Lecture Notes on Differentiable Optimisation in Deep Learning

Stephen Gould

stephen.gould@anu.edu.au

May 23, 2024*

Abstract

Optimisation is at the heart of machine learning. In this lecture series, I will formally introduce the notion of
an optimisation problem, or mathematical program, and review classic ideas from convex analysis. I will present
algorithms for solving optimisation problems and conditions that hold at the optimum (which provides a certificate
of optimality). Next, I will show how deep learning can not only be viewed as a large-scale optimisation problem
but can include smaller optimisation problems embedded within it, forming so-called bi-level and multi-level op-
timisation problems. Last, I will explore some practical considerations, open research questions and applications
involving differentiable optimisation in deep learning models. The lectures assume a solid understanding of linear
algebra and calculus at the first- and second-year undergraduate leveﬂ

1 Motivation

On 1 January 1801 Italian astronomer Giuseppe Piazzi discovered Ceres, a new planetoid, or dwarf planet, orbiting
the sun. Ceres was small and too dim to see by naked eye. Nevertheless, Piazzi managed to track the planetoid
using a telescope, making several measurements over 40 days, before further observation became impossible as Ceres
became occluded by the sun. Astronomers were keenly interested in observing Ceres when it re-emerged from behind
the sun but they lacked the mathematical tools to predict its exact position and trajectory. The problem piqued the
interest of Carl Friedrich Gauss, then 24 years old. He developed a model of planetary motion and used the method
of least-squares, which he had developed a few years earlier, to fit the model to Piazzi’s observations [33]. This
was perhaps the first application of an optimisation algorithm—the method of least-squares—to scientific discovery.
Gauss’s predictions were so accurate that it allowed another astronomer, Franz Xaver von Zach, to quickly recover
Ceres on 31 December 1801, as it emerged from behind the sun one year after being first discovered.

Figure 1: Discovery of Ceres by Piazzi, which led to development of the method of least-squares by Gauss.

Today optimisation is everywhere in science and engineering. In financial mathematics problems involve maximising
profits or minimising costs subject to constraints on resources and budgets. In engineering we wish to find the best
design amongst a family of candidates, for example, maximising the span of a bridge subject to load constraints or
minimising the size of a transistor in a circuit subject to power and timing constraints. In logistics and planning we
may wish to find the cheapest way to distribute goods from suppliers to consumers across a networkﬂ In robotics for
optimal control of dynamical systems. In statistics and data science optimisation is used for curve fitting and data
visualisation. And it is at the heart of machine learning and deep learning when we minimise loss functions with
respect to the parameters of our model.

*First given at the International School on Artificial Intelligence and its Applications in Computer Science, 15 December 2022.
ITextbooks covering the necessary background include Strang [32], Magnus and Neudecker [25], Spivak [31].
2A related dual problem is to find the worst bottleneck within a so-called max-flow/min-cut network.

2 Convex Optimisation Review

This lecture covers standard topics in convex optimisation and largely follows the presentation of Boyd
and Vandenberghe [6]. Other good reference texts include Bertsekas [4], Nocedal and Wright [27],
Hiriart-Urruty and Lemarechal [I5], and Rockafellar [29].

2.1 Formal Definition

We can summarise optimisation as
“finding values for a set of variables that minimises a measure of cost subject to some constmints”ﬂ

which is often written in a standard format,

minimize (over x) objective(x)
subject to constraints(x)

or, more formally,

minimize fo(z)
subject to fi(z) <0, i=1,...,p (1)
hi(x)=0, i=1,...,q.

Here x = (z1,...,x,) € R™ are the optimisation variables (or decision variables), fo : R®™ — R is the objective
function (or cost function or loss), f; : R® — R for ¢ = 1,...,p are the inequality constraint functions, and
hi : R" — R for 4 = 1,...,q are the equality constraint functions. If the problem has no explicit constraints
(p = ¢ = 0) we say that the problem is unconstrained. An inequality constraint f; is active at a feasible point x if
fi(x) = 0. Tt is inactive if f;(x) < 0. Denote by

p q
D= (ﬂ dom(fi)> N (ﬂ dom(hi)> CR" (2)
i=0 i=1

the domain of the optimisation problem. The domain may impose implicit constraints on x. For example, logx

has implicit constraint = > 0. Together (the domain and) the inequality and equality constraint functions define the
feasible set,

filx) <0, i=1,...,p
{MD‘ hi(z) =0, i=1,...,q } (3)

i.e., the set of vectors x that are in the domain of the problem and satisfy all of the constraints. A solution, or
optimal point, z* has the smallest value of f; among all feasible points. A solution may not always exist. The optimal
value of the problem is often denoted by p* and is equal to fo(2*) when a solution does existsﬁ Note that there may
be multiple solutions but the optimal value is unique. Formally, we define the optimal value as

o . fz(JC)SO, iZl,...,p
p —;gfp{fo(l‘)’ hi(z) =0, i=1,....q } (4)

If the problem is infeasible, i.e., no = satisfy the constraints, then p* = co. If the problem is unbounded below then
p* = —oo. We will mostly be interested in problems where x* exists and p* is finite.

So far we have required z* to be a global solution, i.e., have lowest objective value among all feasible x. In some
problems it may be too expensive to find the global minimum and we’d be satisfied with a local minima. We say that
a point z is locally optimal if it is the best solution within some local neighbourhood, formally if there exists an
R > 0 such that z is optimal for the following problem,

minimize (over z) fo(2)

subject to fi(z) <0 i=1,...,p (5)
hi(z) =0 i=1,...,q
|z — z|2 < R.

Figure [2| shows example optimal points for one-dimensional unconstrained problems (n = 1, p = ¢ = 0). An example
with two inequality constraints in two dimensions (n = 2, p = 2, ¢ = 0) is shown in Figure

3In these lectures we will be concerned with continuous-valued variables.
4While we have tried to be very careful to avoid confusion notation, this is the one place where notation clash is unavailable. The
number of equality constraints, denoted by p, and optimal value, denoted by p*, are very different things.

1/x —logx

Jo:
dom (fo): Ry Ry
p*: 0 —00
" no optimal point no optimal point

zlogx 2 — 3z
Ry R
—1/e —00
1/e z = 1 locally optimal

Figure 2: Global and local optimality for one-dimensional (unconstrained) examples.

L2
' , P ~ . N N
i b - ~ \
’ N \
1
,’ ' / PN AN \
/ ~ \
| ’ \ \
I | . — - N \
| | X ’ ~ N N \
1 | o~ NN N \
\ \ Lo N \
\ \ AN
\ \ \
\ \ \ NN A
\
) \ \ NN T \
\ \ \ N /] |
\ \ N N /]
\ \ \ N , f
\ \ \ \ S - ,
\ N N - ,)
N\ N
\ \ N ~ ’ /
\ \ N S~___-~ ’
N N ~ ’
\ N > s
N N S -
N ~ -
N -~___- _
>
N
N ~ - Tl
N \\ //
N S~ -

Figure 3: Example two-dimensional constrained optimisation problem with two constraints (one is inactive). Dashed line

shows contours of the objective function. Shaded area represents the feasible set.

In this example, removing the inactive

constraint gives the same solution; while removing the active constraint gives a different solution.

2.2 Least Squares

Let us now revisit the least-squares problem,

minimize ||Ax — b||3. (6)

Assuming that the matrix ATA is invertible the problem has an analytic solution,
2t = (ATA) AT (7)

which can be obtained by differentiating the objective and setting it to zero. However, instead of computing the solution
directly, efficient iterative algorithms are usually used in practice. The computation time for solving a least-squares
problem is O(n?m) for A € R™*" typically m > n, and less if A is structured.

