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Abstract Our method is based on a unified model where each pixel

High-level holisti derstanding invol in the image is assigned to a single region. Regions are
Igh-ievel, or holistic, scene understanding INVOVES 0164 poth with a semantic category (such as grass, sky,

reasoning about objgcts, regions, and the 3D. relationships foreground, and so on) and a geometric label (currently ver-
between them. This requires a representation above thetical horizontal, or sky). Unlike methods that deal only
level of pixels that can be endowed with high-level at- ' '

tribut h I f object/region. its orientationd with multi-class segmentation [17] or only with geometric
ributes such as class of objectiregion, s onentationda o . nstryction [10], our approach reasons jointly abotit bo
(rough 3D) location within the scene. Towards this goal, we

ion-based model which bi aspects of the scene, allowing us to avoid inconsistencies
prodpose aregion- ?set mot N Wt.'c " C%m INES appearanceg, ., 55 vertical roads) and to utilize the context to reduce
and scene geometry 1o automatically decompose a sceng,qq positives (such as unsupported objects).
into semantically meaningful regions. Our model is defined )
in terms of a unified energy function over scene appearance A key aspect of our approach is the use of large,
and structure. We show how this energy function can be dynamically-defined regions as the basic semantic unit.
learned from data and present an efficient inference tech-Most previous methods for doing this type of image de-
nique that makes use of multiple over-segmentations of the?0mposition use either individual pixels [17] or predefined
image to propose moves in the energy-space. We show, exdUPerpixels [24, 5]. Each of these approaches has its trade-
perimentally, that our method achieves state-of-the-art p  OffS- The use of individual pixels makes it difficult to uzé
formance on the tasks of both multi-class image segmen-more global cues, including both robust statistics aboeit th
tation and geometric reasoning. Finally, by understanding @Ppearance of larger regions, which can help average out the
region classes and geometry, we show how our model carf@andom variations of individual pixels, and relationsHgs

be used as the basis for 3D reconstruction of the scene. ~ tween regions, which are hard to “transmit” by using local
interactions at the pixel level. The use of superpixels par-

tially addresses some of these concerns, but as superpixels

1. Introduction are constructed in advance using simple procedures based

With recent success on many vision subtasks—object de-On local appearance alone, their bound_aries are oftenincon
tection [21, 18, 3], multi-class image segmentation [17, 7, SiStent with the. true segment bogndane;, making an accu-
13], and 3D reconstruction [10, 16]—holistic scene under- rate decomposition of the image impossible. Our approach
standing has emerged as one of the next great Cha||engegynamically associates pixels to regions, allowing region
for computer vision [11, 9, 19]. Here the aim is to reason boundaries to adjust so as to accurately capture the true ob-
jointly about objects, regions and geometry of a scene with Ject boundaries. Moreover, our regions are also much larger
the hope of avoiding the many errors induced by modeling than superpixels, allowing us to derive global appearance
these tasks in isolation. properties for each region, including not only color and tex

An important step towards the goal of holistic scene un- Ure, but even larger properties such as its general shape,
derstanding is to decompose the scene iiatponsthat are aspect ratio, and characteristics of_lts boundary. These fe
semantically labeled and placed relative to each otheiivith {Ureés can help capture subtle yet important cues about re-
a coherent scene geometry. Such an analysis gives a highd'ons tha_t improve ClaSSIfI.C.atIOI’] accuracy. A; we W!|| see,
level understanding of the overall structure of the scehe, a this provides a decomposition of the scenes into objects or
lowing us to derive a notion of relative object scale, height @PPearance-coherent parts of objects (such as persou’s hea
above ground, and placement relative to important semanticOf @ window in a building).
categories such as road, grass, water, buildings or sky. We Reasoning in our model requires that we infer both the
provide a novel method that addresses this goal. pixel-to-region association and the semantic and geometri



