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Abstract—Multi-class pixel labeling is an important problem
in computer vision that has many diverse applications, including
interactive image segmentation, semantic and geometric scene
understanding, and stereo reconstruction. Current state-of-the-
art approaches learn a model on a set of training images and then
apply the learned model to each image in a test set independently.
The quality of the results, therefore, depends strongly on the
quality of the learned models and the information available within
each training image. Importantly, this approach cannot leverage
information available in other images at test time which may
help to label the image at hand.

Instead of labeling each image independently, we propose a
semi-supervised approach that exploits the similarity between
regions across many images in coherent image subsets. Specif-
ically, our model finds similar regions in related images and
constrains the joint labeling of the images to agree on the labels
within these regions. By considering the joint labeling, our model
gets to leverage contextual information that is not available when
considering images in isolation.

We test our approach on the popular 21-class MSRC multi-
class image segmentation dataset and show improvement in
accuracy over a strong baseline model.

I. INTRODUCTION

Multi-class image labeling—the task of assigning a class

label to every pixel in an image—is an important problem in

computer vision [1, 2, 3, 4]. The general problem formulation

can be applied to many applications, including interactive

figure/ground segmentation [5], geometric and semantic scene

understanding [1, 6], and stereo reconstruction [7]. For exam-

ple, in the context of semantic scene understanding a common

task is to annotate every pixel in the image with a label from

a pre-defined set of categories, e.g., sky, road, tree, etc. One

of the most successful approaches to these problems uses con-

ditional Markov random fields (CRFs), which combine local

information for predicting class labels (such as colour, texture

and position within the image) with a prior for smoothness.

The smoothness prior favours label configurations in which

adjacent pixels (with similar colours) are labeled with the same

category. Loosely speaking, this can be thought of as encoding

the knowledge that objects have large spatial support.

Local neighbourhood priors can also encode contextual

information such as co-occurrence of label pairs. In this setting

confident predictions from neighbouring pixels can influence

the labeling of less confident predictions, so that, fish adjacent

to water is more likely than fish adjacent to sky, for example.

Since the CRF is connected, this information can propagate

throughout the image. More expressive forms of contextual

information (such as sky appears above road) have been

demonstrated by a number of researchers to improve labeling

accuracy [8, 9]. The contextual information is usually derived

from other regions within the same image and can therefore

be limited. Moreover, since the contextual cues are derived

from the single image at hand, they can sometimes reinforce

incorrect interpretations of the image. Information from other

images in the dataset, which could provide a rich source of

context is ignored at test time in existing CRF models.

In this work, we extend the idea of a local pairwise

smoothness prior between adjacent pixels within an image

to that of a long-range pairwise consistency prior for prop-

agating information between images. We then perform joint

multi-class pixel labeling of all the images in the test set.

Specifically, we construct a conditional Markov random field

over pixels from a set of images rather than a single image.

Edges between neighbouring pixels within the same image

enforce the smoothness prior discussed above and that is

present in many state-of-the-art approaches. Edges between

pixels in different images encode our desire to label similar

regions consistently across the dataset. This has the benefit of

propagating contextual information from one image to another.

The following example provides some intuition into why

this may be beneficial: Consider a set of images containing a

variety of instances of the same object category (e.g., a car) in

many of the images. In some of the images the objects may

be easily recognized. However, instances from the same object

category in other images may be more difficult to recognize

on their own due, say, to weak local features (e.g., missing

wheels) or lack of context (e.g., images of cars without visible

road below the car). By finding matching regions (such as

the cars’ headlights) between different images we are able to

exploit the more easily recognized objects to help identify the

more difficult ones.

Our approach can be thought of as a semi-supervised image

labeling approach. Like traditional pixel labeling approaches,

we first learn a model from a set of annotated training images.

However, instead of using that model to label each image in

the dataset in isolation, we enforce soft labeling constraints

between regions with similar appearance in different images.

