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Optimisation is Everywhere

I financial mathematics: maximise profits or minimise costs subject to constraints
on resources and budgets

I mechanical engineering: maximise the span of a bridge subject to load
constraints

I electrical engineering: minimise the size of a transistor in a circuit subject to
power and timing constraints

I logistics and planning: find the cheapest way to distribute goods from suppliers
to consumers across a network

I statistics/data science: curve fitting and data visualisation

I machine learning and deep learning: minimise loss functions with respect to
the parameters of our model

ISAAC 2022 3/111



Optimisation is Everywhere

I financial mathematics: maximise profits or minimise costs subject to constraints
on resources and budgets

I mechanical engineering: maximise the span of a bridge subject to load
constraints

I electrical engineering: minimise the size of a transistor in a circuit subject to
power and timing constraints

I logistics and planning: find the cheapest way to distribute goods from suppliers
to consumers across a network

I statistics/data science: curve fitting and data visualisation

I machine learning and deep learning: minimise loss functions with respect to
the parameters of our model

ISAAC 2022 3/111



Optimisation is Everywhere

I financial mathematics: maximise profits or minimise costs subject to constraints
on resources and budgets

I mechanical engineering: maximise the span of a bridge subject to load
constraints

I electrical engineering: minimise the size of a transistor in a circuit subject to
power and timing constraints

I logistics and planning: find the cheapest way to distribute goods from suppliers
to consumers across a network

I statistics/data science: curve fitting and data visualisation

I machine learning and deep learning: minimise loss functions with respect to
the parameters of our model

ISAAC 2022 3/111



Optimisation is Everywhere

I financial mathematics: maximise profits or minimise costs subject to constraints
on resources and budgets

I mechanical engineering: maximise the span of a bridge subject to load
constraints

I electrical engineering: minimise the size of a transistor in a circuit subject to
power and timing constraints

I logistics and planning: find the cheapest way to distribute goods from suppliers
to consumers across a network

I statistics/data science: curve fitting and data visualisation

I machine learning and deep learning: minimise loss functions with respect to
the parameters of our model

ISAAC 2022 3/111



Optimisation is Everywhere

I financial mathematics: maximise profits or minimise costs subject to constraints
on resources and budgets

I mechanical engineering: maximise the span of a bridge subject to load
constraints

I electrical engineering: minimise the size of a transistor in a circuit subject to
power and timing constraints

I logistics and planning: find the cheapest way to distribute goods from suppliers
to consumers across a network

I statistics/data science: curve fitting and data visualisation

I machine learning and deep learning: minimise loss functions with respect to
the parameters of our model

ISAAC 2022 3/111



Optimisation is Everywhere

I financial mathematics: maximise profits or minimise costs subject to constraints
on resources and budgets

I mechanical engineering: maximise the span of a bridge subject to load
constraints

I electrical engineering: minimise the size of a transistor in a circuit subject to
power and timing constraints

I logistics and planning: find the cheapest way to distribute goods from suppliers
to consumers across a network

I statistics/data science: curve fitting and data visualisation

I machine learning and deep learning: minimise loss functions with respect to
the parameters of our model

ISAAC 2022 3/111



Overview

I Introduction to Optimisation
I Formal definition
I Least squares
I Convex sets and functions
I Convex optimisation problems
I Lagrangian
I Optimality conditions
I Algorithms

I Differentiable Optimisation and
Deep Learning
I Machine learning from 10,000ft

I Automatic differentiation
I Forward and backward passes
I Imperative and declarative nodes
I Bi-level optimisation
I Implicit function theorem
I Differentiable optimisation results

I Examples and Applications
I Least squares
I Optimal transport
I Blind perspective-n-point

accompanying lecture notes available at
https://users.cecs.anu.edu.au/~sgould
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Lecture 1: Introduction to Optimisation
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Assumed Background
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Optimisation Problems

find the assignment to variables that minimises
a measure of cost subject to some constraints1

1In these lectures we will be concerned with continuous-valued variables
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Optimisation Problems

minimize (over x) objective(x)
subject to constraints(x)
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Optimisation Problems

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , p

hi(x) = 0, i = 1, . . . , q

I x = (x1, . . . , xn) ∈ Rn — optimisation variables

I f0 : Rn → R — objective (or cost or loss) function

I fi : Rn → R, i = 1, . . . , p — inequality constraint functions

I hi : Rn → R, i = 1, . . . , q — equality constraint functions
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Solution and Optimal Value

A point x is feasible if x ∈ dom (f0) and it satisfies the constraints.

A solution, or optimal point, x? has the smallest value of f0 among all feasible x.

The optimal value is1

p? = inf
x∈D

{
f0(x)

∣∣∣∣ fi(x) ≤ 0, i = 1, . . . , p
hi(x) = 0, i = 1, . . . , q

}
.

I p? and is equal to f0(x?) when x? exists

I p? =∞ if the problem is infeasible (no x satisfies the constraints)

I p? = −∞ if the problem is unbounded below

1Warning: notation clash between p and p?!
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Locally Optimal Points

A point x is locally optimal if there is an R > 0 such that z = x is optimal for

minimize (over z) f0(z)
subject to fi(z) ≤ 0 i = 1, . . . , p

hi(z) = 0 i = 1, . . . , q
‖z − x‖2 ≤ R.
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Examples (1D)

f0:

1/x − log x x log x x3 − 3x

dom (f0): R++ R++ R++ R
p?: 0 −∞ −1/e −∞
x?: none none 1/e x = 1 locally
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Examples (2D)

x?

x2

x1

x?

x2

x1

x?

x2

x1
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Least Squares

minimize ‖Ax− b‖22

I unique solution if ATA is invertible, x? =
(
ATA

)−1
AT b

I solution via SVD, A = UΣV T , if ATA not invertible, x? = V Σ−1UT b
I in fact, x? + w for any w ∈ N (A) also a solution

I solution via QR factorisation, x? = R−1QT b

I solved in O(n2m) time, less if structured

I typically use iterative solver
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Example: Polynomial Curve Fitting

fit n-th order polynomial fa(x) =
∑n
k=0 akx

k to set of noisy points {(xi, yi)}mi=1

minimize (over a)
∑m
i=1 (fa(xi)− yi)2

minimize

∥∥∥∥∥∥∥∥∥


1 x1 x21 . . . xn1
1 x2 x22 . . . xn2
...

...
...

. . .
...

