative of the loss with
respect to the output y.

ISAAC 2022 45/111

Notational Aside (Often Sloppy)
For scalar-valued functions:

total derivative:
df

dx
partial derivative:

∂f

∂x

For multi-dimensional scalar-valued functions, f : Rn → R:

∇f(x) =

(
df

dx1
, . . . ,

df

dxn

)
∈ Rn

For multi-dimensional vector-valued functions, f : Rn → Rm:

d

dx
f(x) =


df1
dx1

. . . df1
dxn

...
. . .

...
dfm
dx1

. . . dfm
dxn

 ∈ Rm×n (
∂

∂x
f(x, y) for partial)

Sometimes D and DX for d
dx and ∂

∂x , respectively.

ISAAC 2022 46/111

Notational Aside (Often Sloppy)
For scalar-valued functions:

total derivative:
df

dx
partial derivative:

∂f

∂x

For multi-dimensional scalar-valued functions, f : Rn → R:

∇f(x) =

(
df

dx1
, . . . ,

df

dxn

)
∈ Rn

For multi-dimensional vector-valued functions, f : Rn → Rm:

d

dx
f(x) =


df1
dx1

. . . df1
dxn

...
. . .

...
dfm
dx1

. . . dfm
dxn

 ∈ Rm×n (
∂

∂x
f(x, y) for partial)

Sometimes D and DX for d
dx and ∂

∂x , respectively.

ISAAC 2022 46/111

Notational Aside (Often Sloppy)
For scalar-valued functions:

total derivative:
df

dx
partial derivative:

∂f

∂x

For multi-dimensional scalar-valued functions, f : Rn → R:

∇f(x) =

(
df

dx1
, . . . ,

df

dxn

)
∈ Rn

For multi-dimensional vector-valued functions, f : Rn → Rm:

d

dx
f(x) =


df1
dx1

. . . df1
dxn

...
. . .

...
dfm
dx1

. . . dfm
dxn

 ∈ Rm×n (
∂

∂x
f(x, y) for partial)

Sometimes D and DX for d
dx and ∂

∂x , respectively.
ISAAC 2022 46/111

Automatic Differentiation (AD)
I algorithmic procedure that produces code for computing exact derivatives
I assumes numeric computations are composed of a small set of elementary

operations that we know how to differentiate
I arithmetic, exp, log, trigonometric

I workhorse of modern machine learning that greatly reduces development effort

I two flavours
I (forward mode) propagates results on the first-order approximation x+ ∆x forward

through the computations
I (reverse mode) builds a program to compute derivative based on the chain rule

re-using computation where applicable

dL

dx
=

dL

dy

dy

dx

I different deep learning frameworks use slightly different approaches (explicit graph
construction versus implicit operator tracking)

example

ISAAC 2022 47/111

Automatic Differentiation (AD)
I algorithmic procedure that produces code for computing exact derivatives
I assumes numeric computations are composed of a small set of elementary

operations that we know how to differentiate
I arithmetic, exp, log, trigonometric

I workhorse of modern machine learning that greatly reduces development effort
I two flavours

I (forward mode) propagates results on the first-order approximation x+ ∆x forward
through the computations

I (reverse mode) builds a program to compute derivative based on the chain rule
re-using computation where applicable

dL

dx
=

dL

dy

dy

dx

I different deep learning frameworks use slightly different approaches (explicit graph
construction versus implicit operator tracking)

example

ISAAC 2022 47/111

Computing 1/
√
x

1 float Q_rsqrt(float number)

2 {

3 long i;

4 float x2 , y;

5 const float threehalfs = 1.5F;

6

7 x2 = number * 0.5F;

8 y = number;

9 i = * (long *) &y; // evil floating point bit level hacking

10 i = 0x5f3759df - (i >> 1); // what the f**k?

11 y = * (float *) &i;

12 y = y * (threehalfs - (x2 * y * y)); // 1st iter

13 // y = y * (threehalfs - (x2 * y * y)); // 2nd iter , can be removed

14

15 return y;

16 }

ISAAC 2022 48/111

Separate Forward and Backward Operations

y = 1√
x

dy
dx = −1

2y
3

output, y

input, x

parameters, θ

d
dyLd

dxL

d
dθL

ISAAC 2022 49/111

Imperative vs Declarative Nodes

y = f̃(x; θ) yx

θ

d
dyL

d
dxL

d
dθL

I imperative node

I input-output relationship explicit,

y = f̃(x; θ)

y ∈ argmin
u∈C(x)

f(x, u; θ) yx

θ

d
dyL

d
dxL

d
dθL

I declarative node

I input-output relationship specified as
solution to an optimisation problem,

y ∈ arg min
u∈C(x)

f(x, u; θ)

can co-exist in the same computation graph (network)

ISAAC 2022 50/111

Imperative vs Declarative Nodes

y = f̃(x; θ) yx

θ

d
dyL

d
dxL

d
dθL

I imperative node

I input-output relationship explicit,

y = f̃(x; θ)

y ∈ argmin
u∈C(x)

f(x, u; θ) yx

θ

d
dyL

d
dxL

d
dθL

I declarative node

I input-output relationship specified as
solution to an optimisation problem,

y ∈ arg min
u∈C(x)

f(x, u; θ)

can co-exist in the same computation graph (network)

ISAAC 2022 50/111

Imperative vs Declarative Nodes

y = f̃(x; θ) yx

θ

d
dyL

d
dxL

d
dθL

I imperative node

I input-output relationship explicit,

y = f̃(x; θ)

y ∈ argmin
u∈C(x)

f(x, u; θ) yx

θ

d
dyL

d
dxL

d
dθL

I declarative node

I input-output relationship specified as
solution to an optimisation problem,

y ∈ arg min
u∈C(x)

f(x, u; θ)

can co-exist in the same computation graph (network)

ISAAC 2022 50/111

Average Pooling Example

{xi ∈ Rm | i = 1, . . . , n} → Rm

I imperative specification

y =
1

n

n∑
i=1

xi

I declarative specification

y = argminu∈Rm

n∑
i=1

‖u− xi‖2

I can be easily varied, e.g., made robust

y = argminu∈Rm

n∑
i=1

φ(u− xi)

for some penalty function φ

ISAAC 2022 51/111

Average Pooling Example

{xi ∈ Rm | i = 1, . . . , n} → Rm

I imperative specification

y =
1

n

n∑
i=1

xi

I declarative specification

y = argminu∈Rm

n∑
i=1

‖u− xi‖2

I can be easily varied, e.g., made robust

y = argminu∈Rm

n∑
i=1

φ(u− xi)

for some penalty function φ
ISAAC 2022 51/111

Average Pooling Example

{xi ∈ Rm | i = 1, . . . , n} → Rm

z = ‖u− xi‖

φ(z) I declarative specification

y = argminu∈Rm

n∑
i=1

‖u− xi‖2

I can be easily varied, e.g., made robust

y = argminu∈Rm

n∑
i=1

φ(u− xi)

for some penalty function φ
ISAAC 2022 51/111

Bi-level Optimisation: Stackelberg Games

Consider two players, a leader and a follower

I the market dictates the price it’s willing to pay for some goods based on supply,
i.e., quantity produced by both players, P (q1 + q2)

