Differentiable Optimisation in Deep Learning

Stephen Gould stephen.gould@anu.edu.au

Australian National University

15 December, 2022

Discovery of Ceres

Discovery of Ceres

► financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets

- ▶ **financial mathematics:** maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints
- electrical engineering: minimise the size of a transistor in a circuit subject to power and timing constraints

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints
- electrical engineering: minimise the size of a transistor in a circuit subject to power and timing constraints
- ▶ **logistics and planning:** find the cheapest way to distribute goods from suppliers to consumers across a network

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints
- electrical engineering: minimise the size of a transistor in a circuit subject to power and timing constraints
- ▶ **logistics and planning:** find the cheapest way to distribute goods from suppliers to consumers across a network
- statistics/data science: curve fitting and data visualisation

- financial mathematics: maximise profits or minimise costs subject to constraints on resources and budgets
- mechanical engineering: maximise the span of a bridge subject to load constraints
- electrical engineering: minimise the size of a transistor in a circuit subject to power and timing constraints
- ▶ **logistics and planning:** find the cheapest way to distribute goods from suppliers to consumers across a network
- **statistics/data science:** curve fitting and data visualisation
- ► machine learning and deep learning: minimise loss functions with respect to the parameters of our model

Overview

- Introduction to Optimisation
 - Formal definition
 - Least squares
 - Convex sets and functions
 - Convex optimisation problems
 - Lagrangian
 - Optimality conditions
 - Algorithms
- Differentiable Optimisation and Deep Learning
 - ► Machine learning from 10,000ft

- Automatic differentiation
- Forward and backward passes
- Imperative and declarative nodes
- Bi-level optimisation
- Implicit function theorem
- Differentiable optimisation results
- Examples and Applications
 - Least squares
 - Optimal transport
 - ► Blind perspective-n-point

accompanying lecture notes available at https://users.cecs.anu.edu.au/~sgould

lecture 1

Lecture 1: Introduction to Optimisation

Assumed Background

Optimisation Problems

find the assignment to variables that minimises a measure of cost subject to some constraints¹

¹In these lectures we will be concerned with continuous-valued variables

Optimisation Problems

 $\begin{array}{ll} \text{minimize (over } x) & \text{objective}(x) \\ \text{subject to} & \text{constraints}(x) \end{array}$

Optimisation Problems

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,p \\ & h_i(x)=0, \quad i=1,\ldots,q \end{array}$$

- $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ optimisation variables
- $f_0: \mathbb{R}^n \to \mathbb{R}$ objective (or cost or loss) function
- $f_i:\mathbb{R}^n \to \mathbb{R}, \ i=1,\ldots,p$ inequality constraint functions
- $ightharpoonup h_i: \mathbb{R}^n o \mathbb{R}, \ i=1,\ldots,q$ equality constraint functions

Solution and Optimal Value

A point x is **feasible** if $x \in \text{dom}(f_0)$ and it satisfies the constraints.

A **solution**, or optimal point, x^* has the smallest value of f_0 among all feasible x.

¹Warning: notation clash between p and p^* !

Solution and Optimal Value

A point x is **feasible** if $x \in \text{dom}(f_0)$ and it satisfies the constraints.

A **solution**, or optimal point, x^* has the smallest value of f_0 among all feasible x.

The **optimal value** is¹

$$p^* = \inf_{x \in \mathcal{D}} \left\{ f_0(x) \mid f_i(x) \le 0, \quad i = 1, \dots, p \\ h_i(x) = 0, \quad i = 1, \dots, q \right\}.$$

- $\triangleright p^*$ and is equal to $f_0(x^*)$ when x^* exists
- $ightharpoonup p^* = \infty$ if the problem is infeasible (no x satisfies the constraints)
- $p^* = -\infty$ if the problem is unbounded below

¹Warning: notation clash between p and p^* !

Locally Optimal Points

A point x is **locally optimal** if there is an R>0 such that z=x is optimal for

```
minimize (over z) f_0(z) subject to f_i(z) \leq 0 \qquad \qquad i=1,\ldots,p h_i(z) = 0 \qquad \qquad i=1,\ldots,q \|z-x\|_2 \leq R.
```

ISAAC 2022 10/111

Examples (1D)

ISAAC 2022

Examples (2D)

ISAAC 2022

Least Squares

 $\text{minimize} \quad \|Ax-b\|_2^2$

Least Squares

minimize
$$||Ax - b||_2^2$$

- unique solution if A^TA is invertible, $x^* = (A^TA)^{-1}A^Tb$
- \blacktriangleright solution via SVD, $A=U\Sigma V^T$, if $A^T\!A$ not invertible, $x^\star=V\Sigma^{-1}U^Tb$
 - ▶ in fact, $x^* + w$ for any $w \in \mathcal{N}(A)$ also a solution
- ightharpoonup solution via QR factorisation, $x^{\star} = R^{-1}Q^Tb$
- ightharpoonup solved in $O(n^2m)$ time, less if structured
- typically use iterative solver

Example: Polynomial Curve Fitting

fit n-th order polynomial $f_a(x) = \sum_{k=0}^n a_k x^k$ to set of noisy points $\{(x_i, y_i)\}_{i=1}^m$

minimize (over
$$a$$
) $\sum_{i=1}^{m} (f_a(x_i) - y_i)^2$

special case of convex optimisation

ISAAC 2022 14/111

Lines and Line Segments

lacktriangle a **line** through two points x_1 and x_2

$$x = \theta x_1 + (1 - \theta)x_2, \quad (\theta \in \mathbb{R})$$

- ➤ an affine set contains the line through any two distinct points in the set
- ▶ an affine hull the set formed by taking all lines through points in a set

ISAAC 2022 15/111

Lines and Line Segments

lacktriangle a **line** through two points x_1 and x_2

$$x = \theta x_1 + (1 - \theta)x_2, \quad (\theta \in \mathbb{R})$$

- ➤ an affine set contains the line through any two distinct points in the set
- ➤ an **affine hull** the set formed by taking all lines through points in a set

▶ a **line segment** between x_1 and x_2

$$x = \theta x_1 + (1 - \theta)x_2, \quad (0 \le \theta \le 1)$$

- a convex set contains the line segment between any two distinct points in the set
- ► an **convex hull** the set formed by taking all line segments between points in a set

ISAAC 2022 15/111

Convex Sets

$$x_1, x_2 \in \text{convex set } C \implies \theta x_1 + (1-\theta)x_2 \in C \text{ for all } 0 \leq \theta \leq 1$$

common examples in machine learning:

- ▶ nonnegative orthant, $\mathbb{R}^n_+ = \{x \mid x_i \geq 0, i = 1, \dots, n\}$
- **p** positive semindefinite matrices, $\mathbb{S}^n_+ = \{X \mid z^T X z \geq 0, z \in \mathbb{R}^n\}$

ISAAC 2022 16/111

More Examples

ISAAC 2022 17/111

Convex Functions

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if $\mathbf{dom}(f)$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \mathbf{dom}(f), 0 \le \theta \le 1$.

ightharpoonup f is convex if -f is convex

ISAAC 2022 18/111

Examples

ISAAC 2022

Weighted Sum and Pointwise Maximum Preserve Convexity

ISAAC 2022 20/111

Convex, Strictly Convex, and Strongly Convex

- ▶ f_1 is smooth and convex: $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)y$
- ▶ f_2 is non-differentiable and convex: $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)y$
- ▶ f_3 is strictly convex: $f(\theta x + (1 \theta)y) < \theta f(x) + (1 \theta)y$
- ▶ f_4 is strongly convex: $\exists m \text{ s.t. } m(y-x)^2 \leq f(y) f(x)$

ISAAC 2022 21/111

Epigraph

The epigraph of function $f: \mathbb{R}^n \to \mathbb{R}$ is the set

$$\operatorname{epi}(f) = \{(x,t) \in \mathbb{R}^{n+1} \mid x \in \operatorname{dom}\left(f\right), f(x) \leq t\}.$$

ightharpoonup f is a convex function if and only if epi(f) is a convex set

ISAAC 2022 22/111

First-order Condition

differentiable f with convex domain is convex iff

$$f(y) \geq f(x) + \nabla f(x)^T (y-x) \quad \text{for all } x,y \in \operatorname{dom}\left(f\right)$$

 \triangleright first-order approximation of (convex) f is a global under estimator

Second-order Condition

twice differentiable f with convex domain is convex iff

$$\nabla^2 f(x) \succeq 0$$
 for all $x \in \mathbf{dom}(f)$

- ▶ if $\nabla^2 f(x) \succ 0$ for all $x \in \mathbf{dom}(f)$, then f is strictly convex
- ▶ if $\nabla^2 f(x) \succeq mI$ for some m > 0 and all $x \in \mathbf{dom}(f)$, then f is strongly convex

strongly convex functions have a unique minimum

ISAAC 2022 24/111

Worked Example: log-sum-exp is Convex

$$f(x) = \log \sum_{k=1}^{n} \exp x_k$$

$$f(x) = \log \sum_{k=1}^{n} \exp x_k$$

Proof. Start by computing the gradient and Hessian,

$$\frac{\partial f(x)}{\partial x_i} = \frac{\exp x_i}{\sum_{k=1}^n \exp x_k} \qquad \qquad \text{(derivative of } \log(z), \ z'/z)$$

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{\left(\sum_{k=1}^n \exp x_k\right) \left[\!\!\left[i=j\right]\!\!\right] \exp x_i - \exp x_i \exp x_j}{\left(\sum_{k=1}^n \exp x_k\right)^2} \qquad \qquad \text{(quotient rule, } \frac{v \cdot \mathrm{d} u - u \cdot \mathrm{d} v}{v^2})$$

$$f(x) = \log \sum_{k=1}^{n} \exp x_k$$

Proof. Start by computing the gradient and Hessian,

$$\frac{\partial f(x)}{\partial x_i} = \frac{z_i}{\mathbf{1}^T z} \qquad (z_k = \exp x_k)$$

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{(\mathbf{1}^T z) \left[i = j \right] z_i - z_i z_j}{(\mathbf{1}^T z)^2}$$

$$f(x) = \log \sum_{k=1}^{n} \exp x_k$$

Proof. Start by computing the gradient and Hessian,

$$\nabla f(x) = \frac{1}{\mathbf{1}^T z} z \qquad (z_k = \exp x_k)$$

$$\nabla^2 f(x) = \frac{1}{(\mathbf{1}^T z)^2} \left((\mathbf{1}^T z) \operatorname{diag}(z) - z z^T \right)$$

$$f(x) = \log \sum_{k=1}^{n} \exp x_k$$

Proof. Start by computing the gradient and Hessian,

$$\nabla^2 f(x) = \frac{1}{\left(\mathbf{1}^T z\right)^2} \left(\left(\mathbf{1}^T z\right) \operatorname{diag}(z) - z z^T \right) \qquad (z_k = \exp x_k)$$

To show that $\nabla^2 f(x) \succeq 0$, we must verify that $v^T \nabla^2 f(x) v \geq 0$ for all v.

$$f(x) = \log \sum_{k=1}^{n} \exp x_k$$

Proof. Start by computing the gradient and Hessian,

$$\nabla^2 f(x) = \frac{1}{(\mathbf{1}^T z)^2} \left((\mathbf{1}^T z) \operatorname{diag}(z) - z z^T \right) \qquad (z_k = \exp x_k)$$