Importantly, the soft constraints are found in an unsupervised



manner (i.e., without knowing the class labels). Experiments

on the 21-class MSRC dataset [10] demonstrate that this leads

to an improvement over a strong baseline CRF model.

II. BACKGROUND AND RELATED WORK

Our work builds on the work from a number of researchers

who have investigated the problem of multi-class pixel label-

ing. Perhaps, the most influential works are those of He et al.

[1] and Shotton et al. [2], which are early examples of the use

of conditional Markov random fields (CRFs) for the multi-

class pixel labeling task. In particular, these models define

a grid-structured pairwise CRF over pixels with smoothness

prior. Our work extends this approach from inference on single

images to concurrent inference on multiple images in a set.

A line of research known as “co-segmentation” has also

studied the problem of labeling pixels in multiple images

simultaneously in recent years, with great success [11, 12].

Here the task is to perform joint segmentation of the same,

or a similar looking object, from two or more images. The

assumption is that using more images provides additional

information that can help improve the segmentation quality—

an assumption that is supported by impressive experimental

results (see, for example, Rother et al. [11]).

Similar to co-segmentation, our work does joint image

segmentation over sets of images. However, our work has

a number of key differences. First, we do not impose the

constraint of having a common object in the sets of images.

Instead, we focus on the semantic classes of the objects

appearing in the images. For instance, in a collection of images

that all have a car in them, we do not require the cars to be

exactly the same. Second, we do not assume a priori that

the images will contain the same object. Instead, we employ

a matching stage to correspond similar regions and reason

that these imply similar semantics. Last, we are interested

in the case of multi-class labeling rather than figure-ground

segmentation. That is, we may have multiple different objects

and background regions in the image set, and wish to label

each of these. To achieve this, we use a local region matching

algorithm [13] to form correspondences between the similar

regions of these images that are encoded in a CRF defined

over the entire image set.

Our work makes use of the observation that scenes can be

clustered into similar types, and that by finding regions with

similar appearance within different images we can constrain

labelings between images. To cluster the images we compute

a gist descriptor [14] and perform hierarchical agglomerative

clustering (see Section III-C below). Other techniques for

building similarity graphs over image collections have been

explored in the literature (e.g., [15]), however, the aim in these

works is often for image categorization or navigation, not to

provide context for pixel labeling.

Other recent works have exploited this observation for scene

labeling, but for the purpose of labeling a single image. For ex-

ample, Liu et al. [16] aligns a novel scene with similar scenes

from a large corpus of labeled images and transfer the labels

from the corpus to the novel scene. The algorithm performs

well on background classes and can be easily expanded to

incorporate new objects. However, since the alignment is done

at a scene level small objects are often missed. Moreover,

unlike our approach, it does not make use of the similarity

between images in the set of images to be labeled.

III. PIXEL LABELING FOR IMAGE SETS

In this section we describe our approach to dataset labeling.

Unlike traditional approaches to multi-class pixel labeling,

which learn a model and then apply the learned model

to each test image in isolation, our method simultaneously

labels collections of images thereby leveraging contextual

information available from different images at test time. We

begin by describing a typical conditional Markov random field

formulation of the single-image pixel labeling problem. We

then extend this formulation to the case of multiple images.

A. Conditional Markov Random Fields for Pixel Labeling

Conditional Markov random fields (CRFs) are a class

of probabilistic models for encoding conditional probability

distributions over correlated random variables. They were

first introduced as a generalization to Markov random fields

(MRFs) by Lafferty et al. [17] for language modeling, but

have subsequently proven to be a powerful framework for

many problems in computer vision such as multi-class pixel

labeling [1, 2].