I each player has a cost structure associated with producing goods, Ci(qi) and
wants to maximize profits, qiP (q1 + q2)− Ci(qi)

I the leader picks a quantity of goods to produce knowing that the follower will
respond optimally. In other words, the leader solves

maximize (over q1) q1P (q1 + q2)− C1(q1)
subject to q2 ∈ argmaxq qP (q1 + q)− C2(q)

ISAAC 2022 52/111

Solving Bi-level Optimisation Problems

minimize (over x) L(x, y)
subject to y ∈ argminu∈C(x) f(x, u)

I closed-form solution: substitute for y in upper-level problem (if possible)

minimize (over x) L(x, y(x))

I convex lower-level problem: replace lower-level problem with sufficient optimality
conditions (e.g., KKT conditions),

minimize (over x, y) L(x, y)
subject to h(x, y) = 0

I gradient descent: compute gradient of lower-level solution y with respect to x, and use
the chain rule to get the total derivative,

x← x− η
(
∂L(x, y)

∂x
+
∂L(x, y)

∂y

dy

dx

)

I by back-propagating through optimisation procedure or implicit differentiation

ISAAC 2022 53/111

Solving Bi-level Optimisation Problems

minimize (over x) L(x, y)
subject to y ∈ argminu∈C(x) f(x, u)

I closed-form solution: substitute for y in upper-level problem (if possible)

minimize (over x) L(x, y(x))

I convex lower-level problem: replace lower-level problem with sufficient optimality
conditions (e.g., KKT conditions),

minimize (over x, y) L(x, y)
subject to h(x, y) = 0

I gradient descent: compute gradient of lower-level solution y with respect to x, and use
the chain rule to get the total derivative,

x← x− η
(
∂L(x, y)

∂x
+
∂L(x, y)

∂y

dy

dx

)

I by back-propagating through optimisation procedure or implicit differentiation

ISAAC 2022 53/111

Solving Bi-level Optimisation Problems

minimize (over x) L(x, y)
subject to y ∈ argminu∈C(x) f(x, u)

I closed-form solution: substitute for y in upper-level problem (if possible)

minimize (over x) L(x, y(x))

I convex lower-level problem: replace lower-level problem with sufficient optimality
conditions (e.g., KKT conditions),

minimize (over x, y) L(x, y)
subject to h(x, y) = 0

I gradient descent: compute gradient of lower-level solution y with respect to x, and use
the chain rule to get the total derivative,

x← x− η
(
∂L(x, y)

∂x
+
∂L(x, y)

∂y

dy

dx

)

I by back-propagating through optimisation procedure or implicit differentiation

ISAAC 2022 53/111

Solving Bi-level Optimisation Problems

minimize (over x) L(x, y)
subject to y ∈ argminu∈C(x) f(x, u)

I closed-form solution: substitute for y in upper-level problem (if possible)

minimize (over x) L(x, y(x))

I convex lower-level problem: replace lower-level problem with sufficient optimality
conditions (e.g., KKT conditions),

minimize (over x, y) L(x, y)
subject to h(x, y) = 0

I gradient descent: compute gradient of lower-level solution y with respect to x, and use
the chain rule to get the total derivative,

x← x− η
(
∂L(x, y)

∂x
+
∂L(x, y)

∂y

dy

dx

)

I by back-propagating through optimisation procedure or implicit differentiation

ISAAC 2022 53/111

Solving Bi-level Optimisation Problems

minimize (over x) L(x, y)
subject to y ∈ argminu∈C(x) f(x, u)

I closed-form solution: substitute for y in upper-level problem (if possible)

minimize (over x) L(x, y(x))

I convex lower-level problem: replace lower-level problem with sufficient optimality
conditions (e.g., KKT conditions),

minimize (over x, y) L(x, y)
subject to h(x, y) = 0

I gradient descent: compute gradient of lower-level solution y with respect to x, and use
the chain rule to get the total derivative,

x← x− η
(
∂L(x, y)

∂x
+
∂L(x, y)

∂y

dy

dx

)
I by back-propagating through optimisation procedure or implicit differentiation

ISAAC 2022 53/111

Parametrized Optimisation

In the context of deep learning the upper-level Stackelberg problem is the learning
problem and the lower-level Stackelberg problem is the inference problem.

A declarative node defines a family of problems indexed by continuous variable x ∈ Rn,
minimize (over u ∈ Rm) f0(x, u)
subject to fi(x, u) ≤ 0, i = 1, . . . , p

hi(x, u) = 0, i = 1, . . . , q


x∈Rn

ISAAC 2022 54/111

Parametrized Optimisation Example

Main question: How do we compute d
dx argminu f(x, u)?

ISAAC 2022 55/111

Parametrized Optimisation Example

Main question: How do we compute d
dx argminu f(x, u)?

ISAAC 2022 55/111

Dini’s Implicit Function Theorem

Consider the solution mapping associated with the equation f(x, u) = 0,

Y : x 7→ {u ∈ Rm | f(x, u) = 0} for x ∈ Rn.

We are interested in how elements of Y (x) change as a function of x.

Theorem
Let f : Rn × Rm → Rm be differentiable in a neighbourhood of (x, u) and such that
f(x, u) = 0, and let ∂

∂uf(x, u) be nonsingular. Then the solution mapping Y has a
single-valued localization y around x for u which is differentiable in a neighbourhood
X of x with Jacobian satisfying

dy(x)

dx
= −

(
∂f(x, y(x))

∂y

)−1 ∂f(x, y(x))

∂x

for every x ∈ X .

ISAAC 2022 56/111

Dini’s Implicit Function Theorem

Consider the solution mapping associated with the equation f(x, u) = 0,

Y : x 7→ {u ∈ Rm | f(x, u) = 0} for x ∈ Rn.

We are interested in how elements of Y (x) change as a function of x.