To show that $\nabla^2 f(x) \succeq 0$, we must verify that $v^T \nabla^2 f(x) v \geq 0$ for all v.

$$\begin{split} \boldsymbol{v}^T \nabla^2 f(\boldsymbol{x}) \boldsymbol{v} &= \frac{1}{\left(\mathbf{1}^T \boldsymbol{z}\right)^2} \, \boldsymbol{v}^T \Big((\mathbf{1}^T \boldsymbol{z}) \mathrm{diag}(\boldsymbol{z}) - \boldsymbol{z} \boldsymbol{z}^T \Big) \, \boldsymbol{v} \\ &= \frac{1}{\left(\mathbf{1}^T \boldsymbol{z}\right)^2} \, \Big((\mathbf{1}^T \boldsymbol{z}) \boldsymbol{v}^T \mathrm{diag}(\boldsymbol{z}) \boldsymbol{v} - \boldsymbol{v}^T \boldsymbol{z} \boldsymbol{z}^T \boldsymbol{v} \Big) \end{split}$$

$$f(x) = \log \sum_{k=1}^{n} \exp x_k$$

Proof. Start by computing the gradient and Hessian,

$$\nabla^2 f(x) = \frac{1}{\left(\mathbf{1}^T z\right)^2} \left((\mathbf{1}^T z) \operatorname{diag}(z) - z z^T \right) \qquad (z_k = \exp x_k)$$

$$\begin{split} v^T \nabla^2 f(x) v &= \frac{1}{\left(\mathbf{1}^T z\right)^2} \, v^T \Big((\mathbf{1}^T z) \mathrm{diag}(z) - z z^T \Big) \, v \\ &= \frac{1}{\left(\mathbf{1}^T z\right)^2} \, \Big((\mathbf{1}^T z) v^T \mathrm{diag}(z) v - v^T z z^T v \Big) \end{split}$$

Therefore we need to show that $(\mathbf{1}^T z)v^T \operatorname{diag}(z)v \geq (v^T z)^2$ for all v.

$$f(x) = \log \sum_{k=1}^{n} \exp x_k$$

Proof. Start by computing the gradient and Hessian,

$$\nabla^2 f(x) = \frac{1}{\left(\mathbf{1}^T z\right)^2} \left(\left(\mathbf{1}^T z\right) \mathrm{diag}(z) - z z^T \right) \qquad (z_k = \exp x_k)$$

Therefore we need to show that $(\mathbf{1}^T z)v^T \operatorname{diag}(z)v \geq (v^T z)^2$ for all v.

$$f(x) = \log \sum_{k=1}^{n} \exp x_k$$

Proof. Start by computing the gradient and Hessian,

$$\nabla^2 f(x) = \frac{1}{\left(\mathbf{1}^T z\right)^2} \left((\mathbf{1}^T z) \operatorname{diag}(z) - z z^T \right) \qquad (z_k = \exp x_k)$$

Therefore we need to show that $(\mathbf{1}^T z)v^T \operatorname{diag}(z)v \geq (v^T z)^2$ for all v. That is, we need to show

$$\left(\sum_{k=1}^{n} z_k\right) \left(\sum_{k=1}^{n} z_k v_k^2\right) \ge \left(\sum_{k=1}^{n} v_k z_k\right)^2$$

$$f(x) = \log \sum_{k=1}^{n} \exp x_k$$

Proof. Start by computing the gradient and Hessian,

$$\nabla^2 f(x) = \frac{1}{\left(\mathbf{1}^T z\right)^2} \left(\left(\mathbf{1}^T z\right) \mathbf{diag}(z) - z z^T \right) \qquad (z_k = \exp x_k)$$

Therefore we need to show that $(\mathbf{1}^T z)v^T \operatorname{diag}(z)v \geq (v^T z)^2$ for all v. That is, we need to show

$$\left(\sum_{k=1}^{n} z_k\right) \left(\sum_{k=1}^{n} z_k v_k^2\right) \ge \left(\sum_{k=1}^{n} v_k z_k\right)^2$$

25/111

which is true by the Cauchy-Schwarz inequality, $\|a\|_2^2 \|b\|_2^2 \ge (a^T b)^2$, with $a = (\sqrt{z_1}, \dots, \sqrt{z_n})$ and $b = (\sqrt{z_1}v_1, \dots, \sqrt{z_n}v_n)$.

ISAAC 2022

Convex Optimisation

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, p \\ & a_i^T x = b_i, \quad i = 1, \dots, q \end{array}$$

- $ightharpoonup f_0, f_1, \ldots, f_p$ are convex
- $ightharpoonup h_i(x) riangleq a_i^T x b_i$ are affine, often written as Ax = b

minimise a convex objective over a convex feasible set

Local Optima are Global Optima

any local minimum of a convex problem is (globally) optimal

Local Optima are Global Optima

any local minimum of a convex problem is (globally) optimal

Proof Sketch.

- towards contradiction, suppose x is locally optimal, but there exists a feasible y with lower objective
- since x is locally optimally there exists a radius R such that no other point within R of x has lower objective
- (so y must be further than R from x)
- lacktriangle pick a point z on the line segment between x and y and within R of x
- lacktriangle so z must be feasible and have objective no lower than x
- but, by the basic inequality of convex functions,

$$f_0(\theta x + (1 - \theta)y) \le \theta f_0(x) + (1 - \theta)f_0(y),$$

the objective value at z must be between that at x and y, i.e., lower than $f_0(x)$

we have a contradiction

Optimality Criterion for Differentiable f_0

x is optimal if and only if it is feasible and $\nabla f_0(x)^T(y-x) \geq 0$ for all feasible y

if nonzero.

- $\triangleright \nabla f_0(x)$ defines a supporting hyperplane to feasible set \mathcal{X} at x
- $ightharpoonup f_0$ cannot be improved by moving in a direction where x stays feasible

Lagrangian

Standard form problem (not necessarily convex),

```
\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,p \\ & h_i(x)=0, \quad i=1,\ldots,q \end{array}
```

variable $x \in \mathbb{R}^n$, domain \mathcal{D} , optimal value p^*

Lagrangian

Standard form problem (not necessarily convex),

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\dots,p \\ & h_i(x) = 0, \quad i=1,\dots,q \end{array}$$

variable $x \in \mathbb{R}^n$, domain \mathcal{D} , optimal value p^{\star}

Lagrangian: $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}$, with $\operatorname{dom}(\mathcal{L}) = \mathcal{D} \times \mathbb{R}^p \times \mathbb{R}^q$,

$$\mathcal{L}(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^p \lambda_i f_i(x) + \sum_{i=1}^q \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- \triangleright λ_i is the Lagrange multiplier (dual variable) associated with $f_i(x) \leq 0$
- \triangleright ν_i is the Lagrange multiplier (dual variable) associated with $h_i(x)=0$

→ duality

Karush-Kuhn-Tucker (KKT) Conditions

The following four conditions are called KKT conditions (for differentiable f_i , h_i):

- primal feasible: $f_i(x) \leq 0, \quad i = 1, \dots, p$ $h_i(x) = 0, \quad i = 1, \dots, q$
- ▶ dual feasible: $\lambda \succeq 0$
- ightharpoonup complementary slackness: $\lambda_i f_i(x) = 0$ for $i = 1, \dots, p$
- ightharpoonup gradient of Lagrangian with respect to x vanishes,

$$\nabla f_0(x) + \sum_{i=1}^p \lambda_i \nabla f_i(x) + \sum_{i=1}^q \nu_i \nabla h_i(x) = 0$$

Generalizes optimality condition $\nabla f_0(x) = 0$ for unconstrained problems.

Gradient Descent

minimize
$$f_0(x)$$

- $ightharpoonup f_0$ convex, twice continuously differentiable
- we assume optimal value $p^* = \inf_x f_0(x)$ is attained (and finite)

Gradient Descent

minimize
$$f_0(x)$$

- $ightharpoonup f_0$ convex, twice continuously differentiable
- we assume optimal value $p^* = \inf_x f_0(x)$ is attained (and finite)

Gradient descent:

- 1. **given** a starting point $x \in \text{dom}(f_0)$
- 2. **repeat** $x := x t\nabla f_0(x)$. (choose step size, t)
- 3. **until** stopping criterion satisfied, e.g., $\|\nabla f_0(x)\|_2 \leq \epsilon$.
- ightharpoonup variants of gradient descent define step direction Δx different to $-\nabla f_0(x)$

Choosing Step Size

fixed schedule: set t to a small constant or decay with each iteration

exact line search: $t = \operatorname{argmin}_{t>0} f_0(x + t\Delta x)$

backtracking line search (with parameters $\alpha \in (0, 1/2), \beta \in (0, 1)$)

ightharpoonup starting at t=1 with search direction Δx , repeat $t:=\beta t$ until

$$f_0(x + t\Delta x) < f_0(x) + \alpha t \nabla f_0(x)^T \Delta x$$

Choosing Step Size

fixed schedule: set t to a small constant or decay with each iteration

exact line search: $t = \operatorname{argmin}_{t>0} f_0(x + t\Delta x)$

backtracking line search (with parameters $\alpha \in (0, 1/2), \beta \in (0, 1)$)

ightharpoonup starting at t=1 with search direction Δx , repeat $t:=\beta t$ until

$$f_0(x + t\Delta x) < f_0(x) + \alpha t \nabla f_0(x)^T \Delta x$$

Example

Gradient descent (even with exact line search) can be slow. E.g.,

$$f_0(x) = x_1^2 + \gamma x_2^2, \quad \gamma \gg 1$$

Newton's Method

$$\Delta x_{\mathsf{nt}} = -\nabla^2 f_0(x)^{-1} \nabla f_0(x)$$

 $ightharpoonup x + \Delta x_{
m nt}$ minimizes the second-order approximation of f_0 at x,

$$\hat{f}(x+v) = f_0(x) + \nabla f_0(x)^T v + \frac{1}{2} v^T \nabla^2 f_0(x) v$$

Newton's method:

- 1. **given** a starting point $x \in \text{dom}(f_0)$.
- 2. **repeat** $x := x + t\Delta x_{nt}$. (choose step size, t)
- 3. until stopping criterion satisfied.