labels for the regions. We address this challenge using a hy-Hoiemet al. [12] propose segmenting free-standing objects
brid approach. For the pixel-association task, we proposeby estimating occlusion boundaries in an image. Other
a novel multiple-segmentation approach, in which différen works attempt to reconstruct 3D depth [16] or surface ge-
precomputed segmentations are used to propose changes tumetry [10] directly from monocular images without first
the pixel-region associations. These proposed moves takeeasoning about occlusions. These use local color and tex-
large steps in the space and hence help avoid local min-ture cues together with pairwise interactions to infer gcen
ima; however, they are evaluated relative to our global en- structure. None of these works attempt to understand the
ergy function, ensuring that each step improves the energy.semantic content of the scene and they tend to produce poor
The region-labeling task is addressed using global energy-3D reconstructions when foreground objects are present.
minimization methods over the region space. This step is The use of multiple over-segmented images is not new to
not too expensive, since the number of regions is signif- computer vision. Russedt al. [14], for example, use mul-
icantly lower than the number of pixels. By performing tiple over-segmentations for finding objects in images, and
the inference at this level, we also improve labeling accu- many of the depth reconstruction methods described above
racy because the adjacency structure between these largde.g., [10]) make use of over-segmentations for comput-
regions allows us to directly exploit correlations between ing feature statistics. In the context of multi-class image
them (such as the fact that ground is below sky). segmentation, Kohlet al. [13] specify a global objective
The parameters of our model are entirely learned from which rewards solutions in which an entire segment is la-
data. In this model, we are learning to label entire segments beled consistently. However, their energy function is very
allowing us to exploit global, region-level charactegsti restricted and does not, for example, capture the interac-
We obtain positive examples for region labels from a large tion between region appearance and class label nor does
training set, which we constructed using Amazon Mechan- their energy function allow for label-dependent pairwise
ical Turk (AMT), at a total cost of less than $250. Negative preferences, such as foreground objects above road. Un-
examples are a bit trickier to acquire, as there are exponeniike all of these methods, our method uses multiple over-
tially many “non-regions,” most of which are obviously bad segmentations to build a dictionary pfoposal movegor
choices. We therefore propose a noeklsed-looptrain- optimizing a global energy function—the segments them-
ing regime, where the algorithm runs inference on the train- selves are not used for computing features nor do they ap-
ing images given its current model, and then uses mistakegear explicitly in our objective.
made in the process as negative examples to retrain. The importance of holistic scene interpretation has been
We apply our method to a challenging data set consist- highlighted in a number of recent works [11, 9]. These
ing of 715 images, most of which have fairly low resolu- methods combine tasks by passing the output of one model
tion and multiple small objects at varying scales. We show to the input of another. Unlike these approaches, which op-
that our approach produces multi-class segmentation andimize variables for each task separately, our method con-
surface orientation results that outperform state-ofghie  siders semantic and geometric tasks simultaneously and
methods. In addition, we show how our output can be usedperforms joint optimization on a unified objective over the

as the basis for 3D scene reconstruction. variables, providing a coherent decomposition of the scene
Perhaps most relevant is the work of &al. [20], which
2. Background and Related Work decomposes a scene into regions, text and faces using an

K h ¢ ¢ _ . innovative data driven MCMC approach on a generative
Our work touches on many facets of Computer Vision ,qe| of the scene. However, their work is primarily fo-

;chat ha_;_’ﬁ' in rte;fent )]/cearsl,_ bleen treated as separate proly sseq on identifying text and faces, and does not attempt
ems. The problem of multi-class image segmentation (or to label “generic” regions with semantic classes, nor dg the

labeling) has been successfully addressed by a number ofnodel the geometric relationship between regions.
works [7, 22, 17, 23, 24, 5]. The goal here is to label every

pixel in the image with a single class label. Typically these
algorithms construct CRFs over the pixels (or small coher-
ent regions calleduperpixely with local class-predictors Our goal is to decompose an imagento an unknown
based on pixel appearance and a pairwise smoothness termumber (<) of geometrically and semantically consistent
to encourage neighboring pixels to take the same label.regions by iteratively optimizing an energy function that
Some novel works introduce 2D layout consistency be- measures the quality of the solution at hand. We begin by
tween objects [23], object shape [22], or relative location describing the various entities in our model. Inference and
between regions [7, 5]. However, none of these works takelearning are described in Section 4.
into account 3D context and do not learn or enforce global ~ Our model reasons about both pixels and regions. Each
consistency, such as that “sky” needs to be above “ground”.pixel in the imagep € 7 belongs to exactly one region,
As an alternative to segmenting into semantic classes,which is identified by the pixel's region-correspondence

3. Region-based Scene Decomposition



variableR, € {1,..., K}. Let the set of pixels in region the r-th region. These summary statistics give us a more
be denoted by?, = {p : R, = r}. The size of the region  robust estimator of the appearance of the region than would
(number of pixels) is thewV, = |P.| = >  L{R, =r}. be obtained by considering only small neighborhoods of the
Each pixel has a local appearance feature veejoe R" individual pixels.