Theorem
Let f : Rn × Rm → Rm be differentiable in a neighbourhood of (x, u) and such that
f(x, u) = 0, and let ∂

∂uf(x, u) be nonsingular. Then the solution mapping Y has a
single-valued localization y around x for u which is differentiable in a neighbourhood
X of x with Jacobian satisfying

dy(x)

dx
= −

(
∂f(x, y(x))

∂y

)−1 ∂f(x, y(x))

∂x

for every x ∈ X .

ISAAC 2022 56/111

Unit Circle Example

(x, y1)

(x, y2)

(x, y1)

(x, y2)

X

y = ±
√

1− x2

dy

dx
=

∓2x

2
√

1− x2
= −

x

y

f(x, y) = x2 + y2 − 1

dy

dx
= −

(
∂f

∂y

)−1(∂f
∂x

)
= −

(
1

2y

)
(2x) = −

x

y

ISAAC 2022 57/111

Differentiating Unconstrained Optimisation Problems

Let f : R× R→ R be twice differentiable and let

y(x) ∈ argminuf(x, u)

then for non-zero Hessian

dy(x)

dx
= −

(
∂2f

∂y2

)−1
∂2f

∂x∂y
.

y u

f(x, u)

Proof. The derivative of f vanishes at (x, y), i.e., y ∈ argminuf(x, u) =⇒ ∂f(x,y)
∂y

= 0.

LHS :
d

dx

∂f(x, y)

∂y
=
∂2f(x, y)

∂x∂y
+
∂2f(x, y)

∂y2
dy

dx

RHS :
d

dx
0 = 0

Equating and rearranging gives the result.

ISAAC 2022 58/111

Differentiating Unconstrained Optimisation Problems

Let f : R× R→ R be twice differentiable and let

y(x) ∈ argminuf(x, u)

then for non-zero Hessian

dy(x)

dx
= −

(
∂2f

∂y2

)−1
∂2f

∂x∂y
. y u

f(x, u)

Proof. The derivative of f vanishes at (x, y), i.e., y ∈ argminuf(x, u) =⇒ ∂f(x,y)
∂y

= 0.

LHS :
d

dx

∂f(x, y)

∂y
=
∂2f(x, y)

∂x∂y
+
∂2f(x, y)

∂y2
dy

dx

RHS :
d

dx
0 = 0

Equating and rearranging gives the result.

ISAAC 2022 58/111

Differentiable Optimisation: Big Picture Idea

∇L(x, y) = 0

Rm

y
y + dy

min. f0(x, u)
s.t. u ∈ C(x)

min. f0(x+ dx, u)
s.t. u ∈ C(x+ dx)

ISAAC 2022 59/111

Differentiating Equality Constrained Optimisation Problems
Consider functions f : Rn × Rm → R and h : Rn × Rm → Rq. Let

y(x) ∈ arg minu∈Rm f(x, u)
subject to h(x, u) = 0q

Assume that y(x) exists, that f and h are twice differentiable in the neighbourhood of

(x, y(x)), and that rank(∂h(x,y)
∂y) = q.

Then for H non-singular

dy(x)

dx
= H−1AT

(
AH−1AT

)−1(
AH−1B − C

)
−H−1B

where

A = ∂h(x,y)
∂y ∈ Rq×m B = ∂2f(x,y)

∂x∂y −
∑q
i=1 νi

∂2hi(x,y)
∂x∂y ∈ Rm×n

C = ∂h(x,y)
∂x ∈ Rq×n H = ∂2f(x,y)

∂y2 −
∑q
i=1 νi

∂2hi(x,y)
∂y2 ∈ Rm×m

and ν ∈ Rq satisfies νTA = ∂f(x,y)
∂y .

derivation

ISAAC 2022 60/111

Differentiating Equality Constrained Optimisation Problems
Consider functions f : Rn × Rm → R and h : Rn × Rm → Rq. Let

y(x) ∈ arg minu∈Rm f(x, u)
subject to h(x, u) = 0q

Assume that y(x) exists, that f and h are twice differentiable in the neighbourhood of

(x, y(x)), and that rank(∂h(x,y)
∂y) = q. Then for H non-singular

dy(x)

dx
= H−1AT

(
AH−1AT

)−1(
AH−1B − C

)
−H−1B

where

A = ∂h(x,y)
∂y ∈ Rq×m B = ∂2f(x,y)

∂x∂y −
∑q
i=1 νi

∂2hi(x,y)
∂x∂y ∈ Rm×n

C = ∂h(x,y)
∂x ∈ Rq×n H = ∂2f(x,y)

∂y2 −
∑q
i=1 νi

∂2hi(x,y)
∂y2 ∈ Rm×m

and ν ∈ Rq satisfies νTA = ∂f(x,y)
∂y .

derivation

ISAAC 2022 60/111

Dealing with Inequality Constraints

y(x) ∈ arg minu∈Rm f0(x, u)
subject to hi(x, u) = 0, i = 1, . . . , q

fi(x, u) ≤ 0, i = 1, . . . , p.

I Replace inequality constraints with log-barrier
approximation (see last lecture)

I Treat as equality constraints if active (y2 or y3)
and ignore otherwise (y1 or y3)
I may lead to one-sided gradients since λ � 0

fi(x, u) < 0

y1

y2

y3

ISAAC 2022 61/111

Automatic Differentiation for Differentiable Optimisation

I At one extreme we can try back propagate through the optimisation algorithm
(i.e., unrolling the optimisation procedure using automatic differentiation)

I At the other extreme we can use the implicit differentiation result to hand-craft
efficient backward pass code

I There are two options in between:
I Use automatic differentiation to obtain quantities A, B, C and H from software

implementations of the objective and (active) constraint functions
I Implement the optimality condition ∇L = 0 in software and automatically

differentiate that

(in the next lecture we will see examples of the first two)

ISAAC 2022 62/111

Vector-Jacobian Product

For brevity consider the unconstrained optimisation case. The backward pass computes

dL

dx
=

dL

dy

dy

dx

=
(
vT
)︸︷︷︸

R1×m

(
−H−1B

)︸ ︷︷ ︸
Rm×n

evaluation order: −vT
(
H−1B

) (
−vTH−1

)
B

cost†: O(m2n+mn) O(m2 +mn)

† assumes H−1 is already factored (in O(m3) if unstructured, less if structured)

ISAAC 2022 63/111

Summary and Open Questions

I optimisation problems can be embedded inside deep learning models
I back-propagation by either unrolling the optimisation algorithm or implicit

differentiation of the optimality conditions
I the former is easy to implement using automatic differentiation but memory intensive
I the latter requires that solution be strongly convex locally (i.e., invertible H)
I but does not need to know how the problem was solved, nor store intermediate

forward-pass calculations
I computing H−1 may be costly

I active area of research and many open questions
I Are declarative nodes slower?
I Do declarative nodes give theoretical guarantees?
I How best to handle non-smooth or discrete optimization problems?
I What about problems with multiple solutions?
I What if the forward pass solution is suboptimal?
I Can problems become infeasible during learning?
I . . .