Equality Constrained Methods

minimize
$$f_0(x)$$

subject to $Ax = b$

- $ightharpoonup f_0$ convex, twice continuously differentiable
- $lacksquare A \in \mathbb{R}^{q imes n}$ with $\mathrm{rank}(A) = q$ (and $b \in \mathrm{range}(A)$)
- ightharpoonup we assume p^* is finite and attained

Equality Constrained Methods

minimize
$$f_0(x)$$

subject to $Ax = b$

- $ightharpoonup f_0$ convex, twice continuously differentiable
- lacksquare $A \in \mathbb{R}^{q \times n}$ with $\operatorname{rank}(A) = q$ (and $b \in \operatorname{range}(A)$)
- \triangleright we assume p^* is finite and attained

optimality condition: x^* is optimal iff there exists a ν^* such that

$$\nabla f_0(x^*) + A^T \nu^* = 0, \quad Ax^* = b$$

Newton Step for Equality Constrained Optimisation

Newton step $\Delta x_{\rm nt}$ of f_0 at feasible x is given by solution v of

$$\begin{bmatrix} \nabla^2 f_0(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f_0(x) \\ 0 \end{bmatrix}$$

- second row ensures that x iterates stay feasible
- solves quadratic approximation of optimisation problem

minimize
$$\hat{f}(x+v) \triangleq f_0(x) + \nabla f_0(x)^T v + \frac{1}{2} v^T \nabla^2 f_0(x) v$$
 subject to
$$A(x+v) = b$$

solves linear approximation of optimality condition

For inequality constrained problems,

```
\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\dots,p \\ & Ax = b \end{array}
```

For inequality constrained problems,

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\dots,p \\ & Ax = b \end{array}$$

we reformulate using an indicator function,

minimize
$$f_0(x) + \sum_{i=1}^p I_{\mathbb{R}_-}(f_i(x))$$

subject to $Ax = b$

where $I_{\mathbb{R}_{-}}(u)=0$ if $u\leq 0$ and $I_{\mathbb{R}_{-}}(u)=\infty$ otherwise,

For inequality constrained problems,

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\dots,p \\ & Ax = b \end{array}$$

we reformulate using an indicator function,

minimize
$$f_0(x) + \sum_{i=1}^p I_{\mathbb{R}_-}(f_i(x))$$

subject to $Ax = b$

where $I_{\mathbb{R}_{-}}(u)=0$ if $u\leq 0$ and $I_{\mathbb{R}_{-}}(u)=\infty$ otherwise, which we approximate with a logarithmic barrier

minimize
$$f_0(x) - \frac{1}{t} \sum_{i=1}^p \log(-f_i(x))$$
 subject to $Ax = b$

to get an equality constrained approximation.

For inequality constrained problems,

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\dots,p \\ & Ax = b \end{array}$$

we reformulate using an indicator function,

$$\begin{array}{ll} \text{minimize} & f_0(x) + \sum_{i=1}^p I_{\mathbb{R}_-}(f_i(x)) \\ \text{subject to} & Ax = b \end{array}$$

where $I_{\mathbb{R}_{-}}(u)=0$ if $u\leq 0$ and $I_{\mathbb{R}_{-}}(u)=\infty$ otherwise, which we approximate with a logarithmic barrier

$$\begin{array}{ll} \text{minimize} & f_0(x) - \frac{1}{t} \sum_{i=1}^p \log(-f_i(x)) \\ \text{subject to} & Ax = b \end{array}$$

to get an equality constrained approximation.

Algorithms for Large Scale Problems

- ▶ for large scale problems, e.g., deep learning, Newton's method is too expensive
- even computing the true gradient may be too expensive
- lacktriangle many loss functions in machine learning decompose over train data $\{(x_i,y_i)\}_{i=1}^m$,

$$L(\theta) = \sum_{i=1}^{m} \ell(f(x_i; \theta), y_i)$$

▶ SGD approximates the gradient on mini-batches $\mathcal{I} \subseteq \{1, \dots, m\}$

$$\widehat{\nabla_{\theta}L} = \sum_{i \in \mathcal{I}} \nabla_{\theta} \ell(f(x_i; \theta), y_i)$$

- \blacktriangleright under mild assumptions $E\left[\widehat{\nabla_{\theta}L}\right] = \nabla_{\theta}L$
- ▶ for constrained problems can project back onto feasible set

Many, many other schemes and variations!

lecture 2

Lecture 2: Differentiable Optimisation and Deep Learning

ISAAC 2022 40/111

Machine Learning from 10,000ft

ISAAC 2022

Machine Learning from 10,000ft

minimize (over θ) $\sum_{(x,y)\sim\mathcal{X}\times\mathcal{Y}} L(f_{\theta}(x),y)$

- ightharpoonup loss L what to do
- ightharpoonup model f_{θ} how to do it
- optimised by gradient descent

ISAAC 2022 41/111

Deep Learning as an End-to-end Computation Graph

Deep learning does this by defining a function (equiv. computation graph) composed of many simple parametrized functions (equiv. computation nodes).

$$y = f_8(f_4(f_3(f_2(f_1(x)))), f_7(f_6(f_5(f_1(x)))))$$

(parameters θ_i omitted for brevity)

Backward Pass

Example 1.

$$\frac{\partial L}{\partial \theta_7} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial \theta_7}$$

Backward Pass

Example 2.

$$\frac{\partial L}{\partial \theta_1} = \frac{\partial L}{\partial y} \left(\frac{\partial y}{\partial z_4} \frac{\partial z_4}{\partial z_3} \frac{\partial z_3}{\partial z_2} \frac{\partial z_2}{\partial z_1} + \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_6} \frac{\partial z_6}{\partial z_5} \frac{\partial z_5}{\partial z_4} \right) \frac{\partial z_1}{\partial \theta_1}$$

ISAAC 2022 44/111

Deep Learning Node

Forward pass: compute output y as a function of the input x (and model parameters θ).

Backward pass: compute the derivative of the loss with respect to the input x (and model parameters θ) given the derivative of the loss with respect to the output y.

Notational Aside (Often Sloppy)

For scalar-valued functions:

total derivative: $\frac{\mathrm{d}f}{\mathrm{d}x}$

partial derivative: $\frac{\partial f}{\partial x}$

ISAAC 2022 46/111

Notational Aside (Often Sloppy)

For scalar-valued functions:

total derivative: $\frac{\mathrm{d}f}{\mathrm{d}x}$

partial derivative: $\frac{\partial f}{\partial x}$

For multi-dimensional scalar-valued functions, $f: \mathbb{R}^n \to \mathbb{R}$:

$$\nabla f(x) = \left(\frac{\mathrm{d}f}{\mathrm{d}x_1}, \dots, \frac{\mathrm{d}f}{\mathrm{d}x_n}\right) \in \mathbb{R}^n$$

46/111 ISAAC 2022

Notational Aside (Often Sloppy)

For scalar-valued functions:

total derivative: $\frac{\mathrm{d}f}{\mathrm{d}x}$

partial derivative: $\frac{\partial f}{\partial x}$

For multi-dimensional scalar-valued functions, $f: \mathbb{R}^n \to \mathbb{R}$:

$$\nabla f(x) = \left(\frac{\mathrm{d}f}{\mathrm{d}x_1}, \dots, \frac{\mathrm{d}f}{\mathrm{d}x_n}\right) \in \mathbb{R}^n$$

For multi-dimensional vector-valued functions, $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \begin{bmatrix} \frac{\mathrm{d}f_1}{\mathrm{d}x_1} & \cdots & \frac{\mathrm{d}f_1}{\mathrm{d}x_n} \\ \vdots & \ddots & \vdots \\ \frac{\mathrm{d}f_m}{\mathrm{d}x_n} & \cdots & \frac{\mathrm{d}f_m}{\mathrm{d}x_n} \end{bmatrix} \in \mathbb{R}^{m \times n} \qquad (\frac{\partial}{\partial x}f(x,y) \text{ for partial})$$

Sometimes D and D_X for $\frac{d}{dx}$ and $\frac{\partial}{\partial x}$, respectively.

Automatic Differentiation (AD)

- algorithmic procedure that produces code for computing exact derivatives
- assumes numeric computations are composed of a small set of elementary operations that we know how to differentiate
 - ▶ arithmetic, exp, log, trigonometric
- workhorse of modern machine learning that greatly reduces development effort

ISAAC 2022 47/111

Automatic Differentiation (AD)

- algorithmic procedure that produces code for computing exact derivatives
- assumes numeric computations are composed of a small set of elementary operations that we know how to differentiate
 - ▶ arithmetic, exp, log, trigonometric
- workhorse of modern machine learning that greatly reduces development effort
- two flavours
 - (forward mode) propagates results on the first-order approximation $x+\Delta x$ forward through the computations
 - (reverse mode) builds a program to compute derivative based on the chain rule re-using computation where applicable

$$\frac{\mathrm{d}L}{\mathrm{d}x} = \frac{\mathrm{d}L}{\mathrm{d}y} \frac{\mathrm{d}y}{\mathrm{d}x}$$

▶ different deep learning frameworks use slightly different approaches (explicit graph construction versus implicit operator tracking)

ISAAC 2022 47/111

Computing $1/\sqrt{x}$

```
float Q_rsqrt( float number )
     long i;
     float x2, y;
    const float threehalfs = 1.5F;
     x2 = number * 0.5F;
     v = number:
     i = 0x5f3759df - (i >> 1); // what the f**k?
10
11
     v = * (float *) &i:
    y = y * (threehalfs - (x2 * y * y)); // 1st iter
     // y = y * (threehalfs - (x2 * y * y )); // 2nd iter, can be removed
13
14
15
     return v:
16
```

ISAAC 2022 48/111

Separate Forward and Backward Operations

ISAAC 2022 49/111

Imperative vs Declarative Nodes

- imperative node
- input-output relationship explicit,

$$y = \tilde{f}(x;\theta)$$

Imperative vs Declarative Nodes

- ► imperative node
- input-output relationship explicit,

$$y = \tilde{f}(x;\theta)$$

- declarative node
- input-output relationship specified as solution to an optimisation problem,

$$y \in \operatorname*{arg\,min}_{u \in C(x)} f(x, u; \theta)$$

Imperative vs Declarative Nodes

- imperative node
- input-output relationship explicit,

$$y = \tilde{f}(x; \theta)$$

- declarative node
- input-output relationship specified as solution to an optimisation problem,

$$y \in \operatorname*{arg\,min}_{u \in C(x)} f(x, u; \theta)$$

can co-exist in the same computation graph (network)

Average Pooling Example

$$\{x_i \in \mathbb{R}^m \mid i = 1, \dots, n\} \to \mathbb{R}^m$$

imperative specification

$$y = \frac{1}{n} \sum_{i=1}^{n} x_i$$

declarative specification

$$y = \operatorname{argmin}_{u \in \mathbb{R}^m} \sum_{i=1}^n \|u - x_i\|^2$$

Average Pooling Example

$$\{x_i \in \mathbb{R}^m \mid i = 1, \dots, n\} \to \mathbb{R}^m$$

imperative specification

$$y = \frac{1}{n} \sum_{i=1}^{n} x_i$$

declarative specification

$$y = \operatorname{argmin}_{u \in \mathbb{R}^m} \sum_{i=1}^n \|u - x_i\|^2$$

can be easily varied, e.g., made robust

$$y = \operatorname{argmin}_{u \in \mathbb{R}^m} \sum_{i=1}^n \phi(u - x_i)$$

for some penalty function ϕ

ISAAC 2022

Average Pooling Example

$$\{x_i \in \mathbb{R}^m \mid i = 1, \dots, n\} \to \mathbb{R}^m$$

declarative specification

$$y = \operatorname{argmin}_{u \in \mathbb{R}^m} \sum_{i=1}^n \|u - x_i\|^2$$

can be easily varied, e.g., made robust

$$y = \operatorname{argmin}_{u \in \mathbb{R}^m} \sum_{i=1}^n \phi(u - x_i)$$

for some penalty function ϕ

Bi-level Optimisation: Stackelberg Games

Consider two players, a leader and a follower

- ▶ the market dictates the price it's willing to pay for some goods based on supply, i.e., quantity produced by both players, $P(q_1 + q_2)$
- ightharpoonup each player has a cost structure associated with producing goods, $C_i(q_i)$ and wants to maximize profits, $q_i P(q_1 + q_2) C_i(q_i)$
- ▶ the leader picks a quantity of goods to produce knowing that the follower will respond optimally. In other words, the leader solves

$$\begin{array}{ll} \text{maximize (over } q_1) & q_1P(q_1+q_2)-C_1(q_1) \\ \text{subject to} & q_2 \in \operatorname{argmax}_q qP(q_1+q)-C_2(q) \end{array}$$

```
\label{eq:local_equation} \begin{array}{ll} \text{minimize (over $x$)} & L(x,y) \\ \text{subject to} & y \in \operatorname{argmin}_{u \in C(x)} f(x,u) \end{array}
```

```
 \begin{array}{ll} \text{minimize (over $x$)} & L(x,y) \\ \text{subject to} & y \in \operatorname{argmin}_{u \in C(x)} f(x,u) \end{array}
```

ightharpoonup closed-form solution: substitute for y in upper-level problem (if possible)

```
minimize (over x) L(x, y(x))
```

```
 \begin{array}{ll} \text{minimize (over } x) & L(x,y) \\ \text{subject to} & y \in \operatorname{argmin}_{u \in C(x)} f(x,u) \end{array}
```

closed-form solution: substitute for y in upper-level problem (if possible)

```
minimize (over x) L(x, y(x))
```

 convex lower-level problem: replace lower-level problem with sufficient optimality conditions (e.g., KKT conditions),

```
\begin{array}{ll} \mbox{minimize (over } x,y) & L(x,y) \\ \mbox{subject to} & h(x,y) = 0 \end{array}
```

$$\begin{array}{ll} \text{minimize (over x)} & L(x,y) \\ \text{subject to} & y \in \operatorname{argmin}_{u \in C(x)} f(x,u) \end{array}$$