1 xm x2m . . . xnm



a0
a1
...
an

−

y1
y2
...
ym


∥∥∥∥∥∥∥∥∥

2

2

I special case of convex optimisation

fa(x)

x

y
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Lines and Line Segments

I a line through two points x1 and x2

x = θx1 + (1− θ)x2, (θ ∈ R)

x1

x2

I an affine set contains the line through
any two distinct points in the set

I an affine hull the set formed by taking all
lines through points in a set

I a line segment between x1 and x2

x = θx1 + (1− θ)x2, (0 ≤ θ ≤ 1)

x1

x2

I a convex set contains the line segment
between any two distinct points in the set

I an convex hull the set formed by taking
all line segments between points in a set
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Convex Sets

x1, x2 ∈ convex set C =⇒ θx1 + (1− θ)x2 ∈ C for all 0 ≤ θ ≤ 1

convex nonconvex

common examples in machine learning:

I nonnegative orthant, Rn+ = {x | xi ≥ 0, i = 1, . . . , n}
I positive semindefinite matrices, Sn+ = {X | zTXz ≥ 0, z ∈ Rn}
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More Examples

a a

hyperplane, halfspace, polyhedron,
{x | aTx = b} {x | aTx ≤ b} {x | Ax � b, Cx = d}

norm ball, ellipsoid, Lorentz cone,
{x | ‖x− xc‖p ≤ r} {Ax+ b | ‖x‖2 ≤ 1} {(x, t) | ‖x‖ ≤ t}
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Convex Functions

A function f : Rn → R is convex if dom (f) is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom (f) , 0 ≤ θ ≤ 1.

(x, f(x))

(y, f(y))

I f is concave if −f is convex

ISAAC 2022 18/111



Examples

ax+ b ex x log x

x3
log x

a− be−x2
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Weighted Sum and Pointwise Maximum Preserve Convexity

ax+ b
exx
2

sum ax+ b

ex
x2

max
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Convex, Strictly Convex, and Strongly Convex

f1(x)
f2(x)

f3(x)

f4(x)

I f1 is smooth and convex: f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)y
I f2 is non-differentiable and convex: f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)y
I f3 is strictly convex: f(θx+ (1− θ)y) < θf(x) + (1− θ)y
I f4 is strongly convex: ∃m s.t. m(y − x)2 ≤ f(y)− f(x)
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Epigraph

The epigraph of function f : Rn → R is the set

epi(f) = {(x, t) ∈ Rn+1 | x ∈ dom (f) , f(x) ≤ t}.

I f is a convex function if and only if epi(f) is a convex set
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First-order Condition

differentiable f with convex domain is convex iff

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom (f)

(x, f(x))

f(y)

f(x) +∇f(x)T (y − x)

I first-order approximation of (convex) f is a global under estimator
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Second-order Condition

f1(x)
f2(x)

f3(x)

f4(x)

twice differentiable f with convex domain is convex iff

∇2f(x) � 0 for all x ∈ dom (f)

I if ∇2f(x) � 0 for all x ∈ dom (f), then f is strictly convex

I if ∇2f(x) � mI for some m > 0 and all x ∈ dom (f), then f is strongly convex

I strongly convex functions have a unique minimum
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Worked Example: log-sum-exp is Convex

f(x) = log

n∑
k=1

expxk

Proof. Start by computing the gradient and Hessian,
which is true by the Cauchy-Schwarz inequality, ‖a‖22‖b‖22 ≥ (aT b)2, with a = (

√
z1, . . . ,

√
zn) and

b = (
√
z1v1, . . . ,

√
znvn).
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Convex Optimisation

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , p

aTi x = bi, i = 1, . . . , q

I f0, f1, . . . , fp are convex

I hi(x) , aTi x− bi are affine, often written as Ax = b

minimise a convex objective over a convex feasible set
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Local Optima are Global Optima

any local minimum of a convex problem is (globally) optimal

Proof Sketch.

I towards contradiction, suppose x is locally optimal, but there
exists a feasible y with lower objective

I since x is locally optimally there exists a radius R such that
no other point within R of x has lower objective

I (so y must be further than R from x)

I pick a point z on the line segment between x and y and
within R of x

I so z must be feasible and have objective no lower than x

I but, by the basic inequality of convex functions,

f0(θx+ (1− θ)y) ≤ θf0(x) + (1− θ)f0(y),

the objective value at z must be between that at x and y,
i.e., lower than f0(x)

I we have a contradiction

x

y

z

full proof

ISAAC 2022 27/111



Local Optima are Global Optima

any local minimum of a convex problem is (globally) optimal

Proof Sketch.

I towards contradiction, suppose x is locally optimal, but there
exists a feasible y with lower objective

I since x is locally optimally there exists a radius R such that
no other point within R of x has lower objective

I (so y must be further than R from x)

I pick a point z on the line segment between x and y and
within R of x

I so z must be feasible and have objective no lower than x

I but, by the basic inequality of convex functions,

f0(θx+ (1− θ)y) ≤ θf0(x) + (1− θ)f0(y),

the objective value at z must be between that at x and y,
i.e., lower than f0(x)

I we have a contradiction

x

y

z

full proof

ISAAC 2022 27/111



Optimality Criterion for Differentiable f0

x is optimal if and only if it is feasible and ∇f0(x)T (y − x) ≥ 0 for all feasible y

X x

−∇f0(x)

if nonzero,

I ∇f0(x) defines a supporting hyperplane to feasible set X at x

I f0 cannot be improved by moving in a direction where x stays feasible
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Lagrangian
Standard form problem (not necessarily convex),

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , p

hi(x) = 0, i = 1, . . . , q

variable x ∈ Rn, domain D, optimal value p?

Lagrangian: L : Rn × Rp × Rq → R, with dom (L) = D × Rp × Rq,

L(x, λ, ν) = f0(x) +

p∑
i=1

λifi(x) +

q∑
i=1

νihi(x)

I weighted sum of objective and constraint functions

I λi is the Lagrange multiplier (dual variable) associated with fi(x) ≤ 0

I νi is the Lagrange multiplier (dual variable) associated with hi(x) = 0

duality
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Karush-Kuhn-Tucker (KKT) Conditions

The following four conditions are called KKT conditions (for differentiable fi, hi):

I primal feasible:
fi(x) ≤ 0, i = 1, . . . , p
hi(x) = 0, i = 1, . . . , q

I dual feasible: λ � 0

I complementary slackness: λifi(x) = 0 for i = 1, . . . , p

I gradient of Lagrangian with respect to x vanishes,

∇f0(x) +

p∑
i=1

λi∇fi(x) +

q∑
i=1

νi∇hi(x) = 0

Generalizes optimality condition ∇f0(x) = 0 for unconstrained problems.
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Gradient Descent

minimize f0(x)

I f0 convex, twice continuously differentiable

I we assume optimal value p? = infx f0(x) is attained (and finite)

Gradient descent:

1. given a starting point x ∈ dom (f0)

2. repeat x := x− t∇f0(x). (choose step size, t)

3. until stopping criterion satisfied, e.g., ‖∇f0(x)‖2 ≤ ε.