ISAAC 2022 64/111

Summary and Open Questions

I optimisation problems can be embedded inside deep learning models
I back-propagation by either unrolling the optimisation algorithm or implicit

differentiation of the optimality conditions
I the former is easy to implement using automatic differentiation but memory intensive
I the latter requires that solution be strongly convex locally (i.e., invertible H)
I but does not need to know how the problem was solved, nor store intermediate

forward-pass calculations
I computing H−1 may be costly

I active area of research and many open questions
I Are declarative nodes slower?
I Do declarative nodes give theoretical guarantees?
I How best to handle non-smooth or discrete optimization problems?
I What about problems with multiple solutions?
I What if the forward pass solution is suboptimal?
I Can problems become infeasible during learning?
I . . .

ISAAC 2022 64/111

lecture 3

ISAAC 2022 65/111

Lecture 3: Examples and Applications

https://deepdeclarativenetworks.com

ISAAC 2022 66/111

https://deepdeclarativenetworks.com

Common Theme

argmin f2f̃1 f̃3
x z u y

θ φ

ISAAC 2022 67/111

Differentiable Least Squares

Consider our old friend, the least-squares problem,

minimize ‖Ax− b‖22

parameterized by A and b and with closed-form solution x? =
(
ATA

)−1
AT b.

We are interested in derivatives of the solution with respect to the elements of A,

dx?

dAij
=

d

dAij

(
ATA

)−1
AT b ∈ Rn

We could also compute derivatives with respect to elements of b (but not here).

ISAAC 2022 68/111

Differentiable Least Squares

Consider our old friend, the least-squares problem,

minimize ‖Ax− b‖22

parameterized by A and b and with closed-form solution x? =
(
ATA

)−1
AT b.

We are interested in derivatives of the solution with respect to the elements of A,

dx?

dAij
=

d

dAij

(
ATA

)−1
AT b ∈ Rn

We could also compute derivatives with respect to elements of b (but not here).

ISAAC 2022 68/111

Least Squares Backward Pass

The backward pass combines dx?

dAij
with vT = dL

dx? via the vector-Jacobian product.

After some algebraic manipulation (see lecture notes) we get(
dL

dA

)T
= wrT − x?(Aw)T ∈ Rm×n

where wT = vT (ATA)−1.

I
(
ATA

)−1
is used in both the forward and backward pass

I factored once to solve for x, e.g., into A = QR

I cache R and re-use when computing gradients
derivation

ISAAC 2022 69/111

Least Squares Backward Pass

The backward pass combines dx?

dAij
with vT = dL

dx? via the vector-Jacobian product.

After some algebraic manipulation (see lecture notes) we get(
dL

dA

)T
= wrT − x?(Aw)T ∈ Rm×n

where wT = vT (ATA)−1.

I
(
ATA

)−1
is used in both the forward and backward pass

I factored once to solve for x, e.g., into A = QR

I cache R and re-use when computing gradients
derivation

ISAAC 2022 69/111

Aside: PyTorch and Batched Data

Deep learning frameworks process data in batches, passed as tensors, for stochastic
gradient descent. The first dimension of the tensor is the batch dimension.

Example. For the operation y = Ax+ b we might have

X = {x(1), . . . , x(K)} (input)

Y = {Ax(1) + b, . . . , Ax(K) + b} (output)

Many PyTorch functions are batch-aware, e.g., torch.bmm. For many operations the
einsum function and broadcasting are particularly useful, e.g.,

1 y = torch.einsum("ij,kj ->ki", A, x) + b

computes y = Ax(k) + b on each element k = 1, . . . ,K of the batch.

ISAAC 2022 70/111

PyTorch Implementation: Forward Pass

1 class LeastSquaresFcn(torch.autograd.Function):

2 """ PyTorch autograd function for least squares."""

3
4 @staticmethod

5 def forward(ctx , A, b):

6 B, M, N = A.shape

7 assert b.shape == (B, M, 1)

8
9 with torch.no_grad ():

10 Q, R = torch.linalg.qr(A, mode=’reduced ’)

11 x = torch.linalg.solve_triangular(R,

12 torch.bmm(b.view(B, 1, M), Q).view(B, N, 1), upper=True)

13
14 # save state for backward pass

15 ctx.save_for_backward(A, b, x, R)

16
17 # return solution

18 return x

A = QR

x = R−1
(
QT b

)
(solves Rx = QT b)

ISAAC 2022 71/111

PyTorch Implementation: Backward Pass

1 @staticmethod

2 def backward(ctx , dx):

3 # check for None tensors

4 if dx is None:

5 return None , None

6
7 # unpack cached tensors

8 A, b, x, R = ctx.saved_tensors

9 B, M, N = A.shape

10
11 dA, db = None , None

12
13 w = torch.linalg.solve_triangular(R,

14 torch.linalg.solve_triangular(torch.transpose(R, 2, 1),

15 dx, upper=False), upper=True)

16 Aw = torch.bmm(A, w)

17
18 if ctx.needs_input_grad [0]:

19 r = b - torch.bmm(A, x)

20 dA = torch.einsum("bi,bj->bij", r.view(B,M), w.view(B,N)) - \

21 torch.einsum("bi,bj ->bij", Aw.view(B,M), x.view(B,N))

22 if ctx.needs_input_grad [1]:

23 db = Aw

24
25 # return gradients

26 return dA, db

w =
(
ATA

)−1
v

= R−1
(
R−T v

)
r = b−Ax(

dL

dA

)T
= wrT − x(Aw)T(

dL

db

)T
= Aw

ISAAC 2022 72/111

Example

Bi-level optimisation problem with
lower-level least squares:

minimize 1
2‖x

? − xtarget‖22
subject to x? = argminx ‖Ax− b‖22

with upper-level variable A ∈ Rm×n.

argmin ‖Ax− b‖22 x?
b

A

d
dx?L

d
dbL

d
dAL

ISAAC 2022 73/111

Profiling

(problems with m = 2n; run for 1000 iterations on CPU using PyTorch 1.13.0)

ISAAC 2022 74/111

Profiling

(problems with m = 2n; run for 1000 iterations on CPU using PyTorch 1.13.0)

ISAAC 2022 74/111

Optimal Transport

One view of optimal transport is as a matching problem

I from an m-by-n cost matrix M

I to an m-by-n probability matrix P ,

often formulated with an entropic regularisation term,

minimize 〈M,P 〉+ 1
γ 〈P, logP 〉

subject to P1 = r
P T1 = c

with 1T r = 1T c = 1.