 \triangleright closed-form solution: substitute for y in upper-level problem (if possible)

minimize (over
$$x$$
) $L(x, y(x))$

 convex lower-level problem: replace lower-level problem with sufficient optimality conditions (e.g., KKT conditions),

$$\begin{array}{ll} \text{minimize (over } x,y) & L(x,y) \\ \text{subject to} & h(x,y)=0 \end{array}$$

pradient descent: compute gradient of lower-level solution y with respect to x, and use the chain rule to get the total derivative,

$$x \leftarrow x - \eta \left(\frac{\partial L(x, y)}{\partial x} + \frac{\partial L(x, y)}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}x} \right)$$

$$\begin{array}{ll} \text{minimize (over x)} & L(x,y) \\ \text{subject to} & y \in \operatorname{argmin}_{u \in C(x)} f(x,u) \end{array}$$

 \triangleright closed-form solution: substitute for y in upper-level problem (if possible)

minimize (over
$$x$$
) $L(x, y(x))$

 convex lower-level problem: replace lower-level problem with sufficient optimality conditions (e.g., KKT conditions),

$$\begin{array}{ll} \text{minimize (over } x,y) & L(x,y) \\ \text{subject to} & h(x,y) = 0 \end{array}$$

gradient descent: compute gradient of lower-level solution y with respect to x, and use the chain rule to get the total derivative,

$$x \leftarrow x - \eta \left(\frac{\partial L(x, y)}{\partial x} + \frac{\partial L(x, y)}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}x} \right)$$

by back-propagating through optimisation procedure or implicit differentiation

Parametrized Optimisation

In the context of deep learning the upper-level Stackelberg problem is the **learning problem** and the lower-level Stackelberg problem is the **inference problem**.

A declarative node defines a family of problems indexed by continuous variable $x \in \mathbb{R}^n$,

$$\left\{\begin{array}{ll} \text{minimize (over } u \in \mathbb{R}^m) & f_0(x,u) \\ \text{subject to} & f_i(x,u) \leq 0, \quad i=1,\dots,p \\ & h_i(x,u) = 0, \quad i=1,\dots,q \end{array}\right\}_{x \in \mathbb{R}^n}$$

Parametrized Optimisation Example

Parametrized Optimisation Example

Main question: How do we compute $\frac{d}{dx} \operatorname{argmin}_u f(x, u)$?

Dini's Implicit Function Theorem

Consider the solution mapping associated with the equation f(x, u) = 0,

$$Y: x \mapsto \{u \in \mathbb{R}^m \mid f(x, u) = 0\} \text{ for } x \in \mathbb{R}^n.$$

We are interested in how elements of Y(x) change as a function of x.

Dini's Implicit Function Theorem

Consider the solution mapping associated with the equation f(x, u) = 0,

$$Y: x \mapsto \{u \in \mathbb{R}^m \mid f(x, u) = 0\} \text{ for } x \in \mathbb{R}^n.$$

We are interested in how elements of Y(x) change as a function of x.

Theorem

Let $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be differentiable in a neighbourhood of (x,u) and such that f(x,u)=0, and let $\frac{\partial}{\partial u}f(x,u)$ be nonsingular. Then the solution mapping Y has a single-valued localization y around x for u which is differentiable in a neighbourhood $\mathcal X$ of x with Jacobian satisfying

$$\frac{dy(x)}{dx} = -\left(\frac{\partial f(x,y(x))}{\partial y}\right)^{-1} \frac{\partial f(x,y(x))}{\partial x}$$

for every $x \in \mathcal{X}$.

Unit Circle Example

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mp 2x}{2\sqrt{1-x^2}} = -\frac{x}{3}$$

$$f(x,y) = x^2 + y^2 - 1$$

$$\frac{dy}{dx} = -\left(\frac{\partial f}{\partial y}\right)^{-1} \left(\frac{\partial f}{\partial x}\right)$$

$$= -\left(\frac{1}{2y}\right)(2x) = -\frac{x}{y}$$

Differentiating Unconstrained Optimisation Problems

Let $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be twice differentiable and let

$$y(x) \in \operatorname{argmin}_u f(x, u)$$

then for non-zero Hessian

$$\frac{\mathrm{d}y(x)}{\mathrm{d}x} = -\left(\frac{\partial^2 f}{\partial y^2}\right)^{-1} \frac{\partial^2 f}{\partial x \partial y}.$$

Differentiating Unconstrained Optimisation Problems

Let $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be twice differentiable and let

$$y(x) \in \operatorname{argmin}_u f(x,u)$$

then for non-zero Hessian

$$\frac{\mathrm{d}y(x)}{\mathrm{d}x} = -\left(\frac{\partial^2 f}{\partial y^2}\right)^{-1} \frac{\partial^2 f}{\partial x \partial y}.$$

Proof. The derivative of f vanishes at (x,y), i.e., $y \in \operatorname{argmin}_u f(x,u) \implies \frac{\partial f(x,y)}{\partial y} = 0$.

$$\begin{array}{ll} \mathsf{LHS}: & \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial f(x,y)}{\partial y} & = \frac{\partial^2 f(x,y)}{\partial x \partial y} + \frac{\partial^2 f(x,y)}{\partial y^2} \frac{\mathrm{d}y}{\mathrm{d}x} \\ \mathsf{RHS}: & \frac{\mathrm{d}}{\mathrm{d}x} 0 & = 0 \end{array}$$

Equating and rearranging gives the result.

Differentiable Optimisation: Big Picture Idea

Differentiating Equality Constrained Optimisation Problems

Consider functions $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ and $h: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^q$. Let

$$y(x) \in \mathop{\arg\min}_{u \in \mathbb{R}^m} f(x, u)$$

subject to $h(x, u) = 0_q$

Assume that y(x) exists, that f and h are twice differentiable in the neighbourhood of (x,y(x)), and that $\operatorname{rank}(\frac{\partial h(x,y)}{\partial y})=q$.

ISAAC 2022 60/111

Differentiating Equality Constrained Optimisation Problems

Consider functions $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ and $h: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^q$. Let

$$y(x) \in \mathop{\arg\min}_{u \in \mathbb{R}^m} f(x, u)$$

subject to $h(x, u) = 0_q$

Assume that y(x) exists, that f and h are twice differentiable in the neighbourhood of (x,y(x)), and that $\mathrm{rank}(\frac{\partial h(x,y)}{\partial y})=q$. Then for H non-singular

$$\frac{\mathrm{d}y(x)}{\mathrm{d}x} = H^{-1}A^{T}(AH^{-1}A^{T})^{-1}(AH^{-1}B - C) - H^{-1}B$$

where

$$\begin{split} A &= \frac{\partial h(x,y)}{\partial y} \in \mathbb{R}^{q \times m} \quad B = \frac{\partial^2 f(x,y)}{\partial x \partial y} - \sum_{i=1}^q \nu_i \frac{\partial^2 h_i(x,y)}{\partial x \partial y} \in \mathbb{R}^{m \times n} \\ C &= \frac{\partial h(x,y)}{\partial x} \in \mathbb{R}^{q \times n} \quad H = \frac{\partial^2 f(x,y)}{\partial y^2} - \sum_{i=1}^q \nu_i \frac{\partial^2 h_i(x,y)}{\partial y^2} \in \mathbb{R}^{m \times m} \end{split}$$

and $\nu \in \mathbb{R}^q$ satisfies $\nu^T A = \frac{\partial f(x,y)}{\partial y}$.

→ derivation

ISAAC 2022 60/111

Dealing with Inequality Constraints

$$\begin{array}{c} y(x) \in \mathop{\arg\min}_{u \in \mathbb{R}^m} \ f_0(x,u) \\ \text{subject to} & h_i(x,u) = 0, \ i = 1,\dots,q \\ & f_i(x,u) \leq 0, \ i = 1,\dots,p. \end{array}$$

- Replace inequality constraints with log-barrier approximation (see last lecture)
- ► Treat as equality constraints if active $(y_2 \text{ or } y_3)$ and ignore otherwise $(y_1 \text{ or } y_3)$
 - ▶ may lead to one-sided gradients since $\lambda \succeq 0$

ISAAC 2022 61/111

Automatic Differentiation for Differentiable Optimisation

- At one extreme we can try back propagate through the optimisation algorithm (i.e., unrolling the optimisation procedure using automatic differentiation)
- At the other extreme we can use the implicit differentiation result to hand-craft efficient backward pass code
- ► There are two options in between:
 - ▶ Use automatic differentiation to obtain quantities *A*, *B*, *C* and *H* from software implementations of the objective and (active) constraint functions
 - Implement the optimality condition $\nabla \mathcal{L} = 0$ in software and automatically differentiate that

(in the next lecture we will see examples of the first two)

ISAAC 2022 62/111

Vector-Jacobian Product

For brevity consider the unconstrained optimisation case. The backward pass computes

$$\frac{\mathrm{d}L}{\mathrm{d}x} = \frac{\mathrm{d}L}{\mathrm{d}y} \frac{\mathrm{d}y}{\mathrm{d}x}$$
$$= \underbrace{(v^T)}_{\mathbb{R}^{1 \times m}} \underbrace{(-H^{-1}B)}_{\mathbb{R}^{m \times n}}$$

evaluation order:
$$-v^T \left(H^{-1}B\right)$$
 $\left(-v^T H^{-1}\right) B$
$$\cos t^{\dagger} \colon \quad O(m^2 n + mn) \qquad \qquad O(m^2 + mn)$$

 † assumes H^{-1} is already factored (in $O(m^3)$ if unstructured, less if structured)

Summary and Open Questions

- optimisation problems can be embedded inside deep learning models
- back-propagation by either unrolling the optimisation algorithm or implicit differentiation of the optimality conditions
 - ▶ the former is easy to implement using automatic differentiation but memory intensive
 - ightharpoonup the latter requires that solution be strongly convex locally (i.e., invertible H)
 - but does not need to know how the problem was solved, nor store intermediate forward-pass calculations
 - ightharpoonup computing H^{-1} may be costly

ISAAC 2022 64/111

Summary and Open Questions

- optimisation problems can be embedded inside deep learning models
- back-propagation by either unrolling the optimisation algorithm or implicit differentiation of the optimality conditions
 - b the former is easy to implement using automatic differentiation but memory intensive
 - ightharpoonup the latter requires that solution be strongly convex locally (i.e., invertible H)
 - but does not need to know how the problem was solved, nor store intermediate forward-pass calculations
 - ightharpoonup computing H^{-1} may be costly
- ▶ active area of research and many open questions
 - Are declarative nodes slower?
 - Do declarative nodes give theoretical guarantees?
 - ▶ How best to handle non-smooth or discrete optimization problems?
 - ▶ What about problems with multiple solutions?
 - ▶ What if the forward pass solution is suboptimal?
 - Can problems become infeasible during learning?