The matrix ATA will not be invertible if A is not full rank. In this case we can still write the solution in closed-form
using the singular value decomposition of A. Assume matrix A has rank r and let A = ULV?. Then ¥ is an r-by-r
diagonal matrix with non-zero diagonal elements. Expanding the objective function we have,

fola) £ | Az — b3 = (Az — b)" (Az — b) (8)
= 2T ATAz — 26" Ax 4+ b"b (9)
=27V Te —2TUSV Tz +b7b (10)
= 27522 27Uz + b7 (11)
where z = VTz. Now differentiating with respect to z,
Vfo(z) = 2%%2 — 22U D (12)
= 2% (22 — UTb) (13)
=0 (14)

Therefore z* = X7'UTh and a* = Vz* = VE_lUTbE In fact, any x* + w with w in the null space of A is also a valid
solution since A(x* + w) = Az* + Aw = Az*.

Yet another popular method for solving least-squares is via QR factorisation. Let A = QR with Q7Q = I and R an
n-by-n upper triangular matrix. Then

ot = (ATA) T AT (15)
— (R"QTQR) ™ RTQ"b (16)
= (R"R)"' RTQ"b (17)
=R 'RTRTQ"Y (18)
=R'Q"b (19)

1

where multiplication by R~' is implemented via back substitution [32].

Just like Gauss did for estimating the trajectory of Ceres, the most common use of least-squares is fitting a curve to a
set of points, or regression. Let us consider the example of fitting an n-th order polynomial curve f,(z) = ZZ:O apzk
to set of noisy points {(x;,y;)}",. That is, we assume that the y; are measured as y; = f.(x;)+¢; where ¢; ~ N(0,02)
is random Gaussian noise. An example is shown in Figure [d The n + 1 coefficients of the polynomial that best fits
the points in terms of minimising the sum-of-squares residual between the points and the curve,

. 2

argmin, 30" (fa(2:) —vi)” (20)
are found by solving a least-squares optimisation problem,
2

1z 22 x| [ao Y1
2 n
i) x5 el T ai Y2
minimize (over a € R"*1) . o _ = . (21)
1 2 n
T Toy ... x| |an Ym] ||y

Here x and y are data for the problem and a is the optimisation variable (i.e., coefficients of the polynomial that we
seek to find).

Least-squares is a special case of convex optimisation, which we will discuss in a little while. However, before going
any further we need to introduce some basic ideas from convex analysis.

5To obtain * we technically needed to solve VT a = z* for . We can see that a* is a solution since VT a* = VT Vz* = [2* = z*.

Figure 4: Polynomial curve fitting is a least-squares optimisation problem.

T €2

T -7 T

Figure 5: Lines and line segments.

2.3 Convex Sets

A set, in our context, is just a collection of points in R™. A line through any two points x; and o defines a set
characterised by

x=0x;+ (1 —0)x2, (0€R). (22)

An affine set is a set that contains the line through any two distinct points in the set. For example, the solution to a
set of linear equations {z | Ax = b} defines an affine set. Conversely, every affine set can be expressed as the solution
set of a system of linear equations.

A line segment between x; and s is the set of points
x=0x1+ (1 —0)xs (23)
with 0 < 6 < 1]
A convex set is any set C which contains the line segment between every pair of points in the set,
z1,22€C = fOr;+(1—0)zzeClorall0<H<1 (24)

This is illustrated in Figure[f] Examples of some typical convex sets are shown in Figure[7] Notice that for all of these
sets, the line segment between any two points in the set, lies within the set. Cones have the property that arbitrary
nonnegative scaling of any point in the cone remains in the cone. Lorentz cones are also convex, but not all cones are
convex. The most common convex cones in machine learning are the nonnegative orthant, R” | and the set of positive
semindefinite matrices, S%.

The convex (resp. affine) hull H of an arbitrary set C is formed by taking the convex (resp. affine) combination of all
points in the set. It is the smallest convex (resp. affine) set that contains the set C.

The intersection of an arbitrary number of convex sets is a convex set.

An important result relating to convex sets is the separating hyperplane theorem. Roughly speaking, the theorem
states that for any two nonempty disjoint convex sets C and D, there exists a hyperplane with C on one side and D
on the other. The separation need not be strict (meaning that some points from C and D may lie on the hyperplane
itself). A consequence of (a variant of) the separating hyperplane theorem is the supporting hyperplane theorem,
which states that there exists a supporting hyperplaneﬂ at every boundary point of a convex set.

6The point x = x1 + (1 —)z is called a convex combination of x1 and z3. This can be extended to an arbitrary number of points,
that is x = Zle 0;x; with Z§:1 0; =1 and 6; > 0 is a convex combination of the points z1,...,xg.
7 A supporting hyperplane is one that touches the set at one or more points and has the set fall in the halfspace defined by the hyperplane.

(a) convex (b) nonconvex

Figure 6: Convex and nonconvex sets in 2D. The line segment between any two points in a convex set lies within the set.

a a
(a) Hyperplane, (b) Halfspace, (c) Polyhedron,

{z|a"z =0b} {z | aTx < b} {z| Az <b,Cz =d}
(d) Ball, (e) Ellipsoid, (f) Lorentz Cone,
{z|llz —zell <7} {Az + 0| ||zl <1} {(z, 1) | [l«]| <t}

Figure 7: Some common convex sets.

Figure 8: Basic inequality for convex functions.

ar +b zlogx

\/

log x
a—be "

N/

Figure 9: Some example convex functions (top row) and nonconvex functions (bottom row). Linear functions, ax + b, are also
concave. Of the nonconvex functions (bottom row), only log z is concave. All other functions are nonconcave.

2.4 Convex Functions

A function f:R™ — R is convex if dom (f) is a convex set and

f0z+(1—0)y) <0f(x)+(1—-0)f(y) (25)

holds for all z,y € dom (f),0 < 6§ < 1. This is sometimes called Jensen’s inequality (which technically extends the
inequality to an arbitrary number of points). Graphically this inequality states that the line segment between two
points on the function sits above the function as is shown in Figure

Function f is said to be concave if its negation — f is convex. Examples of convex and nonconvex functions are shown
in Figure [0} Several operations preserve convexity of functions such as taking the nonnegative weighted sum of a set
of convex functions, pointwise maximum of a set of functions (i.e., upper envelope), or minimising over a subset or
variables. See Figure [10] for two examplesf]

Convex functions can have straight regions and even a flat bottom. If the inequality in Equation [25| holds strictly (for
0 < 6 < 1) then the function is said to be strictly convex. Moreover, if the function has minimum positive curvature
everywhere (i.e., can be under approximated with a quadratic) then it is called strongly convex. Strong convexity is
useful for convergence analysis of optimisation algorithms and guaranteeing a unique minimum. Examples are given

in Figure
The epigraph of a function is the set formed by all the points above the functionEI It is useful for linking properties

8 An interesting observation is that the set of all convex functions forms a convex cone, since it is closed under nonnegative summation.
9The hypograph is the set of points lying under a graph.

max, axr + b
sum

e

Figure 10: Weighted sum and pointwise maximum (upper envelope) of convex functions is convex.

fi(z) Ja(z)
f2(z)

N~ @)

Figure 11: Smooth convex, nonsmooth convex, strictly convex and strongly convex.

we know about convex sets and convex functions. Formally, the epigraph of function f : R™ — R is the set
epi(f) = {(z,t) e R"" |z € dom (f) , f(z) < t}. (26)

A function f is convex if and only if its epigraph is a convex set. See Figure [12| for examples.