The row and column sum constraints ensure that P is a
doubly stochastic matrix (lies within the convex hull of
permutation matrices).

1 0 0
0 1 0
0 0 1


0 1 0
1 0 0
0 0 1


0 1 0
0 0 1
1 0 0


0 0 1
0 1 0
1 0 0



0 0 1
1 0 0
0 1 0



1 0 0
0 0 1
0 1 0



ISAAC 2022 75/111

Solving Entropic Optimal Transport

Solution takes the form

Pij = αiβje
−γMij

and can be found using the Sinkhorn algorithm,

I Set Kij = e−γMij and α, β ∈ Rn++

I Iterate until convergence,

α← r �Kβ
β ← c�KTα

where � denotes componentwise division

I Return P = diag(α)Kdiag(β)

ISAAC 2022 76/111

Differentiable Optimal Transport

I Option 1: back-propagate through Sinkhorn algorithm

I Option 2: use the implicit differentiation result

ISAAC 2022 77/111

Differentiable Optimal Transport

I Option 1: back-propagate through Sinkhorn algorithm

I Option 2: use the implicit differentiation result

dL

dM︸︷︷︸
m-by-n

=
dL

dP︸︷︷︸
m-by-n

m-by-n-by-m-by-n︷︸︸︷
dP

dM

ISAAC 2022 77/111

Differentiable Optimal Transport

I Option 1: back-propagate through Sinkhorn algorithm

I Option 2: use the implicit differentiation result

dL

dM︸︷︷︸
1-by-mn

=
dL

dP︸︷︷︸
1-by-mn

mn-by-mn︷︸︸︷
dP

dM
(think of vectorising M and P)

ISAAC 2022 77/111

Optimal Transport Gradient
Derivation of the optimal transport gradient is quite tedious (see notes). The result:

dL

dM
=

dL

dP

(
H−1AT

(
AH−1AT

)−1
AH−1 −H−1

)
B

= γ
dL

dP
diag(P)

[
A1

A2

]T[
Λ11 Λ12

ΛT12 Λ22

][
A1

A2

]
diag(P)− γ dL

dP
diag(P)

where

[
A1

A2

]
=


0Tn 1Tn . . . 0Tn
...

...
. . .

...
0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n


(
AH−1AT

)−1
=

1

γ

[
Λ11 Λ12

ΛT12 Λ22

]
=

1

γ

[
diag(r2:m) P2:m,1:n

PT2:m,1:n diag(c)

]−1

derivation

ISAAC 2022 78/111

Implementation

1 @staticmethod

2 def backward(ctx , dJdP)

3 # unpacked cached tensors

4 M, r, c, P = ctx.saved_tensors

5 batches , m, n = P.shape

6
7 # initialize backward gradients (-v^T H^{-1} B)

8 dLdM = -1.0 * gamma * P * dLdP

9
10 # compute [vHAt1 , vHAt2] = -v^T H^{-1} A^T

11 vHAt1 , vHAt2 = sum(dJdM[:, 1:m, 0:n], dim=2), sum(dJdM , dim =1)

12
13 # compute [v1, v2] = -v^T H^{-1} A^T (A H^{-1] A^T)^{-1}

14 P_over_c = P[:, 1:m, 0:n] / c.view(batches , 1, n)

15 lmd_11 = cholesky(diag_embed(r[:, 1:m]) - einsum("bij ,bkj ->bik", P[:, 1:m, 0:n], P_over_c))

16 lmd_12 = cholesky_solve(P_over_c , lmd_11)

17 lmd_22 = diag_embed (1.0 / c) + einsum("bji ,bjk ->bik", lmd_12 , P_over_c)

18
19 v1 = cholesky_solve(vHAt1.view(batches , m-1, 1), lmd_11).view(batches , m-1) -

20 einsum("bi,bji ->bj", vHAt2 , lmd_12)

21 v2 = einsum("bi,bij ->bj", vHAt2 , lmd_22) - einsum("bi,bij ->bj", vHAt1 , lmd_12)

22
23 # compute v^T H^{-1} A^T (A H^{-1] A^T)^{-1} A H^{-1} B - v^T H^{-1} B

24 dLdM[:, 1:m, 0:n] -= v1.view(batches , m-1, 1) * P[:, 1:m, 0:n]

25 dJdM -= v2.view(batches , 1, n) * P

26
27 # return gradients

28 return dJdM

ISAAC 2022 79/111

Experiment

Bi-level optimisation problem with
lower-level optimal transport problem:

minimize 1
2‖P − P

target‖2F
subject to minimize 〈M,P 〉+ 1

γ 〈P, logP 〉
subject to P1 = 1

n1
P T1 = 1

m1

with upper-level variable M ∈ Rm×n.

argmin 〈M,P 〉+
1
γ
〈P, logP 〉

subject to P1 = 1
n

1
PT 1 = 1

m
1

P
M

d
dP L

d
dML

ISAAC 2022 80/111

Results: Running Time

ISAAC 2022 81/111

Results: Memory Usage

ISAAC 2022 82/111

Application to Blind Perspective-n-Point

find the location where the photograph was taken

ISAAC 2022 83/111

Coupled Problem

I if we knew correspondences then
determining camera pose would
be easy

I if we knew camera pose then
determining correspondences
would be easy

ISAAC 2022 84/111

Blind Perspective-n-Point Network Architecture

perception reasoning

M

argmin 〈M,P 〉+ 1
γ
〈P, logP 〉

subj. to P1 = 1
n

1
PT 1 = 1

m
1

argmin
∑m
i=1

∑n
j=1 Pij ·(

1− fTi
Rpj+t

‖Rpj+t‖

)
f̃2d

f̃3d

{fi}

{pj}

θ2d

θ3d

R, t

ISAAC 2022 85/111

Blind Perspective-n-Point Results

ISAAC 2022 86/111

resources/blind_pnp.mp4

Further Resources

Where to from here?