ISAAC 2022 64/111

lecture 3

ISAAC 2022 65/111

Lecture 3: Examples and Applications

https://deepdeclarativenetworks.com

ISAAC 2022 66/111

Common Theme

ISAAC 2022

Differentiable Least Squares

Consider our old friend, the least-squares problem,

minimize
$$||Ax - b||_2^2$$

parameterized by A and b and with closed-form solution $x^* = (A^T A)^{-1} A^T b$.

ISAAC 2022 68/111

Differentiable Least Squares

Consider our old friend, the least-squares problem,

minimize
$$||Ax - b||_2^2$$

parameterized by A and b and with closed-form solution $x^* = (A^T A)^{-1} A^T b$.

We are interested in derivatives of the solution with respect to the elements of A,

$$rac{\mathrm{d}x^{\star}}{\mathrm{d}A_{ij}} = rac{\mathrm{d}}{\mathrm{d}A_{ij}} \left(A^T\!A
ight)^{-1} A^T b \ \in \mathbb{R}^n$$

We could also compute derivatives with respect to elements of b (but not here).

ISAAC 2022 68/111

Least Squares Backward Pass

The backward pass combines $\frac{\mathrm{d}x^\star}{\mathrm{d}A_{ij}}$ with $v^T=\frac{\mathrm{d}L}{\mathrm{d}x^\star}$ via the vector-Jacobian product. After some algebraic manipulation (see lecture notes) we get

$$\left(\frac{\mathrm{d}L}{\mathrm{d}A}\right)^T = wr^T - x^*(Aw)^T \in \mathbb{R}^{m \times n}$$

where $w^T = v^T (A^T A)^{-1}$.

ISAAC 2022 69/111

Least Squares Backward Pass

The backward pass combines $\frac{\mathrm{d}x^*}{\mathrm{d}A_{ij}}$ with $v^T = \frac{\mathrm{d}L}{\mathrm{d}x^*}$ via the vector-Jacobian product. After some algebraic manipulation (see lecture notes) we get

$$\left(\frac{\mathrm{d}L}{\mathrm{d}A}\right)^T = wr^T - x^*(Aw)^T \in \mathbb{R}^{m \times n}$$

where $w^T = v^T (A^T A)^{-1}$.

- $(A^TA)^{-1}$ is used in both the forward and backward pass
- ightharpoonup factored once to solve for x, e.g., into A=QR
- \triangleright cache R and re-use when computing gradients

→ derivation

ISAAC 2022 69/111

Aside: PyTorch and Batched Data

Deep learning frameworks process data in batches, passed as tensors, for stochastic gradient descent. The first dimension of the tensor is the batch dimension.

Example. For the operation y = Ax + b we might have

$$X = \{x^{(1)}, \dots, x^{(K)}\}$$
 (input)
$$Y = \{Ax^{(1)} + b, \dots, Ax^{(K)} + b\}$$
 (output)

Many PyTorch functions are batch-aware, e.g., torch.bmm. For many operations the einsum function and broadcasting are particularly useful, e.g.,

```
y = torch.einsum("ij,kj->ki", A, x) + b
```

computes $y = Ax^{(k)} + b$ on each element k = 1, ..., K of the batch.

ISAAC 2022 70/111

PyTorch Implementation: Forward Pass

```
class LeastSquaresFcn(torch.autograd.Function):
       """PvTorch autograd function for least squares."""
       Ostaticmethod
       def forward(ctx, A, b):
           B, M, N = A.shape
           assert b.shape == (B. M. 1)
           with torch.no_grad():
10
               Q, R = torch.linalg.gr(A, mode='reduced')
               x = torch.linalg.solve_triangular(R,
12
13
                   torch.bmm(b.view(B, 1, M), Q).view(B, N, 1), upper=True)
14
           # save state for backward pass
15
           ctx.save for backward(A, b, x, R)
16
           # return solution
           return x
```

$$A = QR$$

$$x = R^{-1} \left(Q^T b \right)$$
 (solves $Rx = Q^T b$)

ISAAC 2022 71/111

PyTorch Implementation: Backward Pass

```
Ostaticmethod
        def backward(ctx. dx):
            # check for None tensors
            if dx is None:
5
6
7
8
9
10
                 return None, None
            # unpack cached tensors
            A, b, x, R = ctx.saved_tensors
            B, M, N = A.shape
            dA. db = None. None
13
            w = torch.linalg.solve triangular(R.
14
                 torch.linalg.solve_triangular(torch.transpose(R, 2, 1),
15
                 dx, upper=False), upper=True)
16
            Aw = torch.bmm(A, w)
17
18
            if ctx.needs_input_grad[0]:
19
                 r = b - torch.bmm(A, x)
                 dA = torch.einsum("bi,bj->bij", r.view(B,M), w.view(B,N)) - \
torch.einsum("bi,bj->bij", Aw.view(B,M), x.view(B,N))
20
            if ctx.needs_input_grad[1]:
                 dh = \Delta w
24
            # return gradients
            return dA. db
```

$$w = (A^{T}A)^{-1} v$$

$$= R^{-1} (R^{-T}v)$$

$$r = b - Ax$$

$$\left(\frac{dL}{dA}\right)^{T} = wr^{T} - x(Aw)^{T}$$

$$\left(\frac{dL}{db}\right)^{T} = Aw$$

ISAAC 2022 72/111

Example

Bi-level optimisation problem with lower-level least squares:

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}\|x^\star - x^{\mathsf{target}}\|_2^2 \\ \text{subject to} & x^\star = \mathrm{argmin}_x \ \|Ax - b\|_2^2 \end{array}$$

with upper-level variable $A \in \mathbb{R}^{m \times n}$.

ISAAC 2022 73/111

Profiling

(problems with m=2n; run for 1000 iterations on CPU using PyTorch 1.13.0)

ISAAC 2022 74/111

Profiling

(problems with m=2n; run for 1000 iterations on CPU using PyTorch 1.13.0)

ISAAC 2022 74/111

Optimal Transport

One view of optimal transport is as a matching problem

- ightharpoonup from an m-by-n cost matrix M
- ightharpoonup to an m-by-n probability matrix P,

often formulated with an entropic regularisation term,

$$\begin{array}{ll} \text{minimize} & \langle M,P\rangle + \frac{1}{\gamma}\langle P,\log P\rangle \\ \text{subject to} & P\mathbf{1} = r \\ & P^T\mathbf{1} = c \end{array}$$

with
$$\mathbf{1}^{T}r = \mathbf{1}^{T}c = 1$$

The row and column sum constraints ensure that P is a doubly stochastic matrix (lies within the convex hull of permutation matrices).

ISAAC 2022 75/111

Solving Entropic Optimal Transport

Solution takes the form

$$P_{ij} = \alpha_i \beta_j e^{-\gamma M_{ij}}$$

and can be found using the Sinkhorn algorithm,

- ▶ Set $K_{ij} = e^{-\gamma M_{ij}}$ and $\alpha, \beta \in \mathbb{R}^n_{++}$
- Iterate until convergence,

$$\alpha \leftarrow r \oslash K\beta$$
$$\beta \leftarrow c \oslash K^T \alpha$$

where \oslash denotes componentwise division

 $\blacktriangleright \ \, \mathsf{Return} \,\, P = \mathbf{diag}(\alpha) K \mathbf{diag}(\beta)$

ISAAC 2022 76/111

Differentiable Optimal Transport

▶ Option 1: back-propagate through Sinkhorn algorithm

ISAAC 2022 77/111

Differentiable Optimal Transport

- ▶ Option 1: back-propagate through Sinkhorn algorithm
- ▶ Option 2: use the implicit differentiation result

$$\underbrace{\frac{\mathrm{d}L}{\mathrm{d}M}}_{m\text{-by-}n} = \underbrace{\frac{\mathrm{d}L}{\mathrm{d}P}}_{m\text{-by-}n} \underbrace{\frac{\mathrm{d}P}{\mathrm{d}M}}_{m\text{-by-}n}$$

ISAAC 2022 77/111

Differentiable Optimal Transport

- ▶ Option 1: back-propagate through Sinkhorn algorithm
- ▶ Option 2: use the implicit differentiation result

ISAAC 2022 77/111

Optimal Transport Gradient

Derivation of the optimal transport gradient is quite tedious (see notes). The result:

$$\begin{split} \frac{\mathrm{d}L}{\mathrm{d}M} &= \frac{\mathrm{d}L}{\mathrm{d}P} \left(H^{-1} \mathbf{A}^T \left(A H^{-1} A^T \right)^{-1} \mathbf{A} H^{-1} - H^{-1} \right) B \\ &= \gamma \frac{\mathrm{d}L}{\mathrm{d}P} \mathrm{diag}(P) \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}^T \begin{bmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{12}^T & \Lambda_{22} \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \mathrm{diag}(P) - \gamma \frac{\mathrm{d}L}{\mathrm{d}P} \mathrm{diag}(P) \end{split}$$

where

$$\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} \mathbf{0}_n^T & \mathbf{1}_n^T & \dots & \mathbf{0}_n^T \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_n^T & \mathbf{0}_n^T & \dots & \mathbf{1}_n^T \\ I_{n \times n} & I_{n \times n} & \dots & I_{n \times n} \end{bmatrix} \qquad \begin{pmatrix} AH^{-1}A^T \end{pmatrix}^{-1} = \frac{1}{\gamma} \begin{bmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{12}^T & \Lambda_{22} \end{bmatrix} \\ & = \frac{1}{\gamma} \begin{bmatrix} \operatorname{diag}(r_{2:m}) & P_{2:m,1:n} \\ P_{2:m,1:n}^T & \operatorname{diag}(c) \end{bmatrix}^{-1}$$

▶ derivation

ISAAC 2022 78/111

Implementation

```
@staticmethod
   def backward(ctx, dJdP)
       # unpacked cached tensors
      M, r, c, P = ctx.saved_tensors
       batches, m, n = P.shape
       # initialize backward gradients (-v^T H^{-1} B)
8
       dLdM = -1.0 * gamma * P * dLdP
9
10
       # compute [vHAt1, vHAt2] = -v^T H^{-1} A^T
11
       vHAt1, vHAt2 = sum(dJdM[:, 1:m, 0:n], dim=2), sum(dJdM, dim=1)
13
       # compute [v1, v2] = -v^T H^{-1} A^T (A H^{-1} A^T)^{-1}
14
       P over c = P[:, 1:m, 0:n] / c.view(batches, 1, n)
       lmd_11 = cholesky(diag_embed(r[:, 1:m]) - einsum("bij,bkj->bik", P[:, 1:m, 0:n], P_over_c))
15
16
       lmd_12 = cholesky_solve(P_over_c, lmd_11)
17
       lmd_22 = diag_embed(1.0 / c) + einsum("bji,bjk->bjk", lmd_12, P_over_c)
18
19
       v1 = choleskv_solve(vHAt1.view(batches, m-1, 1), lmd_11).view(batches, m-1) -
20
           einsum("bi,bii->bi", vHAt2, lmd_12)
21
       v2 = einsum("bi,bij->bj", vHAt2, lmd_22) - einsum("bi,bij->bj", vHAt1, lmd_12)
23
       # compute v^T H^{-1} A^T (A H^{-1] A^T)^{-1} A H^{-1} B - v^T H^{-1} B
24
       dLdM[:. 1:m. 0:n] -= v1.view(batches. m-1. 1) * P[:. 1:m. 0:n]
25
       dJdM -= v2.view(batches, 1, n) * P
26
27
       # return gradients
28
       return didM
```

ISAAC 2022 79/111

Experiment

Bi-level optimisation problem with lower-level optimal transport problem:

minimize
$$\frac{1}{2}\|P-P^{\mathsf{target}}\|_F^2$$
 subject to minimize $\langle M,P\rangle+\frac{1}{\gamma}\langle P,\log P\rangle$ subject to
$$P\mathbf{1}=\frac{1}{n}\mathbf{1}$$

$$P^T\mathbf{1}=\frac{1}{m}\mathbf{1}$$

with upper-level variable $M \in \mathbb{R}^{m \times n}$.