2.5 Differentiable Convex Functions

A function f is differentiable if dom (f) is open and the gradient

_ (9f(x) Of(=) of (x)
Vi) = (Ox1 ' Oxe ' Oxn,)

exists at each x € dom (f). A differentiable function f with convex domain is convex if and only if the following
first-order condition is satisfied,

fy) = f(2) + V(@) (y —2) forallz,y e dom(f). (28)

In other words, the first-order approximation of a convex function is a global under estimator. See Figure

(27)

A function f is twice differentiable if dom (f) is open and the Hessian V2 f(z) € S™,

_ f(2)

2 R
v f(l')” 61‘,’633]‘ ’

iji=1,....n, (29)

exists at each € dom (f). A twice differentiable function f with convex domain is convex if and only if

V2f(x) =0 for all z € dom (f). (30)

Figure 12: Epigraph of a function, epi(f) = {(z,t) | € dom (f), f(z) < t} € R™"*. A function f is convex if and only if
epi(f) is a convex set. Example convex function (left) and nonconvex function (right).

Figure 13: First-order condition for convexity of a differentiable function.

If V2f(x) = 0 for all x € dom (f), then f is strictly convex; if V2f(x) = mI for some m > 0 and all x € dom (f),
then f is strongly convex. Strongly convex functions have a unique minimum.

Let us end this section by exploring the log-sum-exp function as an important function in machine learning and
interesting example of a convex function,

flx) = logZexpzk. (31)
k=1

This function is twice differentiable so we can test its convexity by examining its Hessian. To do so we write down its
partial derivatives with respect to each element of z,
of(z exp &;
flz) _ P (32)
ox; Y k1 €XP T
0% f(x) B (> r_jexpay) [i = j]lexpx; — expx; exp x; (33)
Owidz; (ko exp)’

where the second line comes from differentiating the first line with respect to z; using the quotient rule. Here [i = j]
is the indicator function, returning value one if its argument is true and zero otherwise. Readers familiar with machine
learning will recognise the first derivative of log-sum-exp as the so-called softmax function. Introducing z; = exp x
we can write the above expression more compactly as

= . 34
Ox;0x; (1Tz)2 (34)
Here 17z is shorthand for >i, z. The Hessian assembles these second partial derivatives into a matrix,
1
V2f(z) = 172)diag(z) — 22T 35
() = g (172 diag(z) — =) (3)
To show that V2 f(z) = 0, we must verify that v7V2f(z)v > 0 for all v,
1
vIV2 f(x)v = ar)2 v’ ((172)diag(z) — 2z") v (36)
172
1
= —— ((1"2)v" diag(z)v — (v"2)?) (37)
(172)

So showing convexity of the log-sum-exp function amounts to proving that (17 2)v” diag(z)v > (v7'2)2, observing that

the multiplicative factor ﬁ is always positive. That is, we need to prove that

n n n 2
<Z zk> <Z zwi) > (Z vkzk> , (38)
k=1 k=1 k=1

which is a straightforward application of the Cauchy-Schwarz inequality, (a®b)? < ||al|3]|b|3, with a = (\/z1,- .-, /Zn)
and b = (\/Z101,...,/ZnVn). Therefore, log-sum-exp is convex.

A cute alternative proof is to write,

n 2
TVQ 7) = Z Gkvk (Z gk’l)k> (39)
k=1

where 0, = 77-. Note that since z; > 0 we have 0y > 0 and 179 = 1. Thus, the quantity 22:1 0rv is a convex

combination of the vg. Now, by Jensen’s inequality we have

g (i 9kvk> < if)kg(vk) (40)
k=1 k=1

for any convex function g. Letting g(x) £ 22 gives the desired result.

2.6 Convex Optimisation Problems
An optimisation problem,

minimize fo(x)
subject to fi(x) <0, i=1,...,p (41)
hi(x)=0, i=1,...,q

is convex if the objective function fy and all the inequality constraint functions f; are convex and all the equality
constraint functions h; are affine, h;(x) 4 alrx — b;. The latter is often written in matrix form as Ax = b. Under this
restriction each constraint defines a convex set, the intersection of which satisfies all constraints and is also a convex
set. So a convex optimisation problem minimises a convex function (equivalently mazimises a concave function) over

a convex feasible set.

A key feature of convex optimisation problems is that any locally optimal point is (globally) optimal. This fact can
be easily proved.

Proof. Suppose that z is locally optimal, but there exists a feasible y with lower objective, i.e., fo(y) < fo(z). Since
x is locally optimal there must be an R > 0 such that

z feasible and ||z — z|]|]s < R = fo(2) > fo(x)

Consider z = 0y + (1 —) with § = ﬁ. We have that ||y — z||2 > R since we assumed fo(y) < fo(z),

so 0 < 0 < 1/2 < 1. Therefore z is a convex combination of two feasible points, hence also feasible. Moreover,
|z — z||2 = R/2 (from our choice of §) and therefore fy(z) > fo(z) by our assumption that z is locally optimal. But

fo(z) <0fo(y) + (1 —0)fo(x)
< Ofo(x) + (1 —0)fo(z)

= fo(z)
where the first inequality is by the definition of convex function and the second inequality is from our assumption that
fo(y) < fo(x). We have a contradiction. Therefore every locally optimal point is globally optimal. O

A graphical illustration of the proof is shown in Figure [I4]

There are many standard types of convex optimisation problems categorised by the functional form of the objective and
constraint functions. Examples include linear programs (LPs), quadratic programs (QPs), quadratically constrained
quadratic programs (QCQPs), second-order cone programs (SOCPs) and semidefinite programs (SDPs).

2.7 Optimality Criterion

Without actually solving a given optimisation problem we can state conditions that must hold at any optimal point.
Specifically, for differentiable convex objective function fy, a point x is optimal if and only if it is feasible and
Vfo(z)T(y — z) > 0 for all feasible points y. If the gradient V fo(x) is nonzero then this says that V fo(z) defines a
supporting hyperplane for the feasible set X at point = (see Figure. In other words, fo cannot be further minimised
by moving in a descent direction from x and remaining feasible.

10

Figure 14: Graphical proof that local optima of convex optimisation problem are global optimal: Towards contradiction,
suppose z is locally optimal, but there exists a feasible y with lower objective. Since x is locally optimally there exists a radius
R such that no other point within R of z has lower objective (and so y must be further than R from z). Pick a point z on
the line segment between z and y and within R of . So z must be feasible and have objective no lower than x. But, by the
basic inequality of convex functions, the objective value at z must be between that at = and y, i.e., lower than fo(z). We have
a contradiction.

Figure 15: Optimality criterion for differentiable fo.

11

2.8 Duality

Duality plays a central role in the theory of convex optimisation. Let us start be defining some auxiliary functions.
The Lagrangian function £ : D x R? x R? — R for an optimisation problem in standard form (Equation [1)), not
necessarily convex, is defined as

L(z,\,v) = fo() +Z>\ifi($) +ZVihz'(93)~ (42)

It can be seen as the weighted sum of the objective and constraint functions. Variable A; is the Lagrange multiplier
associated with the ¢-th inequality constraint. Likewise, variable v; is the Lagrange multiplier associated with the i-th
equality constraint. Lagrange multipliers are also called dual variables (and x is then the primal variable).

From the Lagrangian function we can derive the dual function, g : R? x R?, as

g(\v) = inf L(z,\v) (43)

=1 i=1

The dual function is always concave even if the original problem is nonconvex. This is because it is the pointwise
minimum over a set of affine functions (in A and p). It can, however, be unbounded below for some values of A and v.