I variants of gradient descent define step direction ∆x different to −∇f0(x)
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Choosing Step Size
fixed schedule: set t to a small constant or decay with each iteration

exact line search: t = argmint>0f0(x+ t∆x)

backtracking line search (with parameters α ∈ (0, 1/2), β ∈ (0, 1))

I starting at t = 1 with search direction ∆x, repeat t := βt until

f0(x+ t∆x) < f0(x) + αt∇f0(x)T∆x

f0(x+ t∆x)

f0(x) + t∇f0(x)T∆x

f0(x) + αt∇f0(x)T∆x

t0 1
t
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Example

Gradient descent (even with exact line search) can be slow. E.g.,

f0(x) = x2
1 + γx2

2, γ � 1

xinit
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Newton’s Method

∆xnt = −∇2f0(x)−1∇f0(x)

I x+ ∆xnt minimizes the second-order approximation of f0 at x,

f̂(x+ v) = f0(x) +∇f0(x)T v +
1

2
vT∇2f0(x)v

Newton’s method:

1. given a starting point x ∈ dom (f0).

2. repeat x := x+ t∆xnt. (choose step size, t)

3. until stopping criterion satisfied.
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Equality Constrained Methods

minimize f0(x)
subject to Ax = b

I f0 convex, twice continuously differentiable

I A ∈ Rq×n with rank(A) = q (and b ∈ range(A))

I we assume p? is finite and attained

optimality condition: x? is optimal iff there exists a ν? such that

∇f0(x?) +AT ν? = 0, Ax? = b
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Newton Step for Equality Constrained Optimisation

Newton step ∆xnt of f0 at feasible x is given by solution v of

[
∇2f0(x) AT

A 0

] [
v
w

]
=

[
−∇f0(x)

0

]

I second row ensures that x iterates stay feasible

I solves quadratic approximation of optimisation problem

minimize f̂(x+ v) , f0(x) +∇f0(x)T v + 1
2v

T∇2f0(x)v
subject to A(x+ v) = b

I solves linear approximation of optimality condition
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The Barrier Method

For inequality constrained problems,

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , p

Ax = b

we reformulate using an indicator function,

minimize f0(x) +
∑p
i=1 IR−(fi(x))

subject to Ax = b

where IR−(u) = 0 if u ≤ 0 and IR−(u) = ∞ otherwise,
which we approximate with a logarithmic barrier

minimize f0(x)− 1
t

∑p
i=1 log(−fi(x))

subject to Ax = b

to get an equality constrained approximation.

−3 −2 −1 1

5

10
− 1
t log(−u)
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Algorithms for Large Scale Problems
I for large scale problems, e.g., deep learning, Newton’s method is too expensive

I even computing the true gradient may be too expensive

I many loss functions in machine learning decompose over train data {(xi, yi)}mi=1,

L(θ) =

m∑
i=1

`(f(xi; θ), yi)

I SGD approximates the gradient on mini-batches I ⊆ {1, . . . ,m}

∇̂θL =
∑
i∈I
∇θ`(f(xi; θ), yi)

I under mild assumptions E
[
∇̂θL

]
= ∇θL

I for constrained problems can project back onto feasible set

Many, many other schemes and variations!
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Lecture 2: Differentiable Optimisation and Deep Learning
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Machine Learning from 10,000ft

f : X → Y

minimize (over θ)
∑

(x,y)∼X×Y L(fθ(x), y)

I loss L — what to do

I model fθ — how to do it

I optimised by gradient descent
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Deep Learning as an End-to-end Computation Graph
Deep learning does this by defining a function (equiv. computation graph) composed
of many simple parametrized functions (equiv. computation nodes).

f1

f2 f3 f4

f5 f6 f7

f8x y

θ1

θ2 θ3 θ4

θ5 θ6 θ7

θ8

y = f8(f4(f3(f2(f1(x)))), f7(f6(f5(f1(x)))))

(parameters θi omitted for brevity)
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Backward Pass

f1

f2 f3 f4

f5 f6 f7

f8x

z7

y

θ1

θ2 θ3 θ4

θ5 θ6 θ7

θ8

Example 1.

∂L

∂θ7
=
∂L

∂y

∂y

∂z7

∂z7

∂θ7
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Backward Pass

f1

f2 f3 f4

f5 f6 f7

f8x

z1

z4 z3

z4

z1

z5 z6

z7

y

θ1

θ2 θ3 θ4

θ5 θ6 θ7

θ8

Example 2.

∂L

∂θ1
=
∂L

∂y

(
∂y

∂z4

∂z4

∂z3

∂z3

∂z2

∂z2

∂z1
+
∂y

∂z7

∂z7

∂z6

∂z6

∂z5

∂z5

∂z4

)
∂z1

∂θ1
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Deep Learning Node

f̃ output, yinput, x

parameters, θ

d
dyL

d
dxK

d
dθL

I Forward pass: compute output y as a
function of the input x (and model
parameters θ).

I Backward pass: compute the
derivative of the loss with respect to
the input x (and model parameters θ)
given the derivative of the loss with
respect to the output y.
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Notational Aside (Often Sloppy)
For scalar-valued functions:

total derivative:
df

dx
partial derivative:

∂f

∂x

For multi-dimensional scalar-valued functions, f : Rn → R:

∇f(x) =

(
df

dx1
, . . . ,

df

dxn

)
∈ Rn

For multi-dimensional vector-valued functions, f : Rn → Rm:

d

dx
f(x) =


df1
dx1

. . . df1
dxn

...
. . .

...
dfm
dx1

. . . dfm
dxn

 ∈ Rm×n (
∂

∂x
f(x, y) for partial)

Sometimes D and DX for d
dx and ∂

∂x , respectively.
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Automatic Differentiation (AD)
I algorithmic procedure that produces code for computing exact derivatives
I assumes numeric computations are composed of a small set of elementary

operations that we know how to differentiate
I arithmetic, exp, log, trigonometric

I workhorse of modern machine learning that greatly reduces development effort

I two flavours
I (forward mode) propagates results on the first-order approximation x+ ∆x forward

through the computations
I (reverse mode) builds a program to compute derivative based on the chain rule

re-using computation where applicable

dL

dx
=

dL

dy

dy

dx

I different deep learning frameworks use slightly different approaches (explicit graph
construction versus implicit operator tracking)

example
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Computing 1/
√
x

1 float Q_rsqrt( float number )

2 {

3 long i;

4 float x2 , y;

5 const float threehalfs = 1.5F;

6

7 x2 = number * 0.5F;

8 y = number;

9 i = * ( long * ) &y; // evil floating point bit level hacking

10 i = 0x5f3759df - ( i >> 1 ); // what the f**k?