Given an image I, a CRF for pixel labeling defines an

energy function over different label configurations where lower

energy labelings are preferred by the model.1 Concretely, let

L be a set of discrete labels, e.g., {sky, road, . . .}, and let

y = (y1, . . . , yn) be a vector of labels for the image where

yp ∈ L is the label assigned to pixel p. A pairwise CRF defines

an energy function as the combination of unary and pairwise

potentials as

E(y; I) =
n
∑

i=1

ψi(yi; I) +
∑

ij∈N8

ψij(yi, yj ; I) (1)

where ψi(yi; I) are the unary potentials defined for each

variable and ψij(yi, yj ; I) are the pairwise potentials defined

over adjacent variables in the image. Here N8 represents the

8-connected neighbourhood of pixels, i.e., the subset of pairs

(i, j) such that pixels i and j and adjacent to each other in

the image.

The unary potentials capture an individual pixel’s preference

for each label given some local features. In our work, we

construct the local features as follows: First, we convolve the

image with a 17-dimensional filter bank to produce raw image

features. The specification for the filter bank is described in

Shotton et al. [2]. Next, we define a 3×3 grid of cells centered

around each pixel p, where each grid cell covers a 5×5 patch

of pixels, and compute the mean and standard deviation of raw

(17-dimensional) features in each cell. Finally, we append the

1Formally, the energy function is defined as the negative log of the
unnormalized conditional probability, i.e., if E(y;x) is the energy function,
then P (y | x) ∝ exp{−E(y;x)}.



raw image features, the mean and standard deviation features

and the normalized x and y location of the pixel together into

a 325-dimensional local feature vector.

The local features are used to build a classifier that estimates

the probability of each label given the features. These will

ultimately be used for specifying the unary potentials in our

model. To learn this multi-class classifier, we first train a one-

versus-all boosted decision tree classifier [18] for each label

ℓ ∈ L. We then combine the output of these one-versus-all

classifiers through multi-class logistic regression trained via

maximum-likelihood to calibrate the scores [19]. Concretely,

let fp ∈ R
325 be the local feature vector for pixel p. We learn

a boosted classifier φℓ : R
325 → R for each class ℓ ∈ L. Let

φ(fp) = (φ1(fp), . . . , φL(fp)) be the vector of scores from

the boosted classifiers. Our multi-class classifier is then

P (yp = ℓ | fp) =
exp

{

θT
ℓ φ(fp)

}

∑

k∈L exp
{

θT
kφ(fp)

} (2)

where θ are the learned parameters. The unary potential for

each pixel is formed by taking the negative log-probability for

each class from this logistic classifier,

ψi(yi; I) = − logP (yi | fi). (3)

While our model makes use of boosted decision tree clas-

sifiers and multi-class logistic regression, the quality of the

final model appears quite robust to this choice and other

researchers have reported similar baseline results using other

classifier architectures, such as random forests and support

vector machines.

The pairwise potential imposes a contrast-sensitive smooth-

ness prior [5]. In other words, the model prefers configurations

where adjacent pixels take the same label. More formally, we

define the contrast-sensitive smoothness prior for two adjacent

pixels i and j as

ψij(yi, yj ; I) =
{

λ1

dij
+ λ2

dij
exp

{

−‖xi−xj‖
2

2β

}

yi 6= yj

0 otherwise

(4)

where xi and xj are the RGB colour vectors for pixels i and j,

respectively, and β =
〈

‖xi − xj‖2
〉

ij∈N8

is the mean-square-

difference in colour over all adjacent pixels in the image. The

non-negative parameters λ1 and λ2 weight the prior relative

to the unary terms and are learned by cross-validation on the

training set of images to maximize overall pixel accuracy. Here

dij scales the contribution of the prior by the distance between

the pixels, i.e., dij = 1 for 4-connected pixels, and dij =
√
2

for diagonally-connected pixels.

The contrast-sensitive pairwise potentials capture our belief

that images are generally smooth with label changes only

occurring at the boundary between regions of different ap-

pearance. While this assumption is generally a good one, its

implementation in CRFs for pixel labeling suffers from a num-

ber of drawbacks. First, correct labeling relies on good local

evidence, i.e., local features that can predict the correct cate-

gory label. Second, determining where the region boundaries

are can be difficult when only considering differences in colour

between neighbouring pixels. Last, contextual information that

may assist the correct labeling of a region may not be present

in all images. Extending our model to image sets rather than

individual images partially addresses these drawbacks.