(described in Section 3.1 below). Associated with each re- o ) ]

gion are: a semantic class lat®l, currently grass, moun-  3.-2. Individual Region Potentials

tain, water, sky, road, tree, building and foreground; a ge- 14 gefine the potentials that help infer the label of indi-
ometry G, currently horizontal, vertical, and sky; and an ;iq,al regions, we extract features (A,,P,) € R" de-
appearancel, that summarizes the appearance of the re- g¢rining the region appearance and basic shape. Our ap-

gion as a whole. The final co_mponent in our model is the pearance features include the mean and covariaficE4,
horizon. We assume that the image was taken by a camergng |og-determinant oE#, and the average contrast at the

with horizontal axis parallel to the ground. We therefore o4ion houndary and region interior. In addition to relgtin
model the location of the horizon as the row in the image {4 semantic class—grass is green—the appearance features

corresponding to the horiza” € {1,..., heigh(Z)}. _ provide a measure for the quality of a region—well-formed

~ Given an imagel and model parameter8, our uni- regions will tend to have strong boundary contrast and (de-

fied energy function scores the entire description of the nending on the class) little variation of interior appeaen

scene: the pixel-to-region associatioRs the region se- We also want to capture more global characteristics of

mantic class labelS, geometriess, and appearances; our larger regions. For example, we would like to capture

and the location of the horizont*: the fact that buildings tend to be vertical with many straigh
ER,S,G,A, " K |1,0) = lines, trees tend to be green and textured, and grass tends

ghorizon, horizon hz 1 to be green and horizontal. Thus, we incorporate shape fea-
+ _ 2 (_U ) @ tures that include normalized region area, perimeter, first
+ 99Ny f9N(S,, G v A, Py (2) and second:- andy-moments, and residual to a robust line

i i fit along the top and bottom boundary of the region. The

g o s Ap, Pr, A 3 e
+ 2urs Yrs (f:’ni:’ Ssy Goi Ar, Pr, A5, o) (3) latter features capture the fact that buildings tend to have
+ 6°0UneYS "N Ry, Ry o, o). (4)  straight boundaries while trees tend to be rough.

We also include the horizon variable in the region-
specific potential, allowing us to include features that mea
3.1. Characterizing Individual Region Appearance ~ Sure the ratio of pixels in t.he region above and below the

) ) ] horizon. These features give us a sense of the scale of the

For each pixep in the image, we construct a local ap-  gpject and its global position in the scene. For example,
pearance descriptor vectay, comprised of raw image fea-  pyijdings are tall and tend to have more mass above the hori-
tures and discriminitively learned boosted features. @ r ;5 than below it: foreground objects are often close and
image features, which are computed in a small neighbor-\yij| have most of their mass below the horizon. Conversely,
hood of the pixel, are |dent|_cal t(_) the 17-dimensional color {hese potentials also allow us to capture the strong posi-
and texture features described in [17]. We augment thes&;gna correlation between the horizon and semantic ciasse
raw features with more processed summaries that represeng,c, as sky or ground, allowing us to use the same potential
the “match” between the pixel's local neighborhood and ;4 place the horizon within the image.
each of_the region Iabe_ls. In particular, for each (indietju To put all of these features together, we learn a multi-
semantic and geometric label we learn a one-vs-all boosted, 555 logistic classifier fof, x G, with a quadratic kernel

classifier to predict the label given the raw image features over ¢, (see Section 4.2). The score for any assignment to
in a small neighborhood around the pixélVe then append the region variables is theanegiO“(Sr G, "% A, P,) =

the score (log-odds ratio) from each boosted classifierto ou “N,logo (ST X Gy | ér(Ay, Pr) th) whereo(-) is the

pixel appearance feature vectey. _ multi-class logistic function with learned parameters. We
In our experiments, we set the region appearaficéo  scale the potential by the region si2é so that our score
be the maximum-likelihood Gaussian parameters over thegives more weight to larger regions and is independent of

appearance of pixels within the regiont, = (u, %) the number of regions in the image.
wherep? € R® and%4 € R"*" are the mean and co-

variance matrix for the appearance vectogsof pixels in 3.3. Inter-Region Potentials

We now describe each of the components of our model.