I Deep declarative networks (http://deepdeclarativenetworks.com)
I lots of small code examples and tutorials

I CVXPyLayers (https://github.com/cvxgrp/cvxpylayers)

I Theseus (https://sites.google.com/view/theseus-ai)

I JAXopt (https://github.com/google/jaxopt)

lecture notes available at https://users.cecs.anu.edu.au/~sgould

ISAAC 2022 87/111

http://deepdeclarativenetworks.com
https://github.com/cvxgrp/cvxpylayers
https://sites.google.com/view/theseus-ai
https://github.com/google/jaxopt
https://users.cecs.anu.edu.au/~sgould

break-out

ISAAC 2022 88/111

Local Optima are Global Optima Proof back

any local minimum of a convex problem is (globally) optimal

Proof. Suppose that x is locally optimal, but there exists a feasible y with lower objective, i.e., f0(y) < f0(x).
Local optimality of x means there must be an R > 0 such that

z feasible and ‖z − x‖2 ≤ R =⇒ f0(z) ≥ f0(x)

Consider z = θy + (1− θ)x with θ = R
2‖y−x‖2

. We have that ‖y − x‖2 > R since we assumed f0(y) < f0(x),

so 0 < θ < 1/2 < 1. Therefore z is a convex combination of two feasible points, hence also feasible. Moreover,
‖z− x‖2 = R/2 (from our choice of θ) and therefore f0(z) ≥ f0(x) by our assumption that x is locally optimal.
But

f0(z) ≤ θf0(y) + (1− θ)f0(x)

< θf0(x) + (1− θ)f0(x)

= f0(x)

where the first inequality is by the definition of convex function and the second inequality is from our assumption
that f0(y) < f0(x). We have a contradiction. Therefore every locally optimal point is globally optimal.

ISAAC 2022 89/111

automatic differentiation

ISAAC 2022 90/111

Toy Example: Babylonian Algorithm back

Consider the following implementation for
a forward operation:

1: procedure FwdFcn(x)
2: y0 ← 1

2
x

3: for t = 1, . . . , T do

4: yt ← 1
2

(
yt−1 + x

yt−1

)
5: end for
6: return yT
7: end procedure

I computes y =
√
x

I derivative computed directly is
dy
dx = 1

2
√
x

= 1
2y

Automatic differentiation algorithmically
generates the backward code:

1: procedure BckFcn(x, yT ,
dL
dyT

)

2:
dL
dx
← 0

3: for t = T, . . . , 1 do

4:
dL
dx
← dL

dx
+ dL

dyt

∂yt/∂x︷ ︸︸ ︷(
1

2yt−1

)
5:

dL
dyt−1

← dL
dyt

(
1
2
− x

2y2t−1

)
︸ ︷︷ ︸
∂yt/∂yt−1

6: end for
7:

dL
dx
← dL

dx
+ dL

dy0

1
2

8: return dL
dx

9: end procedure

ISAAC 2022 91/111

Toy Example: Babylonian Algorithm back

Consider the following implementation for
a forward operation:

1: procedure FwdFcn(x)
2: y0 ← 1

2
x

3: for t = 1, . . . , T do

4: yt ← 1
2

(
yt−1 + x

yt−1

)
5: end for
6: return yT
7: end procedure

I computes y =
√
x

I derivative computed directly is
dy
dx = 1

2
√
x

= 1
2y

Automatic differentiation algorithmically
generates the backward code:

1: procedure BckFcn(x, yT ,
dL
dyT

)

2:
dL
dx
← 0

3: for t = T, . . . , 1 do

4:
dL
dx
← dL

dx
+ dL

dyt

∂yt/∂x︷ ︸︸ ︷(
1

2yt−1

)
5:

dL
dyt−1

← dL
dyt

(
1
2
− x

2y2t−1

)
︸ ︷︷ ︸
∂yt/∂yt−1

6: end for
7:

dL
dx
← dL

dx
+ dL

dy0

1
2

8: return dL
dx

9: end procedure

ISAAC 2022 91/111

Toy Example: Babylonian Algorithm back

Consider the following implementation for
a forward operation:

1: procedure FwdFcn(x)
2: y0 ← 1

2
x

3: for t = 1, . . . , T do

4: yt ← 1
2

(
yt−1 + x

yt−1

)
5: end for
6: return yT
7: end procedure

I computes y =
√
x

I derivative computed directly is
dy
dx = 1

2
√
x

= 1
2y

Automatic differentiation algorithmically
generates the backward code:

1: procedure BckFcn(x, yT ,
dL
dyT

)

2:
dL
dx
← 0

3: for t = T, . . . , 1 do

4:
dL
dx
← dL

dx
+ dL

dyt

∂yt/∂x︷ ︸︸ ︷(
1

2yt−1

)
5:

dL
dyt−1

← dL
dyt

(
1
2
− x

2y2t−1

)
︸ ︷︷ ︸
∂yt/∂yt−1

6: end for
7:

dL
dx
← dL

dx
+ dL

dy0

1
2

8: return dL
dx

9: end procedure

ISAAC 2022 91/111

Computation Graph for Babylonian Algorithm back

x

1
2x

1
2

(
·+ x

·
)

· · · 1
2

(
·+ x

·
)

y0 y1 yT−1
yT

yT = f(x, f(x, f(x, . . . f(x, 1
2x)))) with f(x, y) = 1

2

(
y + x

y

)

ISAAC 2022 92/111

duality

ISAAC 2022 93/111

Lagrange Dual Function back

Define Lagrange dual function, g : Rp × Rq → R, as

g(λ, ν) = inf
x∈D
L(x, λ, ν)

= inf
x∈D

(
f0(x) +

p∑
i=1

λifi(x) +

q∑
i=1

νihi(x)

)

I g is concave (always), can be −∞ for some λ, ν

I lower bound property: if λ � 0, then g(λ, ν) ≤ p?
(since for feasible x we have fi(x) ≤ 0 and hi(x) = 0)

ISAAC 2022 94/111

The Dual Problem back

The Lagrange dual problem is to maximise the dual function

maximize g(λ, ν)
subject to λ � 0

I finds the best lower bound on p?, obtained from Lagrange dual function

I a convex optimisation problem with optimal value denoted by d?

I λ, ν are dual feasible if λ � 0 and (λ, ν) ∈ dom (g)

I original problem is known as the primal problem

ISAAC 2022 95/111

Weak and Strong Duality back

weak duality: d? ≤ p?

I always holds (for convex and nonconvex problems)

I can be used to find nontrivial lower bounds for difficult problems

strong duality: d? = p?

I does not hold in general

I (usually) holds for convex problems

I conditions that guarantee strong duality on convex problems are called constraint
qualifications

ISAAC 2022 96/111

differentiating equality constrained problems

ISAAC 2022 97/111

Abridged Derivation back

Forming the Lagrangian at optimal y for fixed x we have

L(x, y, ν) = f(x, y)−
q∑
i=1

νihi(x, y).