An important property of the dual function is that it provides a lower bound for the optimal value of the original
optimisation problem for any A = 0. That is, if A = 0, then g(A,v) < p*. The proof for this is straightforward but
subtle.

Proof. Let & be any feasible point and A = 0. Then

fol#) 2 £(EA,v) 2 inf £z, 0) =g\)
where the first inequality comes from observing that for feasibility h;(Z) = 0 and f;(Z) < 0, hence Y 7_, X\ f; (%) < 0. O

It is very natural to try maximise this lower bound, giving rise to the Lagrange dual optimisation problenﬂ

maximize g(\,v)
subject to A >0 (45)
which is (always) a convex optimisation problem with optimal value denoted by d*. The optimisation variables A and
v are dual feasible if A = 0 and (\,v) € dom (g).

Since g satisfies the lower bound property we have that weak duality, d* < p*, always holds. This can be used to
find nontrivial lower bounds for difficult problems since the dual problem, being convex, may be easier to solve than
the original primal problem. A stronger condition, known as strong duality, occurs if d* = p*. This does not hold
in general but often holds for convex optimisation problems (e.g., LPs and QPs). Tests that guarantee strong duality
on convex optimisation problems are called constraint qualifications (see Boyd and Vandenberghe [6]).

2.9 KKT Conditions

The following four conditions state what needs to hold at optimality for problems with differentiable objective and
constraint functions. They are known as the Karush-Kuhn-Tucker (KKT) conditions and generalise the condition that
V fo(xz) = 0 for unconstrained problems to constrained problems. The solution to any (differentiable) optimisation
problem where strong duality holds must satisfy the KKT conditions. Moreover, for convex optimisation problems,
the KKT conditions are sufficient for points to be primal/dual optimal. The conditions on (x, A, v) are:

e primal feasible: fi(z) % (())’ i=1.p

, i=1,...,q
e dual feasible: A = 0

e complementary slackness: \;fi(z) =0fori=1,...,p

10The original problem is known and the primal problem.

12

e the gradient of the Lagrangian with respect to = vanishes,
P q
Vi) + > NVfix)+ Y viVhi(z) =0 (46)
i=1 i=1

The last condition states that negative gradient of the objective —V fo(z) lies within the union of the conic hull of the
gradients of the inequality constraint functions V f;(x) and span of the gradients of the equality constraint functions
Vh;(x), sometimes called the normal cone. Mathematically,

—Vfo(z) € cone(Vfi(z)|i=1,...,p) Uspan(Vh;(x) |i=1,...,q) (47)
which is essentially the same as the optimality criterion discussed in Section [2:7]

2.10 Algorithms

There are a very great number of algorithms for solving convex and nonconvex optimisation problems. We will only
scratch the surface here and present the most vanilla variants and in all cases assume that our problems are convex and
that objective and constraint functions twice continuously differentiable. Let us start with the most straightforward
case of unconstrained optimisation,

minimize fo(z). (48)

2.10.1 Gradient Descent

Gradient descent is a simple iterative algorithm that proceeds from an initial starting point = in the domain of the
objective function and keeps taking steps in the negative gradient direction to reduce the value of the objective until
some stopping criterion is met, typically when the gradient norm is below some threshold or a maximum number of
iterations is exhausted. In summary,

1. given a starting point z € dom (fy)
2. repeat x :=x — tV fo(x). (choose step size, t)
3. until some stopping criterion satisfied, e.g., |V fo(z)]|2 < e.

2.10.2 Line Search

Let Az denote the search or step direction. For gradient descent this is just —V fo(z) but there are many other
possibilities. For example, coordinate descent chooses as Ax one of the canonical directions e, and later we will see
other mechanisms for choosing the search direction. An important consideration for any descent algorithm is how big
a step to take in the search direction (Line 2 above). Too large a step and we could overshoot the minimum (or risk
leaving the domain of fy). Too small a step and we are wasting compute, slowing down convergence. Here there are
three standard strategies. First, we could decide ahead of time on a step size schedule, e.g., by setting ¢ to a small
constant or starting with some initial £ and decaying with each iteration. Second, we can perform an exact line search
to find the minimum value of the objective along the search direction,

t* = argmin,. o fo(z + tAx). (49)

Last, we can perform an approximate line search using a backtracking procedure to trade-off taking a big step with
making sufficient progress on decreasing the objective value. Standard backtracking line search has two parameters:

o € (0,1) that controls the above mentioned trade-off and 8 € (0,1) that controls the granularity of the search.
Starting with ¢ = 1, backtracking line search repeatedly reduces ¢ to 8t until the following condition is satisfied,

fo(z +tAz) < fo(x) + atV fo(z) Az (50)

The procedure is illustrated in Figure Conceptually there is a step size ty that occurs when the line with damped
gradient fo(z) 4+ atV fo(z)TAx intersects the function fo(z + tAz). Backtracking line search stops at the first ¢ < tg.

2.10.3 Newton’s Method

Even with exact line search the gradient descent algorithm can be slow to converge as the example in Figure [17]shows.
One way to speed convergence is to choose a search direction that takes into account the curvature of the objective
function. Netwon’s method does this by choosing the search direction as

Axye = —V2 fo(2) 1V fo(2) (51)

13

fo(z + tAx)

fo(z) +tV o (x)TAx

Figure 16: Backtracking line search.

l,mlt

Figure 17: Example gradient descent on function fo(x) = 23 4+ yo3 with v > 1.

which can be thought of as being the value of v that minimises the second-order approximation of fy at x,

fa) = fole) + Vo) v+ 507V ol (52)

Newton’s method proceeds in a similar fashion to gradient descent with Az, taking the place of the negative gradient
—V fo(z). It is much faster to converge than gradient descent at the expense of having to calculate the inverse Hessian.
Indeed, for the problem shown in Figure Newton’s method converges in one iteration! For small to medium size
problems (of up to a few thousand variables) the added expense is worth itE

2.10.4 Equality Constrained Optimisation
We now turn our attention to equality constrained problems,

minimize fo(z)
subject to Ax =05 (53)
where A € R7*"™ with rank(A) = ¢ (and b € range(A) else the problem is infeasible). For such equality constrained
problems we know that z* is optimal if and only if there exists a v* such that

Vio(z*)+ ATv* =0 and Az* =b. (54)

Starting at a feasible point z a modified Newton step Axy; can be found by solving

{VQJAO(IE) fﬂ m _ [—Vgo(x)} (55)

for variable v. The system of equations can be viewed as solving the optimality conditions for a quadratic approximation
of the constrained optimisation problem,

minimize (over v) f(z +v) £ fo(x) + Vfo(x) v+ 30V fo(z)v (56)
subject to Alx+v)=b

Observe that the second row in Equation [55| ensures that the x iterates stay feasible, since Av = 0 and therefore for
feasible x we have A(x + tAxy) = Ax + tAAxT, = Az =b.

" For larger problems quasi-Newton methods, such as L-BFGS [19], are very popular and offer a trade-off between second-order methods
and first-order gradient descent. When we get to deep learning with millions of parameters even L-BFGS becomes too expensive and we
are forced to use first-order methods.

14

Figure 18: Left: Log-barrier approximation to the indicator function, —% log(—u). Right: contour plot for log-barrier of a

two-dimensional polyhedron, ¢(z) = —1 37 log(bi — al'z). The log-barrier function climbs very sharply as we approach the

boundary of the feasible set from the inside. It has infinite value outside of the feasible set.