in our experiments we append to the pixel's 17 features, tkeage Our model contains two Eypes of inter-region poten-
al

and variance for each feature oves a 5-pixel window in 9 grid locations ; : - boundary, . :
around the pixel and the image row to give a total of 324 featuvée use .tlals' The first of these iy (R, Rq? “p; arq), Which
the GentleBoost algorithm with 2-split decision stumps amthtfor 500 is the standard contrast-dependent pairwise boundary po-

rounds. Our results appeared robust to the choice of parenete tential [17]. For two adjacent pixelp and ¢, we de-



fine wgg“”dary(Rp, Rysop, ) = eXp{_ﬁ_l |y — aqHQ} ProcedurdnferSceneDecomposition

if R, # R, and zero otherwise wherg is half the aver- Generate over-segmentation dictionety
Initialize R, using one of the over-segmentations

age contrast between all adjacent pixels in the image. This Repeat until convergence

term penalizes adjacent regions that do not have an edge Propose amov¢fi, : p € w} < 7
. . . Update region appearange and featuregp

between them; it has the effect of trying to merge adjacent Run inference over regior(s, G and horizono'™
regions that are not clearly demarcated. We note that, since ﬁO(n];Pute Etgtg; “:al energy,

. . . . < then
the.penalty is accumglated over pairs of adja_cent pixets, th Accept move and seE™" — 1
region-level penalty is proportional to the pixel-length o Else reject move
the boundary between the regions. @)

Our second inter-region potentialP®", models the affin-  Figure 1. (a) Scene decomposition inference algorithm; (b) Over-
ity of two classes to appear adjacent to each other. Sim-segmentation dictionary), generated by running mean-shift [1]
ilar to the within-region potentials, we extract features with three different parameter settings. See text for details.
ors(Ar, Py As, Ps) € R™ for every pair of adjacent re-
gionsr ands. We then learn independent multi-class logis- o i . . .
tic classifiers forS, x S, andG, x G given these features. Ny if this energy improves, ensuring that our inference is
Note that these potentials are asymmetric (exchanging re-continuously improving a coherent global objective.
gionsr and s gives a different preference). The features  The proposal moves for region associations are drawn
. are intended to model contextual properties between re-from a pre-computed, image-specific dictionary of image
gions, for example, the boundary between building and sky segments2 (Figure 1(b)). To build a “good” set of segments
tends to be straight and building is more likely to appear We start with a number of different over-segmentations of
above a foreground object than below it. To capture thesethe image. Here, we use the mean-shift algorithm [1] us-
properties, our features include the difference between ce ing publicly available codé. We generate different over-
troids of the two regions, the proportion of pixels along the Segmentations by varying the spatial and range bandwidth
boundary in which region is above region, the lengthand ~ parameters. To allow coarse granularity moves, we also
orientation of the boundary, and residual in fitting a stnaig ~ Perform hierarchical agglomerative clustering (up to adixe
line to the boundary. In addition to these layout-based fea-depth) on each over-segmentation by merging adjacent seg-
tures, we include appearance difference between the region ments that have similar appearance. We then add all subsets
normalized by the total appearance variance within each re-constructed by this process (including the initial segrsent
gion. This captures signals such as foreground objects tend© the dictionary. This procedure produces a rich set of pro-
to contrast highly with other regions, whereas background Posal moves. We sort the dictionary by the entropy of pixel
regions are more similar in appearance, such as adjacen@Ppearance within each segment so that more uniform seg-
buildings in a city. ments are proposed first.

We normalize each pairwise potential by the sum of  In addition to moves proposed by the dictionary, we also
the number of pixels in each region divided by the num- allow moves in which two adjacent regions are merged to-
ber of neighbors for the region) = ( N, \anerEs)|)' gether. The set of allowed pixel-to-region correspondence

[nbrs(r)| : . (i ; _
This makes the total influence on a region independent Ofp.roposal moves is thus: (i) pick a se.gr_r)en.E {tand as
sign all R, for p € w to a new region; (ii) pick a segment

its number of neighbors while still giving larger regions w € O and assign alR, for p € w to one of the regions