B. Extending Conditional Random Fields to Image Sets

Consider two images with similar objects appearing in each

of the images. Now assume that we are given correspondence

information between the images, i.e., we are told that a subset

of pixels in one of the images corresponds (semantically) to a

subset of pixels in the other image. Then, just like the pairwise

smoothness prior, we could encode a soft constraint that these

pixels be labeled as belonging to the same semantic class.

Note, that we do not need to be told what the semantic class

is for this information to be useful. Furthermore, the corre-

spondence information that we receive may contain errors so

we will want our constraint to be weighted by our confidence

in the correspondence.

Formally, let I1 and I2 be two images and let P =
{(p1, p2) : p1 ∈ I1, p2 ∈ I2} be a set of correspondences

between pairs of pixels (p1, p2) from the first and second

image, respectively. We can now define a joint image labeling

energy function as

E(y1,y2; I1, I2) = E(y1; I1) + E(y2; I2)
+

∑

(p,q)∈P

ψpq(y1,p, y2,q; I1, I2) (5)

where the last term encodes our soft constraint that the labels

for corresponding pixels, p in the first image and pixel q in

the second image, should match. Specifically we have,

ψpq(y1,p, y2,q; I1, I2) =
{

λ3cpq y1,p 6= y2,q

0 otherwise
(6)

where y1,p and y2,q are the labels for pixel p in the first

image and pixel q in the second image, and cpq is a (non-

negative) score that represents our confidence in the match.

In the following section we will describe how the matches

and confidence scores are obtained. The constant λ3 weights

this between-image constraint against the unary and pair-

wise terms from the within-image components of the model,

i.e., E(y1; I1) and E(y2; I2).
Clearly this idea can be extended to multiple images where

we define an energy function E({yi}ni=1; {Ii}ni=1) over the

joint labeling of multiple images I1, . . . , In, and let the set

P contain pairs of corresponding pixels between any two of

images in the set.

C. Matching Regions Between Images

Our model requires that we find good matches between

regions in different images. To reduce computational require-

ments while still finding matches that are likely to help

improve labeling accuracy we adopt a two stage approach. In

the first stage we compute a global gist descriptor [14] for each

image. We then cluster the images (separately for the training



(a) (b)
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Fig. 1. Some example clusters obtained by running hierarchical agglomerative clustering on gist features. Scenes with similar objects tend to be grouped
together. For example, (a) contains exclusively trees, while (b) is mostly aeroplanes. The tree structure represents merge order during clustering. See text for
details.

and testing sets) by performing hierarchical agglomerative

clustering as follows: Let gi ∈ R
n be the gist descriptor for

the i-th image in image set S (either training or testing), let

Dij = ‖gi − gj‖2 be the distance between two images i and

j in gist-space, and let Nmax be the maximum number of

images that we can tolerate per cluster.2 Initially we start with

each image in its own cluster. We then repeatedly merge two

clusters at a time until any further merge results in a cluster

of size greater than Nmax. At each iteration we find the two

clusters such that their combined size is less than Nmax and

with minimum distance between their elements. Formally, we

find clusters Sa and Sb satisfying

(a, b) = argmin
a 6=b:|Sa∪Sb|≤Nmax

{

min
i∈Sa,j∈Sb

Dij

}

(7)

We then merge the clusters to create a new cluster Sa ∪ Sb.

Some example clusters on the MSRC [10] dataset for Nmax =
15 are shown in Figure 1.

In the second stage, we look for similar regions between im-

ages within the same cluster. We use the PATCHMATCH algo-

rithm introduced by Barnes et al. [20]. Briefly, PATCHMATCH

is an approximation algorithm that performs an incremental

2See the experimental section for metrics on running time and memory
usage as a function of the number of images per cluster.

search over all patches in one image to find the most similar

patch in another image with respect to some distance metric.