2.10.5 Inequality Constrained Optimisation

The classic approach to dealing with inequality constrained optimisation problems,

minimize fo(z)
subject to fi(z) <0, i=1,...,p (57)
Ax =1

is to first reformulate the problem by moving the inequality constraint functions into the objective via composition
with an indicator function,

minimize fo(x) 4+ Zle Ir_(fi(x)) (58)
subject to Ax =05

where Ig_(u) =0ifu <0 and Ig_(u) = oo otherwise. The reformulation is exactly equivalent to the original problem.
We then approximate the indicator with a logarithmic barrier function, which is twice differentiable. This results in
an equality constrained problem parametrized by variable ¢ that closely approximates the original problem,

minimize fo(z) — + 30, log(—fi(z)) (59)
subject to Az =b.

The larger the value of ¢ the closer the logarithmic barrier approximates the indicator function (see Figure . We
typically start with a small ¢ and solve the resulting equality constrained problem using Netwon’s method. We then
repeatedly increase t and, starting with the solution in hand, solve the new equality constrained problem giving better
and better approximations to the original problem.

2.10.6 Large Scale Optimisation

For very large scale problems, e.g., as occur in deep learning, Newton’s method is too expensive. Even computing the
true gradient may be too expensive. Fortunately it is typical for machine learning loss functions (i.e., unconstrained
objectives) to decompose over the training data {(x;,y;)}7,,

L) = > 6 (wi0),) (60)

A method that works well for such problems is to approximate the gradient on a subset (or mini-batch) of the training
data Z C {1,...,m} to give,

VoL = — S Vol (:50), 1) (61)

The so-called stochastic gradient descent (SGD) algorithm uses this approximation instead of the true gradient in a
gradient descent procedure with decaying step sizeE Under mild assumptions the expected value of the estimated

12Here a line search is not used because evaluation of the objective function, i.e., loss function is so expensive and would be needed at
multiple locations along the line search.

15

gradient equals the true gradient, E [V/\QL} = VyL, and it can be shown that SGD converges to the optimal solution

of convex problems [28]. In practice, we randomly permute [m] (to avoid statistical biases in how the training data is
ordered) and iterate through adjacent fixed-length intervals to determine Z. One pass through the data is called an
epoch. Variants of SGD such as AdamW [23] are the most popular methods used in deep learning. There are many,
many other methods tailored for all sorts of optimisation problems.

2.11 Summary

Convex optimisation and analysis is an incredibly rich field of study with a fascinating history. This brief introduction
has necessarily just touched the surface. There are many topics that we have omitted—generalised inequalities,
problems involving matrix arguments, conjugate functions, Frenchel duality, non-smooth optimisation [26], convergence
analysis, numerical linear algebra, etc. The interested reader is encouraged to dig deeper by reading the standard
texts cited at the beginning of this lecture.

16

@ﬂi@ fe:XXQ_}J}

Figure 19: Machine learning from 10,000ft.

Figure 20: Example of a deep learning model as an end-to-end computation graph. This graph implements the composed
function y = fs(fa(f3(f2(f1(2)))), f7(fe(f5(f1(x))))) where each f;’s parameters have been omitted for brevity. Note here that
fs takes three arguments: one the output from f4, another the output from f7, and the last parameters 6g.

3 Differentiable Optimisation and Deep Learning

This lecture is based on material from Gould et al. [I2] and Dontchev and Rockafellar [10]. Other good
references include Dempe and Franke [9], Gould et al. [11] and Amos [1].

One view of machine learning (especially supervised classification and regression tasks) is to find a function f that
maps from an input space X’ to an output space) (see Figure . Since we can’t practically search over all possible
mappings we define a function class parametrized by 6 and train a model on samples from X and Y to minimise (over
) some loss function L, which typically decomposes over sampled input-output pairs,

minimize Z(g;,y)NXXJ} L(fo(x),y). (62)

This is called empirical risk minimisation [35]. Here the loss function L tells us what to do, and the parametrized
function fy tells us how to do it. The objective (composed of the loss L and the mapping function f) is, in general,
nonconvex in the parameters 6. As such, we can only hope to find a local minima of the learning problemE

In deep learning the function fy is a composition of simple differentiable parametrized sub-functions, and the param-
eters are optimised end-to-end. The composed function can be represented by a computation graph as illustrated in
Figure [20] where the sub-functions are depicted as nodes in the graph. This type of representation is very popular for
describing deep learning architectures where nodes can denote anything from a very simple arithmetic operation to
very complicated algorithmic procedures and data transformations.

To compute the derivative of a loss function at the output of the graph, with respect to any parameter or input of the
graph, we simply apply the chain rule of differentiation by following the arrows backwards through the graph. This is
known as back propagation. Two examples are shown in Figure [21] for computing the derivative of the loss L with
respect to parameter 6; and parameter 6, respectively. Here writing out the chain rule we have

0L 0L 0y 0z oL 0L <8y 0z4 O0z3 Ozg Oy Oz7 Oz 8Z5> 021

bl it Bede d 0= _ hdats
90; _ Oy 0z 00, 90, _ ay 90, (63)

824 823 82’2 82:1 + 82’7 82:6 825 824

where, for the latter derivative g—oﬁ, the first term in summation is from the top branch and second term in summation
is from the bottom branch of the graph.

So a deep learning node has two distinct operations. In the forward pass the node computes the output y as a
function of its input z and model parameters GE In the backward pass, which is used during training, the node

131n practical applications suboptimal solutions are often desirable since finding the globally optimal solution can result in poor gener-
alization of the model to unseen test samples. Techniques such as regularisation, data-augmentation, and model selection on a hold-out
validation set all help in this regard, but are beyond the scope of these lectures.

14Not all nodes will have parameters and sometimes parameters are shared between different nodes. The former case is trivial. The
latter is also easily handled by summing over paths in the backward pass but we won’t consider it further in these lectures.

17

(a) Computing 8876. (b) Computing gTLl'

Figure 21: Back-propagation of gradients through the computation graph. See text for details.

must compute the derivative of the loss L with respect to the input x (and model parameters) given the derivative
of the loss with respect to the output y. The fact that gradients can be propagated throughout the whole network
makes the deep learning model end-to-end learnable.

3.1 Notation

Before proceeding it is worth clarifying notation. For scalar-valued functions f : R — R we denote by
df
dx

the total derivative of function f with respect to argument x. If a function takes more than one argument we can
differentiate with respect to each argument separately by taking partial derivatives denoted by, for example,

of (z,y)
T (65)

What is often confusing is when y is also a function of x. Then calculus dictate that the total derivative with respect
to x is the sum of direct and indirect terms,

df(z,y) _ 0f(z,y) Of(z,y)dy

(64)

= . 66
dx Ox * Oy dx (66)
We already saw in the previous lecture that for multi-dimensional functions f : R — R we denote the gradient by
df df
=(-—,...,— 67
Vi@ = (3 g) (67)

which is an n-dimensional (column) vector. More generally, for multi-dimensional vector-valued functions, f : R"” —
R™ we define

dfs daf

d dz, 77 dz,

@f(x) =1 : . : (68)
dfm dfm
dzq e dz,

as the m-by-n matrix of total derivatives. Note that this is the transpose of V f for scalar-valued functions. For
functions with signature f : R™ x R — R™ we can also define the matrix of partial derivatives,

6f1 afl

a Oxq Tt Oy,

5‘7xf(x’ =1\ -~ | (69)
Ofm Ofm
Oxq T Ox,

This convention makes the chain rule particularly easy to express by, for example, replacing the scalar products in
Equation [66] with matrix multiplications and following the same ordering of expressions. We also have that the affine

function y = Ax + b has derivative % = A € R™*"™ without having to introduce transposes, which is nice

Symbols D and D x are also used to denote the derivative operators, which is cleaner that writing % and 8%’ especially
with inline text, but is less familiar to students so won’t be used here. Some authors use D; for partial derivatives
with respect to the first argument, D5 for the second, etc.