more yvelght. Th(;:;aifrmal form of our second inter-region in its neighborhood,; or (jii) pick two neighboring regions
pOt‘fm'al gs thgrw” (S, Gl’" Sss gs; AT"C’:P"’ As, P‘Sr)] - ands and merge them, that i$R, = s setR, = r.
aﬁa%icv’éa(.)xis e il s ogiate fanction, " Our overal inference aigoritm is summarized in Fig-
ure 1(a): Briefly, we initialize our pixel-to-region assaci
tions R using one of the over-segmentations used to pro-
duce our dictionary. Given our current associatidnwe
4.1. Inference Algorithm select a proposal move and reassign pixels to form new re-
) ) ) ) gions. We then update the appearance moefjend fea-
Exact inference in our quel is clearly mtra_ctgbl_e. We iires of any region that was affected by the move. We
adopt a two-stage hill climbing approach to minimize the p4intain sufficient statistics over pixel appearance, mgki
energy. In the first stage, we modify the pixel-region asso- yis gten very fast. Keeping the pixel-to-region correspon
ciation variables by allowing a set of pixels to change the jo.ce variables and horizon fixed, we run max-product be-

region to which they are assigned. Given the new pixel as-|io nronagation on the region class and geometry variables
signments, we then optimize the region and horizon vari-

ables in the second stage. The global energy of the resulting  2p; ¢ p: / / ww. cai p. rut gers. edu/ri ul / r esear ch/
configuration is then evaluated, and the move is acceptectode/ EDI SON/ i ndex. ht ni

4. Inference and Learning




We then update the horiza? using lterated Conditional  tween coherent and incoherent regions, we need to provide
Modes (ICM)2 The new configuration is evaluated relative it with negative (incoherent) training instances. Here, we
to our global energy function, and kept if it provides an im- cannot simply collect arbitrary subsets of adjacent pixels
provement. The algorithm iterates until convergence. in ou that do not correspond to coherent regions: Most arbitrary
experiments (Section 5) inference took between 30 secondsubsets of pixels are easily seen to be incoherent, so that a
and 10 minutes to converge depending on image complexitydiscriminative model trained with such subsets as negative

(i.e., number of segments {n). examples is unlikely to learn a meaningful decision bound-
ary. Therefore, we use a novel “closed-loop” learning pro-
4.2. Learning Algorithm cedure, where the algorithm trains on its own mistakes. We

We train our model using a labeled dataset where eachbegm by training our classifier where the negative exam-

. . . . . les are defined by merging pairs of adjacent ground truth
image is segmented into regions that are semantically an . . - .

. ... _regions (which are not consistent with each other). We then
geometrically coherent. Thus, our ground truth specifies

both the region association for each pixel and the labels forperform inference (on our training set) using this modgl.
each region. During each proposal move we evaluate the outcome of in-

- . - ference with the ground truth annotations. We append to
horizon region pair _

we Iearn each terrmp ! ¥ andy In our en our training set moves that were incorrectly accepted or re-
ergy function separately, using our labeled training déte.

then cross-validate the weights between the terms usin jected, or moves that were accepted (resulted in lower en-
- an . >INg rgy) but produced an incorrect labeling of the region vari-
subset of our training data. Since only the relative weight-

) \ - ables. In this way, we can target the training of our decision
ing between terms matter, we fix6t9'°" to one. y g g

. ) . boundary on the more troublesome examples.

For the horizon singleton term, we learn a Gaussian
over the location of the horizon in training images and set
homizon(,,hz) to be the log-likelihood o given this model.
We normalizey"°2°"(y"?) py the image height to make We conduct experiments on a set of 715 images of ur-
this model resolution invariant. Our learned Gaussian hasban and rural scenes assembled from a collection of public
a mean of approximately 0.5 and standard deviation of 0.15image datasets: LabelMe [15], MSRC [2], PASCAL [4],
(varying slightly across experiment folds). This suggests and Geometric Context (GC) [10]. Our selection criteria
that the horizon in our dataset is quite well spread aroundwere for the images to have approximat8Bf x 240 pix-
the center of the image. els, contain at least one foreground object and have the hori