ISAAC 2022 80/111

Results: Running Time

ISAAC 2022

Results: Memory Usage

ISAAC 2022 82/111

Application to Blind Perspective-n-Point

find the location where the photograph was taken

ISAAC 2022 83/111

Coupled Problem

▶ if we knew correspondences then determining camera pose would be easy

▶ if we knew camera pose then determining correspondences would be easy

ISAAC 2022 84/111

Blind Perspective-n-Point Network Architecture

ISAAC 2022 85/111

Blind Perspective-n-Point Results

ISAAC 2022

Further Resources

Where to from here?

- ▶ Deep declarative networks (http://deepdeclarativenetworks.com)
 - lots of small code examples and tutorials
- CVXPyLayers (https://github.com/cvxgrp/cvxpylayers)
- ► Theseus (https://sites.google.com/view/theseus-ai)
- JAXopt (https://github.com/google/jaxopt)

lecture notes available at https://users.cecs.anu.edu.au/~sgould

ISAAC 2022 87/111

break-out

ISAAC 2022 88/111

Local Optima are Global Optima Proof Plack

any local minimum of a convex problem is (globally) optimal

Proof. Suppose that x is locally optimal, but there exists a feasible y with lower objective, i.e., $f_0(y) < f_0(x)$. Local optimality of x means there must be an R > 0 such that

$$z$$
 feasible and $||z - x||_2 \le R \implies f_0(z) \ge f_0(x)$

Consider $z=\theta y+(1-\theta)x$ with $\theta=\frac{R}{2\|y-x\|_2}$. We have that $\|y-x\|_2>R$ since we assumed $f_0(y)< f_0(x)$, so $0<\theta<1/2<1$. Therefore z is a convex combination of two feasible points, hence also feasible. Moreover, $\|z-x\|_2=R/2$ (from our choice of θ) and therefore $f_0(z)\geq f_0(x)$ by our assumption that x is locally optimal. But

$$f_0(z) \le \theta f_0(y) + (1 - \theta) f_0(x) < \theta f_0(x) + (1 - \theta) f_0(x) = f_0(x)$$

where the first inequality is by the definition of convex function and the second inequality is from our assumption that $f_0(y) < f_0(x)$. We have a contradiction. Therefore every locally optimal point is globally optimal.

ISAAC 2022 89/111

automatic differentiation

ISAAC 2022 90/111

Toy Example: Babylonian Algorithm back

Consider the following implementation for a forward operation:

```
1: procedure \operatorname{FWDFCN}(x)

2: y_0 \leftarrow \frac{1}{2}x

3: for t = 1, \dots, T do

4: y_t \leftarrow \frac{1}{2}\left(y_{t-1} + \frac{x}{y_{t-1}}\right)

5: end for

6: return y_T

7: end procedure
```

ISAAC 2022 91/111

Toy Example: Babylonian Algorithm back

Consider the following implementation for a forward operation:

```
1: procedure FWDFCN(x)
       y_0 \leftarrow \frac{1}{2}x
      for t = 1, \dots, T do y_t \leftarrow \frac{1}{2} \left( y_{t-1} + \frac{x}{y_{t-1}} \right)
         end for
          return u_T
  end procedure
```

Automatic differentiation algorithmically generates the backward code:

```
1: procedure BCKFCN(x, y_T, \frac{dL}{dy_T})
2: \frac{\mathrm{d}L}{\mathrm{d}x} \leftarrow 0
3: \mathbf{for} \ t = T, \dots, 1 \ \mathbf{do}
4: \frac{\mathrm{d}L}{\mathrm{d}x} \leftarrow \frac{\mathrm{d}L}{\mathrm{d}x} + \frac{\mathrm{d}L}{\mathrm{d}y_t} \left(\frac{1}{2y_{t-1}}\right)
5: \frac{\mathrm{d}L}{\mathrm{d}y_{t-1}} \leftarrow \frac{\mathrm{d}L}{\mathrm{d}y_t} \left(\frac{1}{2} - \frac{x}{2y_{t-1}^2}\right)
    7: \frac{\mathrm{d}L}{\mathrm{d}x} \leftarrow \frac{\mathrm{d}L}{\mathrm{d}x} + \frac{\mathrm{d}L}{\mathrm{d}u_0} \frac{1}{2}
                   return \frac{\mathrm{d}L}{\mathrm{d}z}
      9: end procedure
```

Toy Example: Babylonian Algorithm •• back

Consider the following implementation for a forward operation:

```
1: procedure \operatorname{FWDFCN}(x)

2: y_0 \leftarrow \frac{1}{2}x

3: for t=1,\ldots,T do

4: y_t \leftarrow \frac{1}{2}\left(y_{t-1} + \frac{x}{y_{t-1}}\right)

5: end for

6: return y_T

7: end procedure
```

- ightharpoonup computes $y = \sqrt{x}$
- derivative computed directly is $\frac{dy}{dx} = \frac{1}{2\sqrt{x}} = \frac{1}{2y}$

Automatic differentiation algorithmically generates the backward code:

```
1: procedure BCKFCN(x, y_T, \frac{dL}{dy_T})
2: \frac{\mathrm{d}L}{\mathrm{d}x} \leftarrow 0
3: \mathbf{for} \ t = T, \dots, 1 \ \mathbf{do}
4: \frac{\mathrm{d}L}{\mathrm{d}x} \leftarrow \frac{\mathrm{d}L}{\mathrm{d}x} + \frac{\mathrm{d}L}{\mathrm{d}y_t} \left(\frac{1}{2y_{t-1}}\right)
5: \frac{\mathrm{d}L}{\mathrm{d}y_{t-1}} \leftarrow \frac{\mathrm{d}L}{\mathrm{d}y_t} \left(\frac{1}{2} - \frac{x}{2y_{t-1}^2}\right)
                                                                                                              \partial u_{\pm}/\partial u_{\pm} = 1
     7: \frac{dL}{dx} \leftarrow \frac{dL}{dx} + \frac{dL}{du_0} \frac{1}{2}
                  return \frac{dL}{dx}
             end procedure
```

Computation Graph for Babylonian Algorithm Pack

$$y_T = f(x, f(x, f(x, \dots f(x, \frac{1}{2}x))))$$
 with $f(x, y) = \frac{1}{2} \left(y + \frac{x}{y}\right)$

ISAAC 2022 92/111

duality

ISAAC 2022 93/111

Lagrange Dual Function Pack

Define Lagrange dual function, $g: \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}$, as

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} \mathcal{L}(x, \lambda, \nu)$$
$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^p \lambda_i f_i(x) + \sum_{i=1}^q \nu_i h_i(x) \right)$$

- ightharpoonup q is concave (always), can be $-\infty$ for some λ, ν
- ▶ lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^*$ (since for feasible x we have $f_i(x) \leq 0$ and $h_i(x) = 0$)

ISAAC 2022 94/111

The Dual Problem • back

The Lagrange dual problem is to maximise the dual function

maximize
$$g(\lambda, \nu)$$
 subject to $\lambda \succeq 0$

- \triangleright finds the best lower bound on p^* , obtained from Lagrange dual function
- ightharpoonup a convex optimisation problem with optimal value denoted by d^{\star}
- \triangleright λ, ν are dual feasible if $\lambda \succeq 0$ and $(\lambda, \nu) \in \mathbf{dom}(g)$
- original problem is known as the primal problem

ISAAC 2022 95/111

Weak and Strong Duality back

weak duality: $d^{\star} \leq p^{\star}$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems

strong duality: $d^* = p^*$

- does not hold in general
- ► (usually) holds for convex problems
- conditions that guarantee strong duality on convex problems are called constraint qualifications

ISAAC 2022 96/111

differentiating equality constrained problems

ISAAC 2022 97/111

Abridged Derivation back

Forming the Lagrangian at optimal y for fixed x we have

$$\mathcal{L}(x, y, \nu) = f(x, y) - \sum_{i=1}^{q} \nu_i h_i(x, y).$$

Since $\frac{\partial h(x,y)}{\partial y}$ is full rank we have that y is a regular point. Then there exists a ν such that the Lagrangian is stationary at the point (y,ν) . Thus

$$\begin{bmatrix} \frac{\partial \mathcal{L}}{\partial Y}^T \\ \frac{\partial \mathcal{L}}{\partial \nu}^T \end{bmatrix} = \begin{bmatrix} \left(\frac{\partial f(x,y)}{\partial y} - \sum_{i=1}^q \nu_i \frac{\partial h_i(x,y)}{\partial y} \right)^T \\ h(x,y) \end{bmatrix} = \mathbf{0}_{m+q}$$

which we can differentiate with respect to x,

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\left(\frac{\partial f(x,y)}{\partial y} \right)^T - \sum_{i=1}^q \nu_i \left(\frac{\partial h_i(x,y)}{\partial y} \right)^T \right] = \mathbf{0}_{(m+q) \times n}$$

to get (after some re-arranging in matrix form)

$$\begin{bmatrix} \frac{\partial^2 f(x,y)}{\partial y^2} - \sum_{i=1}^q \nu_i \frac{\partial^2 h_i(x,y)}{\partial y^2} & -(\frac{\partial h(x,y)}{\partial y})^T \\ \frac{\partial h(x,y)}{\partial y} & \mathbf{0}_{q \times q} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d}y(x)}{\mathrm{d}x} \\ \frac{\mathrm{d}\nu(x)}{\mathrm{d}x} \end{bmatrix} = -\begin{bmatrix} \frac{\partial^2 f(x,y)}{\partial x \partial y} - \sum_{i=1}^q \nu_i \frac{\partial^2 h_i(x,y)}{\partial x \partial y} \\ \frac{\partial}{\partial x} h(x,y) \end{bmatrix}.$$