11 y = * ( float * ) &i;

12 y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iter

13 // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iter , can be removed

14

15 return y;

16 }
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Separate Forward and Backward Operations

y = 1√
x

dy
dx = −1

2y
3

output, y

input, x

parameters, θ

d
dyLd

dxL

d
dθL
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Imperative vs Declarative Nodes

y = f̃(x; θ) yx

θ

d
dyL

d
dxL

d
dθL

I imperative node

I input-output relationship explicit,

y = f̃(x; θ)

y ∈ argmin
u∈C(x)

f(x, u; θ) yx

θ

d
dyL

d
dxL

d
dθL

I declarative node

I input-output relationship specified as
solution to an optimisation problem,

y ∈ arg min
u∈C(x)

f(x, u; θ)

can co-exist in the same computation graph (network)
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Average Pooling Example

{xi ∈ Rm | i = 1, . . . , n} → Rm

I imperative specification

y =
1

n

n∑
i=1

xi

I declarative specification

y = argminu∈Rm

n∑
i=1

‖u− xi‖2

I can be easily varied, e.g., made robust

y = argminu∈Rm

n∑
i=1

φ(u− xi)

for some penalty function φ
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Average Pooling Example
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Bi-level Optimisation: Stackelberg Games

Consider two players, a leader and a follower

I the market dictates the price it’s willing to pay for some goods based on supply,
i.e., quantity produced by both players, P (q1 + q2)

I each player has a cost structure associated with producing goods, Ci(qi) and
wants to maximize profits, qiP (q1 + q2)− Ci(qi)

I the leader picks a quantity of goods to produce knowing that the follower will
respond optimally. In other words, the leader solves

maximize (over q1) q1P (q1 + q2)− C1(q1)
subject to q2 ∈ argmaxq qP (q1 + q)− C2(q)
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Solving Bi-level Optimisation Problems

minimize (over x) L(x, y)
subject to y ∈ argminu∈C(x) f(x, u)

I closed-form solution: substitute for y in upper-level problem (if possible)

minimize (over x) L(x, y(x))

I convex lower-level problem: replace lower-level problem with sufficient optimality
conditions (e.g., KKT conditions),

minimize (over x, y) L(x, y)
subject to h(x, y) = 0

I gradient descent: compute gradient of lower-level solution y with respect to x, and use
the chain rule to get the total derivative,

x← x− η
(
∂L(x, y)

∂x
+
∂L(x, y)

∂y

dy

dx

)

I by back-propagating through optimisation procedure or implicit differentiation
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Parametrized Optimisation

In the context of deep learning the upper-level Stackelberg problem is the learning
problem and the lower-level Stackelberg problem is the inference problem.

A declarative node defines a family of problems indexed by continuous variable x ∈ Rn,
minimize (over u ∈ Rm) f0(x, u)
subject to fi(x, u) ≤ 0, i = 1, . . . , p

hi(x, u) = 0, i = 1, . . . , q


x∈Rn
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Parametrized Optimisation Example

Main question: How do we compute d
dx argminu f(x, u)?
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Dini’s Implicit Function Theorem

Consider the solution mapping associated with the equation f(x, u) = 0,

Y : x 7→ {u ∈ Rm | f(x, u) = 0} for x ∈ Rn.

We are interested in how elements of Y (x) change as a function of x.

Theorem
Let f : Rn × Rm → Rm be differentiable in a neighbourhood of (x, u) and such that
f(x, u) = 0, and let ∂

∂uf(x, u) be nonsingular. Then the solution mapping Y has a
single-valued localization y around x for u which is differentiable in a neighbourhood
X of x with Jacobian satisfying

dy(x)

dx
= −

(
∂f(x, y(x))

∂y

)−1 ∂f(x, y(x))

∂x

for every x ∈ X .
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Unit Circle Example

(x, y1)

(x, y2)

(x, y1)

(x, y2)

X

y = ±
√

1− x2

dy

dx
=

∓2x

2
√

1− x2
= −

x

y

f(x, y) = x2 + y2 − 1

dy

dx
= −

(
∂f

∂y

)−1(∂f
∂x

)
= −

(
1

2y

)
(2x) = −

x

y
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Differentiating Unconstrained Optimisation Problems

Let f : R× R→ R be twice differentiable and let

y(x) ∈ argminuf(x, u)

then for non-zero Hessian

dy(x)

dx
= −

(
∂2f

∂y2

)−1
∂2f

∂x∂y
.

y u

f(x, u)

Proof. The derivative of f vanishes at (x, y), i.e., y ∈ argminuf(x, u) =⇒ ∂f(x,y)
∂y

= 0.

LHS :
d

dx

∂f(x, y)

∂y
=
∂2f(x, y)

∂x∂y
+
∂2f(x, y)

∂y2
dy

dx

RHS :
d

dx
0 = 0

Equating and rearranging gives the result.
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∂x∂y
+
∂2f(x, y)

∂y2
dy

dx

RHS :
d

dx
0 = 0

Equating and rearranging gives the result.
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Differentiable Optimisation: Big Picture Idea

∇L(x, y) = 0

Rm

y
y + dy

min. f0(x, u)
s.t. u ∈ C(x)

min. f0(x+ dx, u)
s.t. u ∈ C(x+ dx)
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Differentiating Equality Constrained Optimisation Problems
Consider functions f : Rn × Rm → R and h : Rn × Rm → Rq. Let

y(x) ∈ arg minu∈Rm f(x, u)
subject to h(x, u) = 0q

Assume that y(x) exists, that f and h are twice differentiable in the neighbourhood of

(x, y(x)), and that rank(∂h(x,y)
∂y ) = q.

Then for H non-singular

dy(x)

dx
= H−1AT

(
AH−1AT

)−1(
AH−1B − C

)
−H−1B

where

A = ∂h(x,y)
∂y ∈ Rq×m B = ∂2f(x,y)

∂x∂y −
∑q
i=1 νi

∂2hi(x,y)
∂x∂y ∈ Rm×n

C = ∂h(x,y)
∂x ∈ Rq×n H = ∂2f(x,y)

∂y2 −
∑q
i=1 νi

∂2hi(x,y)
∂y2 ∈ Rm×m

and ν ∈ Rq satisfies νTA = ∂f(x,y)
∂y .

derivation
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Dealing with Inequality Constraints

y(x) ∈ arg minu∈Rm f0(x, u)
subject to hi(x, u) = 0, i = 1, . . . , q

fi(x, u) ≤ 0, i = 1, . . . , p.