The within-region termy)™9°" and the between-region  zon positioned within the image (it need not be visible). We
term,P" are learned using multi-class logistic regression. perform 5-fold cross-validation with the dataset randomly
However, the training of the within-region term involves an split into 572 training images and 143 test images for each
important subtlety. One of the main roles of this term is to fold. The quality of our annotations (obtained from Ama-
help recognize when a given collection of pixels is actually zon Mechanical Turk) is extremely good and in many cases
a coherent region—one corresponding to a single semanticsuperior to those provided by the original datasets. Images
class and a single geometry. Although all of the regions in and labels are available for download from the first author’s
our training set are coherent, many of the moves proposedwebsite.
during the course of inference are not. For example, our Baselines. To validate our method and provide strong
algorithm may propose a move that merges together pixelsbhaselines for comparison, we performed experiments on
containing (horizontal) grass and pixels containing (vert independent multi-class image segmentation and geometry
cal) trees. We want to train our classifier to recognize in- prediction using standard pixelwise CRF models. Here the
valid moves and penalize them. To penalize such moves pixel classS, (or surface geometrys,) is predicted sepa-
we train our multi-class logistic regression classifiertwit  rately for each pixep € Z given the pixel's appearancs,
an additional “invalid” label. This label cannot be assigne (see Section 3.1). A contrast-dependent pairwise smooth-
to a candidate region during inference, and so if the pro- ness term is added to encourage adjacent pixels to take the
posed region- appears incoherent, the “invalid” label will same value. The models have the form
get high probability, reducing the probability for all ()
labels inS, x G,.. This induces a high energy for the new ES|I)= Z%(SP; ap) + 92%(510» ¢ ap, aq)
proposed assignment, making it likely to be rejected. P pa

To train a discriminative classifier that distinguishes be- and similarly forE (G | Z). In this model, each pixel can be

thought of as belonging to its own region. The parameters
3We experimented with including"? in the belief propagation infer-

ence but found that it changed very little from one iteratiothe next and E_lre learned as described above Ek a multi-class |Og|S-
was therefore more efficient to infer conditionally (usingMiConce the tic over boosted appearance features ﬁp@the boundary
other variables were assigned. penalty. The baseline results are shown in Table 1.

5. Experimental Results




[ Ciass GEOMETRY
Pixel CRF (baseline)| 74.3 (0.80)|| 89.1 (0.73)
Region-based energy 76.4 (1.22) || 91.0 (0.56)

Table 1. Multi-class image segmentation and surface orientation
(geometry) accuracy. Standard deviation shown in parentheses.

MSRC GC
TextonBoost [17]| 72.2 || Hoiemet al. [10]:
Yanget al. [24] 75.1 e pixel model | 82.1
Gouldet al. [5] 76.5 o full model 88.1
Pixel CRF 75.3 || Pixel CRF 86.5
Region-based 76.4 || Region-based 86.9

Table 2. Comparison with state-of-the-art MSRC and GC results
against our restricted model. Table shows mean pixel accuracy.

Wisky Mtree [Mlroad  [Morass [Wwater [lvidg  [Wmntn  [lfg obj. Wsy  Mnorz. Wvert.
Figure 2. Examples of typical scene decompositions produced by ) ) )
our method. Show for each image are regions (top right), seman-address in future work. For example, our algorithm is often
tic class overlay (bottom left), and surface geometry with horizon confused by strong shadows and reflections in water as can
(bottom right). Best viewed in color. be seen in some of the examples in Figure 4. We hope that
with stronger geometric reasoning we can avoid this prob-
lem. Also, without knowledge of foreground subclasses,

Region-based Approach.Multi-class image segmenta- U algorithm sometimes merges a person with a building
tion and surface orientation results from our region-based OF confuses boat masts with buildings.
approach are shown below the baseline results in Table 1. Comparison with Other Methods. We also compared
Our improvement of 2.1% over baseline for multi-class seg- Y method with state-of-the-art techniques on the 21sclas
mentation and 1.9% for surface orientation is significant. MSRC [2] and 3-class GC [10] datasets. To make our
In particular, we observed an improvement in each of our résults directly comparable with published works, we re-
five folds. Our horizon prediction was within an average of Moved components from our model not available in the
6.9% (relative to image height) of the true horizon. ground-truth labels for the respective datasets. That is,

In order to evaluate the quality of our decomposition, we for MSRC we only use semantic class labels and for GC

computed the overlap score between our boundary predic-We .onIy.use (m:?un) geomgtry labels. l\!el.ther model gsed
horizon information. Despite these restrictions, our oegi