The algorithm takes two images I1 and I2, and the patch size

as input. Since we are interested in matching every patch in

the image, the output of the algorithm can be thought of as an

approximate nearest-neighbour field (NNF) which is defined

as a function f1→2 : I1 → R2 where R2 gives the offset of

the approximated most similar patch in image I2. Similarly,

the algorithm will produce f2→1 : I2 → R1.

The PATCHMATCH algorithm has three phases. The first

phase initializes the target NNF with random offsets. Most of

these initial assignments are likely to be bad matches, however,

some of the matches will be good. The second phase exploits

these good matches by propagating them to neighbouring

patches under the assumption that images have a naturally

smooth structure—i.e., a neighbouring patch of p will probably

be a good match for a neighbouring patch of f(p). The third

phase performs a random search over patches within a radius

of the best offsets found so far for potentially better matches.

PATCHMATCH is essentially a local search and the third

phase allows it to escape from local maxima. The algorithm

iterates over the second and third phases and terminates after a

fixed number of iterations or after convergence (no improved

matches can be found).



The randomized search strategy for finding an approximate

NNF instead of an exact NNF also allows PATCHMATCH to

run very efficiently. Furthermore, the quality of the matches

produced by PATCHMATCH have been shown to be good and

the algorithm has been successfully used in image editing tasks

such as re-targeting, completion, and reshuffling [13, 20, 21].

We run the PATCHMATCH algorithm on all pairs of images

in each cluster and retain the top three nearest-neighbours

per image patch. These are then used to add edges between

images when constructing our image-set CRF (as described in

Section III-B). This achieves our goal of encoding the soft

constraint that regions with similar appearance in different

images should be labeled the same. Figure 2 shows examples

of good and bad matches found by the PATCHMATCH algo-

rithm. Here we define “bad” to mean matches for which the

corresponding regions have different semantics (even though

they may have similar appearance). We note that our algorithm

currently searches over patches of the same size and orienta-

tion. Extending the search to be scale and rotation invariant is

an interesting topic for future work.

Since matches for some patches may not be found and to

make our model more robust to poor matches we adjust the

strength of the between-image label constraint as a function

of the quality of the match as indicated by cpq in Equation 6.

Specifically, let spq be the score returned by the PATCHMATCH

algorithm for matching pixel p in image I1 to pixel q = f(p)
in image I2, where a lower score indicates a better match.

Then we set cpq to

cpq = exp

{

−spq
2β

}

(8)

where β is the mean match score returned by PATCHMATCH

for all pairs of matches in the image set.

D. Inference

After constructing the CRF to add soft constraints between

images, we run inference to find the most likely joint labeling

of all images in the image set. However, exact inference in our

model—as well as the baseline CRF model—is intractable and

we have to resort to an approximate inference scheme.

By design, our energy function belongs to the class of so-

called regular (or submodular) energies [22] and can there-

fore be minimized using the α-expansion variant of graph-

cuts [23, 24]. The α-expansion algorithm is a move-making

algorithm that solves a series of binary problems in an it-

erative manner. The variables in the model are initialized to

some valid assignment—in our case we take the minimizing

assignment from each unary term. Then at each iteration, the

optimal assignment is found in the sub-space of labels where

each variable can either keep its current assignment or switch

to the label α ∈ L. Since our energy function is submodular

this can be done exactly. A new label α ∈ L is then chosen

for the next iteration and the procedure repeated until no move

results in a lower energy assignment.