I Replace inequality constraints with log-barrier
approximation (see last lecture)

I Treat as equality constraints if active (y2 or y3)
and ignore otherwise (y1 or y3)
I may lead to one-sided gradients since λ � 0

fi(x, u) < 0

y1

y2

y3
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Automatic Differentiation for Differentiable Optimisation

I At one extreme we can try back propagate through the optimisation algorithm
(i.e., unrolling the optimisation procedure using automatic differentiation)

I At the other extreme we can use the implicit differentiation result to hand-craft
efficient backward pass code

I There are two options in between:
I Use automatic differentiation to obtain quantities A, B, C and H from software

implementations of the objective and (active) constraint functions
I Implement the optimality condition ∇L = 0 in software and automatically

differentiate that

(in the next lecture we will see examples of the first two)
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Vector-Jacobian Product

For brevity consider the unconstrained optimisation case. The backward pass computes

dL

dx
=

dL

dy

dy

dx

=
(
vT
)︸︷︷︸

R1×m

(
−H−1B

)︸ ︷︷ ︸
Rm×n

evaluation order: −vT
(
H−1B

) (
−vTH−1

)
B

cost†: O(m2n+mn) O(m2 +mn)

† assumes H−1 is already factored (in O(m3) if unstructured, less if structured)
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Summary and Open Questions

I optimisation problems can be embedded inside deep learning models
I back-propagation by either unrolling the optimisation algorithm or implicit

differentiation of the optimality conditions
I the former is easy to implement using automatic differentiation but memory intensive
I the latter requires that solution be strongly convex locally (i.e., invertible H)
I but does not need to know how the problem was solved, nor store intermediate

forward-pass calculations
I computing H−1 may be costly

I active area of research and many open questions
I Are declarative nodes slower?
I Do declarative nodes give theoretical guarantees?
I How best to handle non-smooth or discrete optimization problems?
I What about problems with multiple solutions?
I What if the forward pass solution is suboptimal?
I Can problems become infeasible during learning?
I . . .
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lecture 3
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Lecture 3: Examples and Applications

https://deepdeclarativenetworks.com

ISAAC 2022 66/111

https://deepdeclarativenetworks.com


Common Theme

argmin f2f̃1 f̃3
x z u y

θ φ
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Differentiable Least Squares

Consider our old friend, the least-squares problem,

minimize ‖Ax− b‖22

parameterized by A and b and with closed-form solution x? =
(
ATA

)−1
AT b.

We are interested in derivatives of the solution with respect to the elements of A,

dx?

dAij
=

d

dAij

(
ATA

)−1
AT b ∈ Rn

We could also compute derivatives with respect to elements of b (but not here).
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Least Squares Backward Pass

The backward pass combines dx?

dAij
with vT = dL

dx? via the vector-Jacobian product.

After some algebraic manipulation (see lecture notes) we get(
dL

dA

)T
= wrT − x?(Aw)T ∈ Rm×n

where wT = vT (ATA)−1.

I
(
ATA

)−1
is used in both the forward and backward pass

I factored once to solve for x, e.g., into A = QR

I cache R and re-use when computing gradients
derivation
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Aside: PyTorch and Batched Data

Deep learning frameworks process data in batches, passed as tensors, for stochastic
gradient descent. The first dimension of the tensor is the batch dimension.

Example. For the operation y = Ax+ b we might have

X = {x(1), . . . , x(K)} (input)

Y = {Ax(1) + b, . . . , Ax(K) + b} (output)

Many PyTorch functions are batch-aware, e.g., torch.bmm. For many operations the
einsum function and broadcasting are particularly useful, e.g.,

1 y = torch.einsum("ij,kj ->ki", A, x) + b

computes y = Ax(k) + b on each element k = 1, . . . ,K of the batch.
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PyTorch Implementation: Forward Pass

1 class LeastSquaresFcn(torch.autograd.Function ):

2 """ PyTorch autograd function for least squares."""

3
4 @staticmethod

5 def forward(ctx , A, b):

6 B, M, N = A.shape

7 assert b.shape == (B, M, 1)

8
9 with torch.no_grad ():

10 Q, R = torch.linalg.qr(A, mode=’reduced ’)

11 x = torch.linalg.solve_triangular(R,

12 torch.bmm(b.view(B, 1, M), Q).view(B, N, 1), upper=True)

13
14 # save state for backward pass

15 ctx.save_for_backward(A, b, x, R)

16
17 # return solution

18 return x

A = QR

x = R−1
(
QT b

)
(solves Rx = QT b)
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PyTorch Implementation: Backward Pass

1 @staticmethod

2 def backward(ctx , dx):

3 # check for None tensors

4 if dx is None:

5 return None , None

6
7 # unpack cached tensors

8 A, b, x, R = ctx.saved_tensors

9 B, M, N = A.shape

10
11 dA, db = None , None

12
13 w = torch.linalg.solve_triangular(R,

14 torch.linalg.solve_triangular(torch.transpose(R, 2, 1),

15 dx, upper=False), upper=True)

16 Aw = torch.bmm(A, w)

17
18 if ctx.needs_input_grad [0]:

19 r = b - torch.bmm(A, x)

20 dA = torch.einsum("bi,bj->bij", r.view(B,M), w.view(B,N)) - \

21 torch.einsum("bi,bj ->bij", Aw.view(B,M), x.view(B,N))

22 if ctx.needs_input_grad [1]:

23 db = Aw

24
25 # return gradients

26 return dA, db

w =
(
ATA

)−1
v

= R−1
(
R−T v

)
r = b−Ax(

dL

dA

)T
= wrT − x(Aw)T(

dL

db

)T
= Aw
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Example

Bi-level optimisation problem with
lower-level least squares:

minimize 1
2‖x

? − xtarget‖22
subject to x? = argminx ‖Ax− b‖22

with upper-level variable A ∈ Rm×n.

argmin ‖Ax− b‖22 x?
b

A

d
dx?L

d
dbL

d
dAL
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Profiling

(problems with m = 2n; run for 1000 iterations on CPU using PyTorch 1.13.0)
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Profiling

(problems with m = 2n; run for 1000 iterations on CPU using PyTorch 1.13.0)
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Optimal Transport

One view of optimal transport is as a matching problem

I from an m-by-n cost matrix M

I to an m-by-n probability matrix P ,

often formulated with an entropic regularisation term,

minimize 〈M,P 〉+ 1
γ 〈P, logP 〉

subject to P1 = r
P T1 = c

with 1T r = 1T c = 1.

The row and column sum constraints ensure that P is a
doubly stochastic matrix (lies within the convex hull of
permutation matrices).