tions and our hand annotated boundaries. To make this met-b q his sl o ith chet-
ric robust we first dilate both the predicted and ground truth ased energy approach 1 still competitive with staterer-t
boundaries by five pixels. We then compute the overlap art. Results are shown in Table 2.
score by dividing the total number of overlapping pixels by .. .
half the total number of (dilated) boundary pixels (ground 6. Application to 3D Reconstruction
truth and predicted). A score of one indicates perfect over-  The gutput of our model can be used to generate novel
lap. We averaged 0.499 across the five folds indicating that3p yiews of the scene. Our approach is very simple and ob-
on average we get about half of the semantic boundariesiins its power from our region-based decomposition rather
correct. For comparison, using the baseline class predic-than sophisticated features tuned for the task. Neverthgele
tions gives a boundary overlap score of 0.454. the results from our approach are surprisingly good com-
The boundary score result reflects our algorithm’s ten- pared to the state-of-the-art (see Figure 5 for some exam-
dency to break regions into multiple segments. For exam- ples). Since our model does not provide true depth estimates
ple, it tends to leave windows separated from buildings and our goal here is to produce planar geometric reconstrustion
people’s torsos separated from their legs (as can be seen igf each region with accurate relative distances rather than
Figure 2). This is not surprising given the strong appeaganc absolute distance. Given an estimate of the distance be-

difference between these different parts. We hope to extenceween any two points in the scene, our 3D reconstruction
our model in the future with object specific appearance and can then be scaled to the appropriate size.

shape models so that we can avoid these types of errors. Our rules for reconstruction are simple. Briefly, we as-
Figures 3 and 4 show some good and bad examples, resume an ideal camera model with horizontg)l &xis paral-
spectively. Notice the high quality of the class and geome- lel to the ground. We fix the camera origin at 1.8m above
try predictions particularly at the boundary between atass the ground (i.e.y = 1.8). We then estimate thgz-rotation
and how our algorithm deals well with both near and far ob- of the camera from the location of the horizon (assumed to
jects. There are still many mistakes that we would like to be at depthx) asf = taua—l(}(vhZ —vp)) Whereuvy is half



.sky .tree .road .grass .water .bldg .mntn .fgobj. .sky .horz. .vert.

Figure 3. Representative results when our model does well. Eacthoglssoriginal image (left), overlay of semantic class label (center),
and surface geometry (right) for each image. Predicted location afdrois shown on the geometry image. Best viewed in color.

e ® 7] F ge=

Figure 4. Examples of where our algorithm makes mistakes, such asdelistaof road as water (top left), or confusing boat masts as
buildings (bottom right). We also have difficulty with shadows and reflectiBest viewed in color.

L

the image height and is the focal length of the camera. boundary. We then place the region half way between the
Now the 3D location of every pixeh = (u,v) lies along depth of the occluding object and maximum possible depth
the rayr, = R(0) "K' [uv 1]", whereR(f) is the ro-  (either the horizon or the point at which the ground plane
tation matrix andK is the camera model [6]. It remains to Wwould become visible beyond the occluding object). The
scale this ray appropriately. 3D location of each pixep in the region is determined by
We process each region in the image depending on its Se:che.mtersectmn of th|s'plane and the By F'T‘a”y’ sky
mantic class. For ground plane regions (road, grass and walcglons are placed behind the last vertical redion.
ter) we scale the ray to make the height zero. We model each

vertical region (tree, building, mountain and foregrouad) 7. Discussion and Future Work
a planar surface whose orientation and depth with respect .
to the camera are estimated by fitting a robust line over . In this wor_k, we addre_ssed the problem .Of decompos-
the pixels along its boundary with the ground plane. This ing a scene into geometrically and semantically coherent

produced good results despite the fact that not all of theseregions: Our method corn_bines reasoning over both pixels
pixels are actually adjacent to the ground in 3D (such as and regions through a unified energy function. We proposed

the be”y of the cow in Flg_ur_e 5)' When a region does_ not 4Technically, sky regions should be placed at the horizohsimee the
touch t_he grqund _(that IS, it 'S_OCC“_Jded by _anOther object), horizon has infinite depth, we choose to render sky regiomset) so as to
we estimate its orientation using pixels on its bottom-most make them visible in our viewer.




Figure 5. Novel views of a scene with foreground objects gener-

ated by geometric reconstruction.

an effective inference technique for optimizing this ewyerg
function and showed how it could be learned from data. Our
results compete with state-of-the-art multi-class imaege s
mentation and geometric reasoning techniques. In addition -
we showed how a region-based approach can be applied to

the task of 3D reconstruction, with promising results.

Our framework provides a basis on which many valu-
able extensions can be layered. With respect to 3D recon-
struction, our method achieves surprising success givan th
it uses only simple geometric reasoning derived from the
scene decomposition and location of the horizon. These(q;
results could undoubtedly be improved further by integrat-
ing our method with state-of-the-art approaches that reaso [11]

more explicitly about depth [16] or occlusion [12].
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