Last, and perhaps most importantly, authors (including ourselves) are sometimes sloppy with notation and the reader
should carefully check the intent from the context.

150ne drawback of this convention is that the gradients propagated through deep learning networks are with respect to a scalar-valued
loss function L and, in all frameworks, stored transposed so that they have the same dimensionality /shape as the variable with respect to
which the derivative is taken.

18

3.2 A Linear Example
To make the above concrete, consider a node that computes a linear function of its input,
y = Ax. (70)

This could be, for example, a convolution layer in a convolutional neural network (CNN) or a linear layer in a multi-
layer perceptron (MLP). Here x € R™ serves as the input and A € R™*" are the parameters. (We neglect the bias
term for brevity). Back-propagating the derivative of the loss through the node we have

dL dL
= _ = 1
dr dy (1)

where % € R'™™ is the outgoing derivative of the loss with respect to the input and ?TL € R'™™ is the incoming
derivative of the loss with respect to the output. Remember gradients are propagated backwards. Observe that the

computational costs of the forward pass and backward pass are identical, O(mn) in this case, and less if A is structured.

We can also compute the derivative of the loss with respect to any or all of the parameters. Consider a single parameter
A;;. We have

AL _dLdy _dbp o dL)
ddy; dyddAy dy 7T dy
where we obtained F;;x from % = gﬁfj = ﬁ’?jx + Ad‘iﬁj .

As a prelude to later material, we can also consider the case where we move A to the left-hand side. That is, finding
the output y that is the solution to a system of linear equations parametrized by A and =,

Ay = x. (73)

Here we assume that A € R™*" is full rank so that a unique solution, y = A~ 'z, always exists. Unlike the previous
example, we now need to solve a system of equations in the forward pass, which is a lot more work, costing O(n?)
in general, and less if A has some structure (e.g., diagonal, triangular, orthonormal, etc.). Notwithstanding this
additional computational cost in obtaining y from z (and A), we can still compute derivatives of the loss with respect
to both x and A. Following the same approach as above, we have

dL dL
— =41 74
de dy (74)
and
dL dL
= . 75
where we have used the identity d‘gt_l =_—A"! %A‘l and substituted for already computed quantities (% and y) to

simplify where appropriate. Letting v” = (dl—L and wT = % we can obtain w by solving the adjoint system v = ATw.

Importantly, any factorization of A used to solve for y in the forward pass can be reused in the backwards pass. This
makes the backward pass much faster than the forward pass for any A with nontrivial structure.

3.3 Automatic Differentiation

Automatic differentiation (AD) is an algorithmic procedure that produces code for computing exacﬂ derivatives
of functions implemented in software code. This is different from numeric gradient approximation by, say, finite
differences. It assumes that calculations are composed of a small set of elementary operations that we know how
to differentiate. This includes basic arithmetic, exponentiation, logarithms, and trigonometric functions. Automatic
differentiation is the workhorse of modern machine learning that greatly reduces development effort.

There are two main flavours of automatic differentiation:

e forward mode fixes an independent variable u and computes derivatives g—z for all dependent variables v

e reverse mode fixes a dependent variable v and computes derivatives % for all independent variables «

16Up to machine precision.

19

- procedure FWDFON(z) .. procedure BcKFCN(z, yr, —fy’;)
1
s o g? S
3 fort=1,...,T do N fort=T,...,1do
' Yt % (yt—l + yil) Oyt [0z
end for § diL(idiL+d7L<1)
6 return yr dx dz " dy: \ 2yi-1
7. end procedure . dL dar (1 _ =
p dyi—1 = dy: \ 2 2%271
————
Oyt /0yt —1
6: end for
- drL dL , dL 1
" de ¥ & + dyo 2
8 return ?TL
x
o. end procedure

Figure 22: Toy example for demonstrating automatic differentiation. The forward pass code implements the famous Babylonian
algorithm for computing y = v/z. The backward pass code is automatically generated by unrolling the Babylonian algorithm to
compute dL/dz = (dL/dy)(dy/dx) given dL/dy. Of course, this example is only for illustration: knowing that the forward pass
returns y/z we could simply hand code the backward pass as dL/dz = (dL/dy)(1/(2y)) using the fact that dy/dz = 1/(2y).

Figure 23: Computation graph for the Babylonian algorithm from Figure The forward and backward passes are denoted
by solid and dashed arrows, respectively.

The difference between forward and reverse mode automatic differentiation boils down to the order in which terms in
the expression for the gradient are evaluated. As a concrete example, consider again the derivative of the loss L with
respect to parameter 6; shown in Figure Forward mode automatic differentiation evaluates this expression from
right to left as,

oL OL /[dy 0
gL _ 94 (9y 9= (76)
897 8y (927 897
——
Ay /007
so by the end we have computed /907 for all variables z7, y, and L.
Reverse mode automatic differentiation evaluates the other way around, i.e., from left to right,
oL OL Oy \ Oz7
— =\ = | = 7
00~ (Yy Oz7 > 007 (77)
——
OL/0z7

so by the end we have computed dL/0y, OL/dz7, and OL/06.

The same pattern extends to longer chains and multiple differentiation paths such as for computing dL/96; in Equa-
tion [63] Due to computational advantages of reverse mode automatic differentiation for computing gradients over
multiple parameters (and scalar loss function), it is preferred for deep learning in a process known as back-propagation,
which also re-uses intermediate calculations where possible.

Different deep learning frameworks use slightly different approaches (explicit graph construction versus eager evaluation
and operator tracking). But in all frameworks the developer only needs to implement the forward pass operation for
a node and the backward pass is automatically generated. In general, for each line of the forward pass code, P, Q =
foo(A, B, C), automatic differentiation needs to produce a line dLdA, dLdB, dLdC = foo_vjp(dLdP, dLdQ) in the
backward pass code. Here vjp stands for “vector-Jacobian product” and is a term used in deep learning to denote the
matrix operations that implement the chain rule in reverse mode. Usually the inputs A, B and C, and outputs P and Q
are also made available to foo_vjp through a so-called context variable. We’ll see some actual examples in Section [4

A toy example of automatic differentiation is shown in Figure Here the forward function implements an algorithm
known as the Babylonian algorithm for computing the square-root of its argumentﬂ Each step in the Babylonian

171t is an interesting exercise to analyse the convergence of this algorithm. Hint: first establish that \/z is a fixed point. Then show that
yf >z for t > 1 and, together with y; > 0, hence y; — y:—1 < 0 so that y; is a decreasing sequence bounded below by +/z.

20

float Q_rsqrt(float number)

{
long 1ij;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i = % (long *) &y; // evil floating point bit level hacking
i = 0x5£3759df - (i > 1); // what the f#*xk?
y = % (float *) &i;
y =y * (threehalfs - (x2 * y *x y)); // 1st iter
// 'y =y * (threehalfs - (x2 * y * y)); // 2nd iter, can be removed
return y;
}

Figure 24: Fast inverse square root implementation from Quake III Arena. (Source: Wikipedia)

algorithm is differentiable so automatic differentiation can generate the backward pass code by unrolling the forward
pass iterations using the chain rule of differentiation,

dy, Oy Oy dyi—1

de 0z Oy_1 dz
1 1 T dys—1

= +=(1-) 79

2yp1 2 (yt2—1> dz (79)

The corresponding computation graph for this process is depicted in Figure 23] Note that the intermediate values v
computed in the forward pass are re-used in the backward pass calculation. Now, in this toy example we could simply
have implemented the backward pass using

(78)

dy dyz 1 1
de dz 2z 2 (80)

since we know that the forward pass computes y = \/EE However, the beauty of automatic differentiation is that
for significantly more complicated operations we do not need to figure out the gradient manually. We now turn our
attention to a more interesting example of forward pass code that computes the inverse of the square-root.