1 0 0
0 1 0
0 0 1


0 1 0
1 0 0
0 0 1


0 1 0
0 0 1
1 0 0


0 0 1
0 1 0
1 0 0



0 0 1
1 0 0
0 1 0



1 0 0
0 0 1
0 1 0


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Solving Entropic Optimal Transport

Solution takes the form

Pij = αiβje
−γMij

and can be found using the Sinkhorn algorithm,

I Set Kij = e−γMij and α, β ∈ Rn++

I Iterate until convergence,

α← r �Kβ
β ← c�KTα

where � denotes componentwise division

I Return P = diag(α)Kdiag(β)
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Differentiable Optimal Transport

I Option 1: back-propagate through Sinkhorn algorithm

I Option 2: use the implicit differentiation result
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Differentiable Optimal Transport

I Option 1: back-propagate through Sinkhorn algorithm

I Option 2: use the implicit differentiation result

dL

dM︸︷︷︸
m-by-n

=
dL

dP︸︷︷︸
m-by-n

m-by-n-by-m-by-n︷︸︸︷
dP

dM
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Differentiable Optimal Transport

I Option 1: back-propagate through Sinkhorn algorithm

I Option 2: use the implicit differentiation result

dL

dM︸︷︷︸
1-by-mn

=
dL

dP︸︷︷︸
1-by-mn

mn-by-mn︷︸︸︷
dP

dM
(think of vectorising M and P )
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Optimal Transport Gradient
Derivation of the optimal transport gradient is quite tedious (see notes). The result:

dL

dM
=

dL

dP

(
H−1AT

(
AH−1AT

)−1
AH−1 −H−1

)
B

= γ
dL

dP
diag(P )

[
A1

A2

]T[
Λ11 Λ12

ΛT12 Λ22

][
A1

A2

]
diag(P )− γ dL

dP
diag(P )

where

[
A1

A2

]
=


0Tn 1Tn . . . 0Tn
...

...
. . .

...
0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n


(
AH−1AT

)−1
=

1

γ

[
Λ11 Λ12

ΛT12 Λ22

]
=

1

γ

[
diag(r2:m) P2:m,1:n

PT2:m,1:n diag(c)

]−1

derivation
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Implementation

1 @staticmethod

2 def backward(ctx , dJdP)

3 # unpacked cached tensors

4 M, r, c, P = ctx.saved_tensors

5 batches , m, n = P.shape

6
7 # initialize backward gradients (-v^T H^{-1} B)

8 dLdM = -1.0 * gamma * P * dLdP

9
10 # compute [vHAt1 , vHAt2] = -v^T H^{-1} A^T

11 vHAt1 , vHAt2 = sum(dJdM[:, 1:m, 0:n], dim=2), sum(dJdM , dim =1)

12
13 # compute [v1, v2] = -v^T H^{-1} A^T (A H^{-1] A^T)^{-1}

14 P_over_c = P[:, 1:m, 0:n] / c.view(batches , 1, n)

15 lmd_11 = cholesky(diag_embed(r[:, 1:m]) - einsum("bij ,bkj ->bik", P[:, 1:m, 0:n], P_over_c ))

16 lmd_12 = cholesky_solve(P_over_c , lmd_11)

17 lmd_22 = diag_embed (1.0 / c) + einsum("bji ,bjk ->bik", lmd_12 , P_over_c)

18
19 v1 = cholesky_solve(vHAt1.view(batches , m-1, 1), lmd_11 ).view(batches , m-1) -

20 einsum("bi,bji ->bj", vHAt2 , lmd_12)

21 v2 = einsum("bi,bij ->bj", vHAt2 , lmd_22) - einsum("bi,bij ->bj", vHAt1 , lmd_12)

22
23 # compute v^T H^{-1} A^T (A H^{-1] A^T)^{-1} A H^{-1} B - v^T H^{-1} B

24 dLdM[:, 1:m, 0:n] -= v1.view(batches , m-1, 1) * P[:, 1:m, 0:n]

25 dJdM -= v2.view(batches , 1, n) * P

26
27 # return gradients

28 return dJdM
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Experiment

Bi-level optimisation problem with
lower-level optimal transport problem:

minimize 1
2‖P − P

target‖2F
subject to minimize 〈M,P 〉+ 1

γ 〈P, logP 〉
subject to P1 = 1

n1
P T1 = 1

m1

with upper-level variable M ∈ Rm×n.

argmin 〈M,P 〉+
1
γ
〈P, logP 〉

subject to P1 = 1
n

1
PT 1 = 1

m
1

P
M

d
dP L

d
dML
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Results: Running Time
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Results: Memory Usage
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Application to Blind Perspective-n-Point

find the location where the photograph was taken
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Coupled Problem

I if we knew correspondences then
determining camera pose would
be easy

I if we knew camera pose then
determining correspondences
would be easy
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Blind Perspective-n-Point Network Architecture

perception reasoning

M

argmin 〈M,P 〉+ 1
γ
〈P, logP 〉

subj. to P1 = 1
n

1
PT 1 = 1

m
1

argmin
∑m
i=1

∑n
j=1 Pij ·(

1− fTi
Rpj+t

‖Rpj+t‖

)
f̃2d

f̃3d

{fi}

{pj}

θ2d

θ3d

R, t
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Blind Perspective-n-Point Results
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resources/blind_pnp.mp4


Further Resources

Where to from here?

I Deep declarative networks (http://deepdeclarativenetworks.com)
I lots of small code examples and tutorials

I CVXPyLayers (https://github.com/cvxgrp/cvxpylayers)

I Theseus (https://sites.google.com/view/theseus-ai)

I JAXopt (https://github.com/google/jaxopt)

lecture notes available at https://users.cecs.anu.edu.au/~sgould
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break-out
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Local Optima are Global Optima Proof back

any local minimum of a convex problem is (globally) optimal

Proof. Suppose that x is locally optimal, but there exists a feasible y with lower objective, i.e., f0(y) < f0(x).
Local optimality of x means there must be an R > 0 such that

z feasible and ‖z − x‖2 ≤ R =⇒ f0(z) ≥ f0(x)

Consider z = θy + (1− θ)x with θ = R
2‖y−x‖2

. We have that ‖y − x‖2 > R since we assumed f0(y) < f0(x),

so 0 < θ < 1/2 < 1. Therefore z is a convex combination of two feasible points, hence also feasible. Moreover,
‖z− x‖2 = R/2 (from our choice of θ) and therefore f0(z) ≥ f0(x) by our assumption that x is locally optimal.
But

f0(z) ≤ θf0(y) + (1− θ)f0(x)

< θf0(x) + (1− θ)f0(x)

= f0(x)

where the first inequality is by the definition of convex function and the second inequality is from our assumption
that f0(y) < f0(x). We have a contradiction. Therefore every locally optimal point is globally optimal.
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automatic differentiation
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Toy Example: Babylonian Algorithm back

Consider the following implementation for
a forward operation:

1: procedure FwdFcn(x)
2: y0 ← 1

2
x

3: for t = 1, . . . , T do

4: yt ← 1
2

(
yt−1 + x

yt−1

)
5: end for
6: return yT
7: end procedure

I computes y =
√
x

I derivative computed directly is
dy
dx = 1

2
√
x

= 1
2y

Automatic differentiation algorithmically
generates the backward code:

1: procedure BckFcn(x, yT ,
dL
dyT

)