Since ∂h(x,y)
∂y

is full rank we have that y is a regular point. Then there exists a ν such that the Lagrangian is

stationary at the point (y, ν). Thus[
∂L
∂Y

T

∂L
∂ν

T

]
=

[(
∂f(x,y)
∂y

−
∑q
i=1 νi

∂hi(x,y)
∂y

)T
h(x, y)

]
= 0m+q

which we can differentiate with respect to x,

d

dx

[
(
∂f(x,y)
∂y

)T −
∑q
i=1 νi(

∂hi(x,y)
∂y

)T

h(x, y)

]
= 0(m+q)×n

to get (after some re-arranging in matrix form) ∂2f(x,y)∂y2
−
∑q
i=1 νi

∂2hi(x,y)

∂y2
−(

∂h(x,y)
∂y

)T

∂h(x,y)
∂y

0q×q

[dy(x)
dx

dν(x)
dx

]
= −

[
∂2f(x,y)
∂x∂y

−
∑q
i=1 νi

∂2hi(x,y)
∂x∂y

∂
∂x
h(x, y)

]
.

ISAAC 2022 98/111

Abridged Derivation back

Forming the Lagrangian at optimal y for fixed x we have

L(x, y, ν) = f(x, y)−
q∑
i=1

νihi(x, y).

Since ∂h(x,y)
∂y

is full rank we have that y is a regular point. Then there exists a ν such that the Lagrangian is

stationary at the point (y, ν). Thus[
∂L
∂Y

T

∂L
∂ν

T

]
=

[(
∂f(x,y)
∂y

−
∑q
i=1 νi

∂hi(x,y)
∂y

)T
h(x, y)

]
= 0m+q

which we can differentiate with respect to x,

d

dx

[
(
∂f(x,y)
∂y

)T −
∑q
i=1 νi(

∂hi(x,y)
∂y

)T

h(x, y)

]
= 0(m+q)×n

to get (after some re-arranging in matrix form)[
H −AT
A 0q×q

][dy(x)
dx

dν(x)
dx

]
= −

[
B
C

]
.

ISAAC 2022 98/111

Abridged Derivation (cont.) back

(from last slide:) [
H −AT
A 0q×q

][dy(x)
dx

dν(x)
dx

]
= −

[
B
C

]
We can solve this system of equations directly or solve by variable elimination. Multiplying out we have

H
dy(x)

dx
−AT

dν(x)

dx
= −B (1)

A
dy(x)

dx
= −C (2)

Substituting dy(x)
dx

from (1) into (2) gives,

A

dy(x)
dx︷ ︸︸ ︷

H−1(AT
dν(x)

dx
−B) = −C

∴
dν(x)

dx
=
(
AH−1AT

)−1 (
AH−1B − C

)
Then substituting back into (1) we get the result

dy(x)

dx
= H−1AT

(
AH−1AT

)−1(
AH−1B − C

)
︸ ︷︷ ︸

dν(x)
dx

−H−1B

ISAAC 2022 99/111

least squares

ISAAC 2022 100/111

Least Squares Backward Pass Derivation back

Differentiating x? with respect to single element Aij , we have

d

dAij
x? =

d

dAij

(
ATA

)−1
AT b

=

(
d

dAij

(
ATA

)−1
)
AT b+

(
ATA

)−1
(

d

dAij
AT b

)
Using the identity d

dzZ
−1 = −Z−1

(
d

dzZ
)
Z−1 we get, for the first term,

d

dAij

(
ATA

)−1
= −

(
ATA

)−1
(

d

dAij

(
ATA

)) (
ATA

)−1

= −
(
ATA

)−1(
ETijA+ATEij

) (
ATA

)−1

where Eij is a matrix with one in the (i, j)-th element and zeros elsewhere.
Furthermore, for the second term,

d

dAij
AT b = ETijb

ISAAC 2022 101/111

Least Squares Backward Pass Derivation (cont.) back

Plugging these back into parent equation we have

d

dAij
x? = −

(
ATA

)−1(
ETijA+ATEij

) (
ATA

)−1
AT b+

(
ATA

)−1
ETijb

= −
(
ATA

)−1(
ETijA+ATEij

)
x? +

(
ATA

)−1
ETijb

= −
(
ATA

)−1 (
ETij(Ax

? − b) +ATEijx
?
)

= −
(
ATA

)−1 (
(aTi x

? − bi)ej + x?jai
)

where ej = (0, 0, . . . , 1, 0, . . .) ∈ Rn is the j-th canonical vector, i.e., vector with a one
in the j-th component and zeros everywhere else, and aTi ∈ R1×n is the i-th row of
matrix A.

ISAAC 2022 102/111

Least Squares Backward Pass Derivation (cont.) back

Let r = b−Ax? and let vT denote the backward coming gradient d
dx?L. Then

dL

dAij
= vT

dx?

dAij

= vT
(
ATA

)−1 (
riej − x?jai

)
= wT

(
riej − x?jai

)
= riwj − wTaix?j

where w =
(
ATA

)−1
v. We can compute the entire matrix of m× n derivatives

efficiently as the sum of outer products(
dL

dA

)T
=

[
dL

dAij

]
i=1,...,m
j=1,...,n

= wrT − x?(Aw)T

ISAAC 2022 103/111

optimal transport

ISAAC 2022 104/111

Objective and Constraint Functions back

f(M,P) =

m∑
i=1

n∑
j=1

MijPij +
1

γ

m∑
i=1

n∑
j=1

Pij logPij

h(M,P) =


1Tn 0Tn . . . 0Tn
0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n





P11

P12
...
P1n

P21
...

Pmn


−



r1

r2
...
rm
c1
...
cn


(one constraint is redundant—a linear combination of
the others—and removed to ensure rank(A) = q)

ISAAC 2022 105/111

Deriving the Gradient back

f(M,P) =
m∑
i=1

n∑
j=1

MijPij +
1

γ

m∑
i=1

n∑
j=1

Pij logPij h(M,P) =


0Tn 1Tn . . . 0Tn
...

...
. . .

...
0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n

 ~P −

r2
...
rm
c



dP

dM
=
(
H−1AT

(
AH−1AT

)−1
AH−1 −H−1

)
B

A = d
dP h ∈ R(m+n−1)×mn B = d2

dM∂P f ∈ Rmn×nn H = d2

dP 2 f ∈ Rmn×mn

=


0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n



ISAAC 2022 106/111

Deriving the Gradient back

f(M,P) =
m∑
i=1

n∑
j=1

MijPij +
1

γ

m∑
i=1

n∑
j=1

Pij logPij h(M,P) =


0Tn 1Tn . . . 0Tn
...

...
. . .