ISAAC 2022 98/111

Abridged Derivation Pack

Forming the Lagrangian at optimal y for fixed x we have

$$\mathcal{L}(x, y, \nu) = f(x, y) - \sum_{i=1}^{q} \nu_i h_i(x, y).$$

Since $\frac{\partial h(x,y)}{\partial y}$ is full rank we have that y is a regular point. Then there exists a ν such that the Lagrangian is stationary at the point (y,ν) . Thus

$$\begin{bmatrix} \frac{\partial \mathcal{L}}{\partial Y}^T \\ \frac{\partial \mathcal{L}}{\partial \nu}^T \end{bmatrix} = \begin{bmatrix} \left(\frac{\partial f(x,y)}{\partial y} - \sum_{i=1}^q \nu_i \frac{\partial h_i(x,y)}{\partial y} \right)^T \\ h(x,y) \end{bmatrix} = \mathbf{0}_{m+q}$$

which we can differentiate with respect to x,

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\left(\frac{\partial f(x,y)}{\partial y} \right)^T - \sum_{i=1}^q \nu_i \left(\frac{\partial h_i(x,y)}{\partial y} \right)^T \right] = \mathbf{0}_{(m+q) \times n}$$

to get (after some re-arranging in matrix form)

$$\begin{bmatrix} H & -A^T \\ A & \mathbf{0}_{q \times q} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d}y(x)}{\mathrm{d}x} \\ \frac{\mathrm{d}\nu(x)}{\mathrm{d}x} \end{bmatrix} = - \begin{bmatrix} B \\ C \end{bmatrix}.$$

ISAAC 2022 98/111

Abridged Derivation (cont.) Phack

(from last slide:)

$$\begin{bmatrix} H & -A^T \\ A & \mathbf{0}_{q \times q} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d}y(x)}{\mathrm{d}x} \\ \frac{\mathrm{d}\nu(x)}{\mathrm{d}x} \end{bmatrix} = - \begin{bmatrix} B \\ C \end{bmatrix}$$

We can solve this system of equations directly or solve by variable elimination. Multiplying out we have

$$H\frac{\mathrm{d}y(x)}{\mathrm{d}x} - A^T \frac{\mathrm{d}\nu(x)}{\mathrm{d}x} = -B \tag{1}$$

$$A\frac{\mathrm{d}y(x)}{\mathrm{d}x} = -C\tag{2}$$

Substituting $\frac{dy(x)}{dx}$ from (1) into (2) gives,

$$\overbrace{AH^{-1}(A^T \frac{d\nu(x)}{dx} - B)}^{\frac{dy(x)}{dx}} = -C$$

$$\therefore \frac{d\nu(x)}{dx} = \left(AH^{-1}A^T\right)^{-1} \left(AH^{-1}B - C\right)$$

Then substituting back into (1) we get the result

$$\frac{\mathrm{d}y(x)}{\mathrm{d}x} = H^{-1}A^{T} \left(AH^{-1}A^{T}\right)^{-1} \left(AH^{-1}B - C\right) - H^{-1}B$$

ISAAC 2022 99/111

least squares

Differentiating x^* with respect to single element A_{ij} , we have

$$\frac{\mathsf{d}}{\mathsf{d}A_{ij}}x^* = \frac{\mathsf{d}}{\mathsf{d}A_{ij}} \left(A^T A\right)^{-1} A^T b$$

$$= \left(\frac{\mathsf{d}}{\mathsf{d}A_{ij}} \left(A^T A\right)^{-1}\right) A^T b + \left(A^T A\right)^{-1} \left(\frac{\mathsf{d}}{\mathsf{d}A_{ij}} A^T b\right)$$

Using the identity $\frac{d}{dz}Z^{-1} = -Z^{-1}\left(\frac{d}{dz}Z\right)Z^{-1}$ we get, for the first term,

$$\frac{d}{dA_{ij}} (A^T A)^{-1} = -(A^T A)^{-1} \left(\frac{d}{dA_{ij}} (A^T A) \right) (A^T A)^{-1}$$
$$= -(A^T A)^{-1} (E_{ij}^T A + A^T E_{ij}) (A^T A)^{-1}$$

where E_{ij} is a matrix with one in the (i, j)-th element and zeros elsewhere. Furthermore, for the second term,

$$\frac{\mathsf{d}}{\mathsf{d}A_{ij}}A^Tb = E_{ij}^Tb$$

Least Squares Backward Pass Derivation (cont.)

Plugging these back into parent equation we have

$$\frac{d}{dA_{ij}}x^* = -(A^TA)^{-1}(E_{ij}^TA + A^TE_{ij})(A^TA)^{-1}A^Tb + (A^TA)^{-1}E_{ij}^Tb$$

$$= -(A^TA)^{-1}(E_{ij}^TA + A^TE_{ij})x^* + (A^TA)^{-1}E_{ij}^Tb$$

$$= -(A^TA)^{-1}(E_{ij}^T(Ax^* - b) + A^TE_{ij}x^*)$$

$$= -(A^TA)^{-1}((a_i^Tx^* - b_i)e_j + x_j^*a_i)$$

where $e_j = (0, 0, \dots, 1, 0, \dots) \in \mathbb{R}^n$ is the j-th canonical vector, i.e., vector with a one in the j-th component and zeros everywhere else, and $a_i^T \in \mathbb{R}^{1 \times n}$ is the i-th row of matrix A.

Least Squares Backward Pass Derivation (cont.)

Let $r = b - Ax^*$ and let v^T denote the backward coming gradient $\frac{d}{dx^*}L$. Then

$$\frac{dL}{dA_{ij}} = v^T \frac{dx^*}{dA_{ij}}$$

$$= v^T (A^T A)^{-1} (r_i e_j - x_j^* a_i)$$

$$= w^T (r_i e_j - x_j^* a_i)$$

$$= r_i w_j - w^T a_i x_j^*$$

where $w = (A^T A)^{-1} v$. We can compute the entire matrix of $m \times n$ derivatives efficiently as the sum of outer products

$$\left(\frac{\mathrm{d}L}{\mathrm{d}A}\right)^T = \left[\frac{\mathrm{d}L}{\mathrm{d}A_{ij}}\right]_{\substack{i=1,\dots,m\\i=1,\dots,n}} = wr^T - x^*(Aw)^T$$

optimal transport

Objective and Constraint Functions back

$$f(M, P) = \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} P_{ij} + \frac{1}{\gamma} \sum_{i=1}^{m} \sum_{j=1}^{n} P_{ij} \log P_{ij}$$

$$h(M,P) = \begin{bmatrix} \mathbf{1}_n^T & \mathbf{0}_n^T & \dots & \mathbf{0}_n^T \\ \mathbf{0}_n^T & \mathbf{1}_n^T & \dots & \mathbf{0}_n^T \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_n^T & \mathbf{0}_n^T & \dots & \mathbf{1}_n^T \\ I_{n\times n} & I_{n\times n} & \dots & I_{n\times n} \end{bmatrix} \begin{bmatrix} P_{11} \\ P_{12} \\ \vdots \\ P_{1n} \\ P_{21} \\ \vdots \\ P_{mn} \end{bmatrix} - \begin{bmatrix} \mathbf{r_1} \\ r_2 \\ \vdots \\ r_m \\ c_1 \\ \vdots \\ c_n \end{bmatrix}$$

(one constraint is redundant—a linear combination of the others—and removed to ensure ${\bf rank}(A)=q)$

$$f(M,P) = \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} P_{ij} + \frac{1}{\gamma} \sum_{i=1}^{m} \sum_{j=1}^{n} P_{ij} \log P_{ij} \qquad h(M,P) = \begin{bmatrix} \mathbf{0}_{n}^{1} & \mathbf{1}_{n}^{1} & \dots & \mathbf{0}_{n}^{1} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_{n}^{T} & \mathbf{0}_{n}^{T} & \dots & \mathbf{1}_{n}^{T} \\ I_{n \times n} & I_{n \times n} & \dots & I_{n \times n} \end{bmatrix} \vec{P} - \begin{bmatrix} r_{2} \\ \vdots \\ r_{m} \\ c \end{bmatrix}$$

$$f(M,P) = \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} P_{ij} + \frac{1}{\gamma} \sum_{i=1}^{m} \sum_{j=1}^{n} P_{ij} \log P_{ij} \qquad h(M,P) = \begin{bmatrix} \mathbf{0}_{n}^{-} & \mathbf{1}_{n}^{-} & \dots & \mathbf{0}_{n}^{-} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_{n}^{T} & \mathbf{0}_{n}^{T} & \dots & \mathbf{1}_{n}^{T} \\ I_{n \times n} & I_{n \times n} & \dots & I_{n \times n} \end{bmatrix} \vec{P} - \begin{bmatrix} r_{2} \\ \vdots \\ r_{m} \\ c \end{bmatrix}$$

$$\frac{dP}{dM} = \left(H^{-1}A^{T}(AH^{-1}A^{T})^{-1}AH^{-1} - H^{-1}\right)B$$

$$A = \frac{\mathrm{d}}{\mathrm{d}P}h \in \mathbb{R}^{(m+n-1)\times mn} \qquad B = \frac{\mathrm{d}^2}{\mathrm{d}M^2P}f \in \mathbb{R}^{mn\times nn} \quad H = \frac{\mathrm{d}^2}{\mathrm{d}P^2}f \in \mathbb{R}^{mn\times mn}$$

$$f(M,P) = \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} P_{ij} + \frac{1}{\gamma} \sum_{i=1}^{m} \sum_{j=1}^{n} P_{ij} \log P_{ij} \qquad h(M,P) = \begin{bmatrix} \mathbf{0}_{n}^{T} & \mathbf{1}_{n}^{T} & \dots & \mathbf{0}_{n}^{T} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_{n}^{T} & \mathbf{0}_{n}^{T} & \dots & \mathbf{1}_{n}^{T} \\ I_{n \times n} & I_{n \times n} & \dots & I_{n \times n} \end{bmatrix} \vec{P} - \begin{bmatrix} r_{2} \\ \vdots \\ r_{m} \\ c \end{bmatrix}$$

$$\frac{dP}{dM} = \left(H^{-1}A^{T}(AH^{-1}A^{T})^{-1}AH^{-1} - H^{-1}\right)B$$

$$A = rac{\mathrm{d}}{\mathrm{d}P} oldsymbol{h} \in \mathbb{R}^{(m+n-1) imes mn} \qquad B = rac{\mathrm{d}^2}{\mathrm{d}M\partial P} oldsymbol{f} \in \mathbb{R}^{mn imes mn} \qquad H = rac{\mathrm{d}^2}{\mathrm{d}P^2} oldsymbol{f} \in \mathbb{R}^{mn imes mn}$$
 $= egin{bmatrix} oldsymbol{0}_n^T & oldsymbol{1}_n^T & \dots & oldsymbol{0}_n^T \ oldsymbol{0}_n^T & oldsymbol{0}_n^T & \dots & oldsymbol{1}_n^T \ I_{n imes n} & I_{n imes n} & \dots & I_{n imes n} \end{bmatrix}$