While being a wonderfully powerful tool that has revolutionised machine learning, automatic differentiation does not
always work. Specifically if the implementation of the forward pass function contains steps which are not differentiable
(even if the overall mathematical function itself is differentiable) then we cannot use automatic differentiation. How
might this happen? Well, consider the C code shown in Figure which is the fast inverse square root implemen-
tation from Quake IIT Arena (from the early 1990s). This operation is needed when normalizing vectors, which is
a common operation in 3D graphics and therefore must be made to run very fast. The code (which is not actually
C-standard compliant) makes use of bit manipulations on the IEEE floating-point number representations to get a
rough approximation to the inverse square-root and then performs a single Newton step update. This already gives
a highly accurate result (and the second Newton step is commented out). At the time, running on a CPU, the code
was about four times faster than computing and inverting the standard library function sqrt (x).

Because of the bit manipulations the Quake III Arena code cannot be automatically differentiated. But the mathe-
matical expression y = 1//z is clearly differentiable, namely,

dy 11 1,

i i Ul oy

So in some situations we may want to optimise the forward pass code to make it run faster but the resulting code
may then be non-differentiable even if the mathematical function that we are implementing is differentiable. In other
cases we might just be able to write a faster implementation of the backward pass code than can be generated
automatically. For these reasons deep learning frameworks allow developers to implement their own backward pass
code. If not implemented then, by default, automatic differentiation is used.

18We can even see this by re-examining the Babylonian algorithm, which we know converges to v/z. Indeed, its easy to see that y; = /=

. . . 1 x Oyt _ : dy: dy: 1
is a fixed point of the iterates y¢ « 5 (yt—l + P > Thus, ByT 0 as t — oo (while Ty, = 1) and we have G 7 T

21

output, y

input,

Figure 25: A deep learning node for computing % If using the fast code from Quake III Arena (Figure then automatic
differentiation cannot be used and the developer must provide an implementation of the backward pass.

Figure 26: Computation graph for gradient descent in unconstrained optimisation.

The same unrolling approach that we used for the Babylonian algorithm can be applied to gradient descent. Figure
shows the computation graph for gradient descent to find the minimum y of some smooth function f conditioned on
input . That is, y € argmin,, f(z,u). In this case we initialise y to some arbitrary value, say zero, and iteratively
update its value by taking steps in the negative gradient direction,

0
Yt < Yr-1 — 778*5(30, Yi—1)- (82)

In the backward pass we can compute d%L through recursive evaluation of

dy: _ % Iy dyr—
dz dr Oy, dzx
82

_ / . ﬂ dyt—1
= na$ay(x7yt1)+<f n8y2(w,yt71) 12 (84)

(83)

using back-propagation. However, instead of back-propagating through the optimisation iterates, consider what hap-
pens at convergence, i.e., when g = y;_1 in Equation 84] Dropping subscripts ¢, we have,

dy 0% f 0? dy
Fei —ﬁm(%y) + (I - nayg(xay)> P (85)
which after rearranging gives
o f dy >*f
nafyz(x,y)@ = _naxﬁy (z,y) (86)
Cdy (0% oo
Cdr <ay2(I7y)) amay(m,y) (87)

Here we have effectively decoupled calculation of the forward and backward passes since it doesn’t really matter how
we found the solution y, we can compute its gradient directly using only derivatives of the function f (and knowing
the solution y). Importantly, intermediate calculations from the forward pass, i.e., the iterates y;, do not need to be
cached for use during the backward pass, only the converged solution y. We will make this notion, as well as the result
for calculating the gradient %, more formal and more general below.

3.4 Imperative versus Declarative Nodes

Let us now introduce the notion of a declarative node. Everything we’ve discussed up till now has been what I will

call an imperative nod where the relationship between input z and output y is defined explicitly, i.e., y = f(z)

¢

19The nomenclature “imperative” and “declarative” is borrowed from the programming languages community.

22

a0 N
| A7
%L\ d9L :
_ y € argminf(x, u; 6)
y = f(z;0) ueC(x)

Figure 27: Parametrized data processing nodes in an end-to-end learnable model with global objective or loss function L.
During the forward evaluation pass of an imperative node (left) the input z is transformed into output y based on some explicit
parametrized function f(-;0). During the forward evaluation pass of a declarative node (right) the output ¥ is computed as
the minimizer of some parametrized objective function f(z,-;0). During the backward parameter update pass for either node
type, the gradient of the global objective function with respect to the output %L is propagated backwards via the chain rule

to produce gradients with respect to the input f—wL and parameters %L. (Reproduced from Gould et al. [12]).

for some (differentiable) function f . By contrast, in a declarative node, the input-output relationship is specified
implicitly as the solution to an optimisation problenﬂ

y € argminf (x, u; 6). (88)
u€eC(x)

Both imperative and declarative nodes can be parametrized and during training of the deep learning model these
parameters are updated. The difference between the two types of nodes is summarised in Figure Importantly,
imperative and declarative nodes can co-exists in the same computation graph.

To make the distinction between imperative and declarative nodes clear, it is worthwhile to consider a concrete
example: global average pooling. Here we are given a set of vectors {z; € R™ | i = 1,...,n} and want to compute
their mean y. This is easily expressed imperatively as,

1 n
yiﬁ;zz (89)

Alternatively, we can express the operation declaratively,

n
Y = argmin, cpm Z u — 24| (90)

i=1

which can be thought of as finding the vector u that minimises the average squared-distance to each of the vectors z;,
i.e., the mean@ This doesn’t immediately appear like progress. However, the change in perspective opens up new
possibilities, such as robust global average pooling, by replacing the {5 penalty on distances to some arbitrary penalty
function ¢,

y = argmin, cgm Z o(u — ;). (91)

i=1
This is not so easily done with imperative nodes.

The above example shows that declarative nodes subsume imperative nodes in the sense that every imperative node
can be rewritten as a declarative node, but not vice versa. This is not to suggest that writing every node as a
declarative node is practically useful.

3.5 Bi-level Optimisation: Stackelberg Games

Before proceeding further with discussions on declarative nodes and differentiable optimisation, let us first introduce
the idea of bi-level optimisation or so-called Stackelberg games [37]. Consider two players, one leader and one follower
competing in an economic market. The market dictates the price that they are willing to pay for some goods based on
the total supply. That is, if the leader and follower produce ¢; and ¢ amount of goods, respectively, then consumers
will pay P(q1 + ¢2) dollars per unit of good, where P is some price function.

20For this reason some authors refer to declarative nodes as implicit layers.
211t is interesting to note that this is a least-squares problem “minimise ||Au — b||?” where A is constructed by stacking m-by-m identity
matrices n times, and b constructed by stacking the ;.

23

Each player has a cost structure associated with producing goods, say C;(g;), and wants to maximise their profits,
q¢;iP(q1 + ¢2) — Ci(gi). In a Stackelberg game, the leader picks a quantity of goods to produce first knowing that the
follower will respond in an optimal way. In other words, the leader must solve the bi-level optimisation problem,

maximize (over q1) ¢ P(q1 + q2) — Ci(q1)

subject to q2 € argmax, ¢P(q1 + q) — C2(q). (92)

The leader’s problem is known as the upper-level problem and the follower’s problem (which the leader must also
solve) is known as the lower-level problem. We can write bi-level optimisation problems in a more familiar way for
machine learning with an upper-level loss function and general lower-level optimisation problem as,

minimize (over) L(x,y) (93)
subject to Yy € argmin, e, f(7,u).