2:
dL
dx
← 0

3: for t = T, . . . , 1 do

4:
dL
dx
← dL

dx
+ dL

dyt

∂yt/∂x︷ ︸︸ ︷(
1

2yt−1

)
5:

dL
dyt−1

← dL
dyt

(
1
2
− x

2y2t−1

)
︸ ︷︷ ︸
∂yt/∂yt−1

6: end for
7:

dL
dx
← dL

dx
+ dL

dy0

1
2

8: return dL
dx

9: end procedure
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Computation Graph for Babylonian Algorithm back

x

1
2x

1
2

(
·+ x

·
)

· · · 1
2

(
·+ x

·
)

y0 y1 yT−1
yT

yT = f(x, f(x, f(x, . . . f(x, 1
2x)))) with f(x, y) = 1

2

(
y + x

y

)
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duality
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Lagrange Dual Function back

Define Lagrange dual function, g : Rp × Rq → R, as

g(λ, ν) = inf
x∈D
L(x, λ, ν)

= inf
x∈D

(
f0(x) +

p∑
i=1

λifi(x) +

q∑
i=1

νihi(x)

)

I g is concave (always), can be −∞ for some λ, ν

I lower bound property: if λ � 0, then g(λ, ν) ≤ p?
(since for feasible x we have fi(x) ≤ 0 and hi(x) = 0)
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The Dual Problem back

The Lagrange dual problem is to maximise the dual function

maximize g(λ, ν)
subject to λ � 0

I finds the best lower bound on p?, obtained from Lagrange dual function

I a convex optimisation problem with optimal value denoted by d?

I λ, ν are dual feasible if λ � 0 and (λ, ν) ∈ dom (g)

I original problem is known as the primal problem

ISAAC 2022 95/111



Weak and Strong Duality back

weak duality: d? ≤ p?

I always holds (for convex and nonconvex problems)

I can be used to find nontrivial lower bounds for difficult problems

strong duality: d? = p?

I does not hold in general

I (usually) holds for convex problems

I conditions that guarantee strong duality on convex problems are called constraint
qualifications
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differentiating equality constrained problems
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Abridged Derivation back

Forming the Lagrangian at optimal y for fixed x we have

L(x, y, ν) = f(x, y)−
q∑
i=1

νihi(x, y).

Since ∂h(x,y)
∂y

is full rank we have that y is a regular point. Then there exists a ν such that the Lagrangian is

stationary at the point (y, ν). Thus[
∂L
∂Y

T

∂L
∂ν

T

]
=

[(
∂f(x,y)
∂y

−
∑q
i=1 νi

∂hi(x,y)
∂y

)T
h(x, y)

]
= 0m+q

which we can differentiate with respect to x,

d

dx

[
(
∂f(x,y)
∂y

)T −
∑q
i=1 νi(

∂hi(x,y)
∂y

)T

h(x, y)

]
= 0(m+q)×n

to get (after some re-arranging in matrix form) ∂2f(x,y)∂y2
−
∑q
i=1 νi

∂2hi(x,y)

∂y2
−(

∂h(x,y)
∂y

)T

∂h(x,y)
∂y

0q×q

[ dy(x)
dx

dν(x)
dx

]
= −

[
∂2f(x,y)
∂x∂y

−
∑q
i=1 νi

∂2hi(x,y)
∂x∂y

∂
∂x
h(x, y)

]
.
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Abridged Derivation back

Forming the Lagrangian at optimal y for fixed x we have

L(x, y, ν) = f(x, y)−
q∑
i=1

νihi(x, y).

Since ∂h(x,y)
∂y

is full rank we have that y is a regular point. Then there exists a ν such that the Lagrangian is

stationary at the point (y, ν). Thus[
∂L
∂Y

T

∂L
∂ν

T

]
=

[(
∂f(x,y)
∂y

−
∑q
i=1 νi

∂hi(x,y)
∂y

)T
h(x, y)

]
= 0m+q

which we can differentiate with respect to x,

d

dx

[
(
∂f(x,y)
∂y

)T −
∑q
i=1 νi(

∂hi(x,y)
∂y

)T

h(x, y)

]
= 0(m+q)×n

to get (after some re-arranging in matrix form)[
H −AT
A 0q×q

][ dy(x)
dx

dν(x)
dx

]
= −

[
B
C

]
.
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Abridged Derivation (cont.) back

(from last slide:) [
H −AT
A 0q×q

][ dy(x)
dx

dν(x)
dx

]
= −

[
B
C

]
We can solve this system of equations directly or solve by variable elimination. Multiplying out we have

H
dy(x)

dx
−AT

dν(x)

dx
= −B (1)

A
dy(x)

dx
= −C (2)

Substituting dy(x)
dx

from (1) into (2) gives,

A

dy(x)
dx︷ ︸︸ ︷

H−1(AT
dν(x)

dx
−B) = −C

∴
dν(x)

dx
=
(
AH−1AT

)−1 (
AH−1B − C

)
Then substituting back into (1) we get the result

dy(x)

dx
= H−1AT

(
AH−1AT

)−1(
AH−1B − C

)
︸ ︷︷ ︸

dν(x)
dx

−H−1B
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least squares
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Least Squares Backward Pass Derivation back

Differentiating x? with respect to single element Aij , we have

d

dAij
x? =

d

dAij

(
ATA

)−1
AT b

=

(
d

dAij

(
ATA

)−1
)
AT b+

(
ATA

)−1
(

d

dAij
AT b

)
Using the identity d

dzZ
−1 = −Z−1

(
d

dzZ
)
Z−1 we get, for the first term,

d

dAij

(
ATA

)−1
= −

(
ATA

)−1
(

d

dAij

(
ATA

)) (
ATA

)−1

= −
(
ATA

)−1(
ETijA+ATEij

) (
ATA

)−1

where Eij is a matrix with one in the (i, j)-th element and zeros elsewhere.
Furthermore, for the second term,

d

dAij
AT b = ETijb
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Least Squares Backward Pass Derivation (cont.) back

Plugging these back into parent equation we have

d

dAij
x? = −

(
ATA

)−1(
ETijA+ATEij

) (
ATA

)−1
AT b+

(
ATA

)−1
ETijb

= −
(
ATA

)−1(
ETijA+ATEij

)
x? +

(
ATA

)−1
ETijb

= −
(
ATA

)−1 (
ETij(Ax

? − b) +ATEijx
?
)

= −
(
ATA

)−1 (
(aTi x

? − bi)ej + x?jai
)

where ej = (0, 0, . . . , 1, 0, . . .) ∈ Rn is the j-th canonical vector, i.e., vector with a one
in the j-th component and zeros everywhere else, and aTi ∈ R1×n is the i-th row of
matrix A.
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Least Squares Backward Pass Derivation (cont.) back

Let r = b−Ax? and let vT denote the backward coming gradient d
dx?L. Then

dL

dAij
= vT

dx?

dAij

= vT
(
ATA

)−1 (
riej − x?jai

)
= wT

(
riej − x?jai

)
= riwj − wTaix?j

where w =
(
ATA

)−1
v. We can compute the entire matrix of m× n derivatives

efficiently as the sum of outer products(
dL

dA

)T
=

[
dL

dAij

]
i=1,...,m
j=1,...,n

= wrT − x?(Aw)T
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optimal transport
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Objective and Constraint Functions back

f(M,P ) =

m∑
i=1

n∑
j=1

MijPij +
1

γ

m∑
i=1

n∑
j=1

Pij logPij

h(M,P ) =


1Tn 0Tn . . . 0Tn
0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n





P11

P12
...
P1n

P21
...