...
0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n

 ~P −

r2
...
rm
c



dP

dM
=
(
H−1AT

(
AH−1AT

)−1
AH−1 −H−1

)
B

A = d
dP h ∈ R(m+n−1)×mn B = d2

dM∂P f ∈ Rmn×nn H = d2

dP 2 f ∈ Rmn×mn

=


0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n



ISAAC 2022 106/111

Deriving the Gradient back

f(M,P) =
m∑
i=1

n∑
j=1

MijPij +
1

γ

m∑
i=1

n∑
j=1

Pij logPij h(M,P) =


0Tn 1Tn . . . 0Tn
...

...
. . .

...
0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n

 ~P −

r2
...
rm
c



dP

dM
=
(
H−1AT

(
AH−1AT

)−1
AH−1 −H−1

)
B

A = d
dP h ∈ R(m+n−1)×mn B = d2

dM∂P f ∈ Rmn×nn H = d2

dP 2 f ∈ Rmn×mn

=


0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n


ISAAC 2022 106/111

Deriving the Gradient back

f(M,P) =
m∑
i=1

n∑
j=1

MijPij +
1

γ

m∑
i=1

n∑
j=1

Pij logPij h(M,P) =


0Tn 1Tn . . . 0Tn
...

...
. . .

...
0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n

 ~P −

r2
...
rm
c



dP

dM
=
(
H−1AT

(
AH−1AT

)−1
AH−1 −H−1

)
B

A = d
dP h ∈ R(m+n−1)×mn B = d2

dM∂P f ∈ Rmn×nn H = d2

dP 2 f ∈ Rmn×mn

=


0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n

 Bij,kl =

{
1 if ij = kl

0 otherwise

ISAAC 2022 106/111

Deriving the Gradient back

f(M,P) =
m∑
i=1

n∑
j=1

MijPij +
1

γ

m∑
i=1

n∑
j=1

Pij logPij h(M,P) =


0Tn 1Tn . . . 0Tn
...

...
. . .

...
0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n

 ~P −

r2
...
rm
c



dP

dM
=
(
H−1AT

(
AH−1AT

)−1
AH−1 −H−1

)
B

A = d
dP h ∈ R(m+n−1)×mn B = d2

dM∂P f ∈ Rmn×nn H = d2

dP 2 f ∈ Rmn×mn

=


0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n

 = Imn×mn

ISAAC 2022 106/111

Deriving the Gradient back

f(M,P) =
m∑
i=1

n∑
j=1

MijPij +
1

γ

m∑
i=1

n∑
j=1

Pij logPij h(M,P) =


0Tn 1Tn . . . 0Tn
...

...
. . .

...
0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n

 ~P −

r2
...
rm
c



dP

dM
=
(
H−1AT

(
AH−1AT

)−1
AH−1 −H−1

)
B

A = d
dP h ∈ R(m+n−1)×mn B = d2

dM∂P f ∈ Rmn×nn H = d2

dP 2 f ∈ Rmn×mn

=


0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n

 = Imn×mn Hij,kl =

{
1

γPij
if ij = kl

0 otherwise

ISAAC 2022 106/111

Deriving the Gradient back

f(M,P) =
m∑
i=1

n∑
j=1

MijPij +
1

γ

m∑
i=1

n∑
j=1

Pij logPij h(M,P) =


0Tn 1Tn . . . 0Tn
...

...
. . .

...
0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n

 ~P −

r2
...
rm
c



dP

dM
=
(
H−1AT

(
AH−1AT

)−1
AH−1 −H−1

)
B

A = d
dP h ∈ R(m+n−1)×mn B = d2

dM∂P f ∈ Rmn×nn H = d2

dP 2 f ∈ Rmn×mn

=


0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n

 = Imn×mn H−1 = γdiag
(
~P
)

ISAAC 2022 106/111

Computing (AH−1AT)−1
back

H−1 = γdiag
(
~P
)

A =


0Tn 1Tn . . . 0Tn
...

...
. . .

...
0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n



dP

dM
=
(
H−1AT

(
AH−1AT

)−1
AH−1 −H−1

)
B

The (k, l)-th entry of AH−1AT for k, l ∈ 1, . . . ,m+ n− 1 is

(AH−1AT)kl =
m∑
i=1

n∑
j=1

Ak,ijAl,ij
Hij,ij

= γ
m∑
i=1

n∑
j=1

Ak,ijAl,ijPij

ISAAC 2022 107/111

Computing (AH−1AT)−1
back

H−1 = γdiag
(
~P
)

A =


0Tn 1Tn . . . 0Tn
...

...
. . .

...
0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n



dP

dM
=
(
H−1AT

(
AH−1AT

)−1
AH−1 −H−1

)
B

The (k, l)-th entry of AH−1AT for k, l ∈ 1, . . . ,m+ n− 1 is

(AH−1AT)kl =

m∑
i=1

n∑
j=1

Ak,ijAl,ij
Hij,ij

= γ

m∑
i=1

n∑
j=1

Ak,ijAl,ijPij

ISAAC 2022 107/111

Interpreting Ak,ijAl,ij back

k

l


0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn

In×n In×n . . . In×n


k

l


0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn

In×n In×n . . . In×n





↑
m− 1
↓

↑
n
↓

l

k



0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn

In×n In×n . . . In×n


︸ ︷︷ ︸

←− mn −→

k
l



0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn

In×n In×n . . . In×n


︸ ︷︷ ︸

←− mn −→

ISAAC 2022 108/111

Evaluating (AH−1AT)kl = γ
∑m

i=1

∑n
j=1Ak,ijAl,ijPij back

0 ≤ l ≤ m− 1 m ≤ l ≤ m+ n− 1

0 ≤ k ≤ m− 1

{
γ
∑n

j=1 Pk+1,j if k = l

0 otherwise
γPk+1,l−m+1

m ≤ k ≤ m+ n− 1 γPl+1,k−m+1

{
γ
∑m

i=1 Pi,k−m+1 if k = l

0 otherwise

ISAAC 2022 109/111

Computing (AH−1AT)−1
back

H−1 = γdiag
(
~P
)

A =


0Tn 1Tn . . . 0Tn
...

...
. . .

...
0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n



dP

dM
=
(
H−1AT

(
AH−1AT

)−1
AH−1 −H−1

)
B

AH−1AT = γ

[
diag(r2:m) P2:m,1:n

P T2:m,1:n diag(c)

] (
AH−1AT

)−1
=

1

γ

[
Λ11 Λ12

ΛT12 Λ22

]

Λ11 =
(

diag
(
r2:m − P2:m,1:ndiag(c)−1 PT2:m,1:n

))−1

Λ12 = −Λ11P2:m,1:ndiag(c)−1

Λ22 = diag(c)−1 − diag(c)−1 PT2:m,1:nΛ12

ISAAC 2022 110/111

end

ISAAC 2022 111/111