There exist three common strategies for solving bi-level optimisation problems [2]. First, if a closed-form solution
exists for y in the lower-level problem, then we can substitute for y in the upper-level problem and attempt to solve
the resulting single level optimisation problem directly using standard means.

Second, for convex lower-level problems we can replace lower-level problem with sufficient conditions for optimality
(e.g., the KKT conditions), and solve the equivalent constrained optimisation problem jointly over z and y,

minimize (over x,y) L(z,y)

subject to h(z,y) =0. (94)

The downside of this approach is that the constraints many be very difficult to deal with, especially for large scale
problems such as occur in deep learning.

Last, we could attempt a gradient descent optimisation approach by computing the gradient of the lower-level solution
y with respect to x and use the chain rule of differentiation to get the total gradient of the loss L with respect to x,

T —1 (8L(3c, y) + OL(z,y) dy) (95)

or oy dz

This requires differentiating the argmin operator in the lower-level problem, which may be done by either back-
propagating through the optimisation procedure used to solve it or via implicit differentiation as we will see@

3.6 Parametrized Optimisation

In the context of deep learning the upper-level Stackelberg problem is the learning problem and the lower-level
Stackelberg problem is the inference problem. A declarative node defines a family of parametrized optimization
problems indexed by continuous variable x € R",

minimize (over u € R™) fo(x,u)
subject to filz,u) <0, i=1,...,p (96)
=0

hZ(J?,U)) 12175(] TERN

that are embedded within the deep learning computation graph. This extends the idea of bi-level optimisation from
a composition of two optimisation problems to a graph containing of an arbitrary number of optimisation problems
and processing functions that glue them together.

For convenience we will think of inputs (the parameters) and outputs (the solutions) to parametrized optimisation
problems as vectors. In many applications they will be more elaborate data structures, e.g., matrices and tensors.
The results presented in this lecture readily extend to such data structures, albeit with some additional care in
implementation and housekeeping.

A pictorial example of a parametrized optimisation problem that helps to explain the concept is shown in Figure 28]
As can be seen changing x results in a new optimisation problem, which when minimised gives a value y for that x. In
other words, we can view y as a function of x, sometimes referred to as the best-response function in the literature.
The main question that we need to answer for gradient descent based learning is:

How do we compute - argmin, f(z,u)?

To answer that question we turn to Dini’s implicit function theorem [I7], which gives a tool for computing gradients
between variables when one is not an explicit function of the other.

22S0me other techniques for solving bi-level optimisation problems include value function and evolutionary methods. However, these are
less amenable to embedding optimisation problems into deep learning architectures and are beyond the scope of these lectures.

24

0.6
3
a 044N\
8 - \ 1
I Y
= T2 \ /
= X A ¢ /
© = K /
° \ .. .
£ 0.0 N /
= e Treaean? »
S \ 4
N 4
~
-0.2 A '\-~._,r./‘/
-1.00 —0.75 -0.50 —-0.25 000 025 050 075 1.00
input/parameter, x u

Figure 28: Illustration of a parametrized optimisation problem. The left panel shows contours for a two-dimensional function
f(x,u). For each value of = we define an optimisation problem y = argmin,, f(z,u). Two example objective functions of u for
fixed = are shown in the right panel. Solving for all values of = traces out the so-called best-response function y(z) denoted by
the dashed line in the left panel. This may be a set-valued function in general, i.e., more than one y for a given x.

3.7 Dini’s Implicit Function Theorem

The following is adapted from Dontchev and Rockafellar [I0, p19] where we consider the solution mapping associated
with the equation f(z,u) =0,

Y:e— {ueR"| f(z,u) =0} for x € R" (97)
We are then interested in how elements of Y (z) change as a function of x.

Theorem 3.1: (Dini Classic Implicit Function Theorem [10]). Let f : R” x R™ — R™ be continuously differ-
entiable in a neighbourhood of (z,u) and such that f(x,u) = 0, and let 8% f(z,u) be nonsingular. Then the solution
mapping Y has a single-valued localization y around x for v which is continuously differentiable in a neighbourhood
X of z with Jacobian satisfying

dy(z) _ (aﬂx,y(x)))l 0f (x,y(x))
dx Jy ox

for every x € X.

Roughly speaking, Dini’s implicit function theorem tells us that around solutions (z,y) to the implicit equation
f(z,y) = 0 we can define a local function y(z) that describes how variable y changes as a function of z. Moreover,
the theorem gives us the derivative of that function.

Let us illustrate the implicit function theorem by considering the trivial example of differentiating the equation of the
unit circle,

2?4y’ =1 (98)

depicted graphically in Figure For every value of x € (—1,1) there are two distinct solutions for y, namely,
++v/1 — 22, and so there is no explicit function for y in terms of . As such we cannot directly compute an expression
for the derivative of y with respect to . However, in a local neighbourhood around a given (z, y) pair, we can describe
a single-valued function y(z) and compute its gradient at (x,y) using implicit differentiation as

% __ (g;c)_l(gi) (from Theorem 1) (99)
(D) a0
- _g (101)

where in the second line we have substituted the corresponding partial derivatives of f(z,y) = 22 + y? — 1. In this
trivial example we can compare against splitting the circle into two pieces—a top half and a bottom half—with an

25

(xayl)

—~
8
<
—

(xayZ)

Figure 29: Illustration of Dini’s implicit function theorem for a unit circle, f(z,y) = z? +y? — 1. Here at any point 2 we have

two solutions, y1(z) = v1 — 22 and y2(z) = —v1 — z2.

explicit expression for each piece, y = ++/1 — 22, and directly differentiating each as

d d
é:ai 1—22 (102)
F2x
- o
_ 7t (substituting y = +/1 — 22), (104)
Yy

i.e., the same result. Note that the function is not differentiable at = £1 (which gives y = 0).

3.8 Differentiating Unconstrained Optimisation Problems

Getting back to the question of how to differentiate the solution to an optimisation problem. To warm up we start
with the case of unconstrained optimisation. Let f : R™ x R™ — R be a twice differentiable function and let

y(z) € argmin, cpm f(x, u) (105)
then for non-zero Hessian we have
d AN
ylw) __(OF) O (106)
dz Oy? Oxdy
Here giyé and %afy denote matrices of partial second derivatives, i.e., (giyf)ij = agizgyj and (a‘fgy)ij = agizafwj'

The result is quite easy to prove and follows directly from Dini’s implicit function theorem applied to the first-order
optimality condition for differentiable unconstrained problems as the following proof shows@

Proof. The first-order optimality condition states that the derivative of f vanishes at (z,y), i.e., y € argmin,, f(x, u)

implies that %ﬁ’y) = 0. Now differentiating each side of the optimality condition with respect to x we have

d of(zy) _ *f(x,y) Pflay)dy (LHS)
de Oy 0x0y oy? dx
d
ao =0 (RHS)
So
Pflwy) , Pfay)dy _
0x0y oy? dzx
Rearranging gives the result. O

23Here we use and 6%; to denote differentiation with respect to the first and second argument of f, respectively.

9
ox

26

min. fo(z,u) min. fo(z + dz,u)
st. uweC(x) st. we C(x+dz)

Rm

Figure 30: Conceptual view of differentiable optimisation and the optimality condition manifold.