Pmn


−



r1

r2
...
rm
c1
...
cn


(one constraint is redundant—a linear combination of
the others—and removed to ensure rank(A) = q)
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Deriving the Gradient back

f(M,P ) =
m∑
i=1

n∑
j=1

MijPij +
1

γ

m∑
i=1

n∑
j=1

Pij logPij h(M,P ) =


0Tn 1Tn . . . 0Tn
...

...
. . .

...
0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n

 ~P −

r2
...
rm
c



dP

dM
=
(
H−1AT

(
AH−1AT

)−1
AH−1 −H−1

)
B

A = d
dP h ∈ R(m+n−1)×mn B = d2

dM∂P f ∈ Rmn×nn H = d2

dP 2 f ∈ Rmn×mn

=


0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n


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Deriving the Gradient back
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1

γ
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Pij logPij h(M,P ) =
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0Tn 1Tn . . . 0Tn
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. . .
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In×n In×n . . . In×n

 ~P −
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r2
...
rm
c



dP

dM
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(
H−1AT

(
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)
B

A = d
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=
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...
. . .

...
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
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Deriving the Gradient back

f(M,P ) =
m∑
i=1

n∑
j=1

MijPij +
1

γ

m∑
i=1

n∑
j=1

Pij logPij h(M,P ) =


0Tn 1Tn . . . 0Tn
...

...
. . .

...
0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n

 ~P −

r2
...
rm
c



dP
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(
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(
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)−1
AH−1 −H−1

)
B

A = d
dP h ∈ R(m+n−1)×mn B = d2

dM∂P f ∈ Rmn×nn H = d2

dP 2 f ∈ Rmn×mn

=


0Tn 1Tn . . . 0Tn
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...
. . .

...

0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n


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Deriving the Gradient back

f(M,P ) =
m∑
i=1

n∑
j=1

MijPij +
1

γ

m∑
i=1

n∑
j=1

Pij logPij h(M,P ) =


0Tn 1Tn . . . 0Tn
...

...
. . .

...
0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n

 ~P −

r2
...
rm
c



dP

dM
=
(
H−1AT

(
AH−1AT

)−1
AH−1 −H−1

)
B

A = d
dP h ∈ R(m+n−1)×mn B = d2

dM∂P f ∈ Rmn×nn H = d2

dP 2 f ∈ Rmn×mn

=


0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n

 Bij,kl =

{
1 if ij = kl

0 otherwise
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Deriving the Gradient back

f(M,P ) =
m∑
i=1

n∑
j=1

MijPij +
1

γ
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j=1
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=
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...
. . .

...

0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n

 = Imn×mn
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Deriving the Gradient back
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γ
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...
. . .

...
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In×n In×n . . . In×n

 = Imn×mn Hij,kl =

{
1

γPij
if ij = kl

0 otherwise
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Deriving the Gradient back

f(M,P ) =
m∑
i=1

n∑
j=1

MijPij +
1

γ

m∑
i=1

n∑
j=1

Pij logPij h(M,P ) =


0Tn 1Tn . . . 0Tn
...

...
. . .

...
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 ~P −
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...
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(
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(
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)−1
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)
B

A = d
dP h ∈ R(m+n−1)×mn B = d2

dM∂P f ∈ Rmn×nn H = d2

dP 2 f ∈ Rmn×mn

=


0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n

 = Imn×mn H−1 = γdiag
(
~P
)
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Computing (AH−1AT )−1
back

H−1 = γdiag
(
~P
)

A =


0Tn 1Tn . . . 0Tn
...

...
. . .

...
0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n



dP

dM
=
(
H−1AT

(
AH−1AT

)−1
AH−1 −H−1

)
B

The (k, l)-th entry of AH−1AT for k, l ∈ 1, . . . ,m+ n− 1 is

(AH−1AT )kl =
m∑
i=1

n∑
j=1

Ak,ijAl,ij
Hij,ij

= γ
m∑
i=1

n∑
j=1

Ak,ijAl,ijPij
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Computing (AH−1AT )−1
back

H−1 = γdiag
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)

A =


0Tn 1Tn . . . 0Tn
...

...
. . .

...
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dM
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H−1AT
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)
B

The (k, l)-th entry of AH−1AT for k, l ∈ 1, . . . ,m+ n− 1 is

(AH−1AT )kl =

m∑
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n∑
j=1

Ak,ijAl,ij
Hij,ij

= γ

m∑
i=1

n∑
j=1

Ak,ijAl,ijPij
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Interpreting Ak,ijAl,ij back

k

l


0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn

In×n In×n . . . In×n


k

l


0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn

In×n In×n . . . In×n





↑
m− 1
↓

↑
n
↓

l

k



0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn

In×n In×n . . . In×n


︸ ︷︷ ︸

←− mn −→

k
l



0Tn 1Tn . . . 0Tn
...

...
. . .

...

0Tn 0Tn . . . 1Tn

In×n In×n . . . In×n


︸ ︷︷ ︸

←− mn −→
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Evaluating (AH−1AT )kl = γ
∑m

i=1

∑n
j=1Ak,ijAl,ijPij back

0 ≤ l ≤ m− 1 m ≤ l ≤ m+ n− 1

0 ≤ k ≤ m− 1

{
γ
∑n

j=1 Pk+1,j if k = l

0 otherwise
γPk+1,l−m+1

m ≤ k ≤ m+ n− 1 γPl+1,k−m+1

{
γ
∑m

i=1 Pi,k−m+1 if k = l

0 otherwise
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Computing (AH−1AT )−1
back

H−1 = γdiag
(
~P
)

A =


0Tn 1Tn . . . 0Tn
...

...
. . .

...
0Tn 0Tn . . . 1Tn
In×n In×n . . . In×n



dP

dM
=
(
H−1AT

(
AH−1AT

)−1
AH−1 −H−1

)
B

AH−1AT = γ

[
diag(r2:m) P2:m,1:n

P T2:m,1:n diag(c)

] (
AH−1AT

)−1
=

1

γ

[
Λ11 Λ12

ΛT12 Λ22

]

Λ11 =
(

diag
(
r2:m − P2:m,1:ndiag(c)−1 PT2:m,1:n

))−1

Λ12 = −Λ11P2:m,1:ndiag(c)−1

Λ22 = diag(c)−1 − diag(c)−1 PT2:m,1:nΛ12
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end
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