ISAAC 2022

$$f(M,P) = \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} P_{ij} + \frac{1}{\gamma} \sum_{i=1}^{m} \sum_{j=1}^{n} P_{ij} \log P_{ij} \qquad h(M,P) = \begin{bmatrix} \mathbf{0}_{n}^{T} & \mathbf{1}_{n}^{T} & \dots & \mathbf{0}_{n}^{T} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_{n}^{T} & \mathbf{0}_{n}^{T} & \dots & \mathbf{1}_{n}^{T} \\ I_{n \times n} & I_{n \times n} & \dots & I_{n \times n} \end{bmatrix} \vec{P} - \begin{bmatrix} r_{2} \\ \vdots \\ r_{m} \\ c \end{bmatrix}$$

$$\frac{dP}{dM} = \left(H^{-1}A^{T}(AH^{-1}A^{T})^{-1}AH^{-1} - H^{-1}\right)B$$

$$A = rac{\mathrm{d}}{\mathrm{d}P} oldsymbol{h} \in \mathbb{R}^{(m+n-1) imes mn} \qquad B = rac{\mathrm{d}^2}{\mathrm{d}M\partial P} oldsymbol{f} \in \mathbb{R}^{mn imes mn} \qquad H = rac{\mathrm{d}^2}{\mathrm{d}P^2} oldsymbol{f} \in \mathbb{R}^{mn imes mn}$$
 $= egin{bmatrix} oldsymbol{0}_n^T & oldsymbol{1}_n^T & \dots & oldsymbol{0}_n^T \ oldsymbol{0}_n^T & oldsymbol{0}_n^T & \dots & oldsymbol{1}_n^T \ oldsymbol{I}_{n imes n} & I_{n imes n} & \dots & I_{n imes n} \end{bmatrix} \qquad B = rac{\mathrm{d}^2}{\mathrm{d}M\partial P} oldsymbol{f} \in \mathbb{R}^{mn imes mn} \qquad H = rac{\mathrm{d}^2}{\mathrm{d}P^2} oldsymbol{f} \in \mathbb{R}^{mn imes mn} \qquad H = rac{\mathrm{d}^2}{\mathrm{d}P^2} oldsymbol{f} \in \mathbb{R}^{mn imes mn}$

$$f(M,P) = \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} P_{ij} + \frac{1}{\gamma} \sum_{i=1}^{m} \sum_{j=1}^{n} P_{ij} \log P_{ij} \qquad h(M,P) = \begin{bmatrix} \mathbf{0}_{n}^{T} & \mathbf{1}_{n}^{T} & \dots & \mathbf{0}_{n}^{T} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_{n}^{T} & \mathbf{0}_{n}^{T} & \dots & \mathbf{1}_{n}^{T} \\ I_{n \times n} & I_{n \times n} & \dots & I_{n \times n} \end{bmatrix} \vec{P} - \begin{bmatrix} r_{2} \\ \vdots \\ r_{m} \\ c \end{bmatrix}$$

$$\frac{dP}{dM} = \left(H^{-1}A^{T}(AH^{-1}A^{T})^{-1}AH^{-1} - H^{-1}\right)B$$

$$A = rac{\mathrm{d}}{\mathrm{d}P} oldsymbol{h} \in \mathbb{R}^{(m+n-1) imes mn} \qquad B = rac{\mathrm{d}^2}{\mathrm{d}M\partial P} oldsymbol{f} \in \mathbb{R}^{mn imes mn} \qquad H = rac{\mathrm{d}^2}{\mathrm{d}P^2} oldsymbol{f} \in \mathbb{R}^{mn imes mn}$$
 $= egin{bmatrix} oldsymbol{0}_n^T & oldsymbol{1}_n^T & \dots & oldsymbol{0}_n^T \ oldsymbol{0}_n^T & oldsymbol{0}_n^T & \dots & oldsymbol{1}_n^T \ I_{n imes n} & I_{n imes n} & \dots & I_{n imes n} \end{bmatrix} \qquad = I_{mn imes mn}$

$$f(M,P) = \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} P_{ij} + \frac{1}{\gamma} \sum_{i=1}^{m} \sum_{j=1}^{n} P_{ij} \log P_{ij} \qquad h(M,P) = \begin{bmatrix} \mathbf{0}_{n}^{1} & \mathbf{1}_{n}^{1} & \dots & \mathbf{0}_{n}^{1} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_{n}^{T} & \mathbf{0}_{n}^{T} & \dots & \mathbf{1}_{n}^{T} \\ I_{n \times n} & I_{n \times n} & \dots & I_{n \times n} \end{bmatrix} \vec{P} - \begin{bmatrix} r_{2} \\ \vdots \\ r_{m} \\ c \end{bmatrix}$$

$$\frac{dP}{dM} = \left(H^{-1}A^{T}(AH^{-1}A^{T})^{-1}AH^{-1} - H^{-1}\right)B$$

$$A = \frac{\mathrm{d}}{\mathrm{d}P} \overset{\pmb{h}}{h} \in \mathbb{R}^{(m+n-1)\times mn} \qquad B = \frac{\mathrm{d}^2}{\mathrm{d}M\partial P} f \in \mathbb{R}^{mn\times nn} \qquad H = \frac{\mathrm{d}^2}{\mathrm{d}P^2} f \in \mathbb{R}^{mn\times mn}$$

$$= \begin{bmatrix} \mathbf{0}_n^T & \mathbf{1}_n^T & \dots & \mathbf{0}_n^T \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_n^T & \mathbf{0}_n^T & \dots & \mathbf{1}_n^T \\ I_{n\times n} & I_{n\times n} & \dots & I_{n\times n} \end{bmatrix} \qquad = I_{mn\times mn} \qquad H_{ij,kl} = \begin{cases} \frac{1}{\gamma P_{ij}} & \text{if } ij = kl \\ 0 & \text{otherwise} \end{cases}$$

$$f(M,P) = \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} P_{ij} + \frac{1}{\gamma} \sum_{i=1}^{m} \sum_{j=1}^{n} P_{ij} \log P_{ij} \qquad h(M,P) = \begin{bmatrix} \mathbf{0}_{n}^{T} & \mathbf{1}_{n}^{T} & \dots & \mathbf{0}_{n}^{T} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_{n}^{T} & \mathbf{0}_{n}^{T} & \dots & \mathbf{1}_{n}^{T} \\ I_{n \times n} & I_{n \times n} & \dots & I_{n \times n} \end{bmatrix} \vec{P} - \begin{bmatrix} r_{2} \\ \vdots \\ r_{m} \\ c \end{bmatrix}$$

$$\frac{dP}{dM} = \left(H^{-1}A^{T}(AH^{-1}A^{T})^{-1}AH^{-1} - H^{-1}\right)B$$

$$A = rac{\mathrm{d}}{\mathrm{d}P} oldsymbol{h} \in \mathbb{R}^{(m+n-1) imes mn} \qquad B = rac{\mathrm{d}^2}{\mathrm{d}M\partial P} oldsymbol{f} \in \mathbb{R}^{mn imes mn} \qquad H = rac{\mathrm{d}^2}{\mathrm{d}P^2} oldsymbol{f} \in \mathbb{R}^{mn imes mn} \qquad H = rac{\mathrm{d}^2}{\mathrm{d}P^2} oldsymbol{f} \in \mathbb{R}^{mn imes mn} \qquad H = rac{\mathrm{d}^2}{\mathrm{d}P^2} oldsymbol{f} \in \mathbb{R}^{mn imes mn} \qquad H^{-1} = \gamma oldsymbol{\mathsf{diag}} ig(ec{P}ig)$$

Computing $(AH^{-1}A^T)^{-1}$ back

$$H^{-1} = \gamma \operatorname{diag}(\vec{P}) \qquad A = \begin{bmatrix} \mathbf{0}_n^T & \mathbf{1}_n^T & \dots & \mathbf{0}_n^T \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_n^T & \mathbf{0}_n^T & \dots & \mathbf{1}_n^T \\ I_{n \times n} & I_{n \times n} & \dots & I_{n \times n} \end{bmatrix}$$

$$\frac{\mathrm{d}P}{\mathrm{d}M} = \left(H^{-1}A^T \left(AH^{-1}A^T\right)^{-1}AH^{-1} - H^{-1}\right)B$$

Computing $(AH^{-1}A^T)^{-1}$

$$H^{-1} = \gamma \operatorname{diag}(\vec{P}) \qquad A = \begin{bmatrix} \mathbf{0}_{n}^{T} & \mathbf{1}_{n}^{T} & \dots & \mathbf{0}_{n}^{T} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_{n}^{T} & \mathbf{0}_{n}^{T} & \dots & \mathbf{1}_{n}^{T} \\ I_{n \times n} & I_{n \times n} & \dots & I_{n \times n} \end{bmatrix}$$

$$\frac{\mathrm{d}P}{\mathrm{d}M} = \left(H^{-1}A^T \left(AH^{-1}A^T\right)^{-1}AH^{-1} - H^{-1}\right)B$$

The (k, l)-th entry of $AH^{-1}A^T$ for $k, l \in 1, ..., m+n-1$ is

$$(AH^{-1}A^{T})_{kl} = \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{A_{k,ij}A_{l,ij}}{H_{ij,ij}} = \gamma \sum_{i=1}^{m} \sum_{j=1}^{n} A_{k,ij}A_{l,ij}P_{ij}$$

Interpreting $A_{k,ij}A_{l,ij}$ back

108/111 ISAAC 2022

Evaluating $(AH^{-1}A^T)_{kl}=\gamma\sum_{i=1}^m\sum_{j=1}^nA_{k,ij}A_{l,ij}P_{ij}$ where

$$0 \leq l \leq m-1 \qquad m \leq l \leq m+n-1$$

$$0 \leq k \leq m-1 \qquad \begin{cases} \gamma \sum_{j=1}^{n} P_{k+1,j} & \text{if } k=l \\ 0 & \text{otherwise} \end{cases} \qquad \gamma P_{k+1,l-m+1}$$

$$m \leq k \leq m+n-1 \qquad \gamma P_{l+1,k-m+1} \qquad \begin{cases} \gamma \sum_{i=1}^{m} P_{i,k-m+1} & \text{if } k=l \\ 0 & \text{otherwise} \end{cases}$$

Computing $(AH^{-1}A^T)^{-1}$ back

$$H^{-1} = \gamma \operatorname{diag}\left(\vec{P}\right)$$

$$A = \begin{bmatrix} \mathbf{0}_n^T & \mathbf{1}_n^T & \dots & \mathbf{0}_n^T \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_n^T & \mathbf{0}_n^T & \dots & \mathbf{1}_n^T \\ I_{n \times n} & I_{n \times n} & \dots & I_{n \times n} \end{bmatrix}$$

$$\frac{\mathrm{d}P}{\mathrm{d}M} = \left(H^{-1}A^T \left(AH^{-1}A^T\right)^{-1}AH^{-1} - H^{-1}\right)B$$

$$AH^{-1}\!A^T = \gamma \begin{bmatrix} \operatorname{diag}(r_{2:m}) & P_{2:m,1:n} \\ P_{2:m,1:n}^T & \operatorname{diag}(c) \end{bmatrix} \qquad \left(AH^{-1}\!A^T\right)^{-1} = \frac{1}{\gamma} \begin{bmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{12}^T & \Lambda_{22} \end{bmatrix}$$

$$\begin{split} &\Lambda_{11} = \left(\mathsf{diag} \Big(r_{2:m} - P_{2:m,1:n} \mathsf{diag}(c)^{-1} \, P_{2:m,1:n}^T \Big) \right)^{-1} \\ &\Lambda_{12} = -\Lambda_{11} P_{2:m,1:n} \mathsf{diag}(c)^{-1} \\ &\Lambda_{22} = \mathsf{diag}(c)^{-1} - \mathsf{diag}(c)^{-1} \, P_{2:m,1:n}^T \Lambda_{12} \end{split}$$

ISAAC 2022

end

ISAAC 2022