For computer vision applications where the number of

pairwise terms in the energy function is sparse, very effi-

(a)

(b)

Fig. 2. Some examples of matches produced by PATCHMATCH between
100×100 patches. Images in (a) show some of the good matches. Images in
(b) show some of the bad matches. We mitigate the effect of these bad matches
using the match confidence score, which is determined by the RGB distance
between the patches. Although, there are some cases where a match between
two different objects have a very low RGB distance and, consequently, a very
high confidence score.

cient algorithms exist for solving the resulting optimization

problem at each α-expansion iteration (see [24]). While our

energy function has more pairwise terms than the standard 8-

connected CRF they are still relatively few compared to the

number of variables in the model. As discussed above, we limit

the number of matches from each pixel to three (although we

place no limit on the number of matches that can be made

to a pixel). As such, we found inference to be quite fast and

in practice followed a linear increase in running-time as the

number of images increased (see Figure 6).

IV. EXPERIMENTAL RESULTS

We conducted experiments on the multi-class image labeling

task and compared the results of using CRFs on image sets,

with correspondences over similar regions, and CRFs without

these correspondences, i.e., the baseline model on individual

images. The dataset used for these experiments was the 21-

class MSRC dataset [10] consisting of 591 annotated images.

Each image is approximately 320 × 240 and the dataset

contains a void label for unknown pixels, which are ignored

during both training and evaluation.3 As is standard on this

dataset, we split the images into a training set consisting of

315 images and an evaluation set consisting the remaining 276

images. We have established five different folds of the dataset

where each fold has a random partition of the images into

training and test sets. These sets were then divided into clusters

of up to Nmax = 15 images as described in Section III-C

above.

3The dataset also contains labels for mountain and horse. However, there
are very few instances of these and we follow the literature in treating these
categories as void.



TABLE I
RESULTS FOR 100× 100 PATCHES

Overall class accuracy Average class accuracy

Fold Baseline Our model Baseline Our model

1 73.2 74.1 58.0 58.7

2 76.1 77.4 64.1 65.0

3 71.6 73.4 59.3 60.6

4 72.4 73.3 58.0 57.8

5 75.9 76.0 63.2 63.0

A comparison of the overall class accuracy and average class accuracy of
the baseline and our model using patch matches of size 100× 100 pixels.

TABLE II
RESULTS FOR 25× 25 PATCHES

Overall class accuracy Average class accuracy

Fold Baseline Our model Baseline Our model

1 73.2 73.8 58.0 57.8

2 76.1 77.1 64.1 65.0

3 71.6 72.8 59.3 59.9

4 72.4 72.9 58.0 57.7

5 75.9 76.2 63.2 63.5

A comparison of the overall class accuracy and average class accuracy of
the baseline and our model using patch matches of size 25× 25 pixels.

All parameters in the model were learned on the set of

training images. Specifically, we used a random sample of

pixels from the training images to learn the unary terms

and then performed cross-validation to find the best weights

λ2 and λ3, for the within-image pairwise smoothness term

and between-image label matching constraint, respectively (we

found that λ1 had little effect on performance and simply set

it to zero for all experiments). Note that the learned parameter

for λ2 was different for the baseline model and our model

with between-image terms.

In the region matching procedure discussed in Section III-C,

we have chosen RGB as our colour-space and used the sum-

of-squared difference over the RGB channels as our distance

metric in the PATCHMATCH algorithm. Furthermore, we par-

titioned each image into non-overlapping patches on a regular

grid. For each grid location in a particular image, we find the

best matches over all possible patches of other images in the

cluster using the PATCHMATCH algorithm. Thus, in a cluster

with N images, this process produces N−1 matches for each

grid location. To reduce computational complexity and prune

poor matches, we limit the between-image edges to the top

three matches (based on the PATCHMATCH score) per patch.

We measure performance by two different metrics and

report average results on the evaluation set for each fold.

The first performance metric measures overall accuracy and is

simply the proportion of correctly labeled pixels. The second

performance metric is the class-averaged performance, which

is normalized for the different abundance of classes in the

dataset. Here we separately compute the proportion of each

class labeled correctly and average the result.

Table I and Table II show the quantitative results from

our experiments using patches of dimensions 100 × 100 and

25 × 25 pixels, respectively. Inclusion of the soft between-

image constraint improves the overall class accuracy by an

Fig. 3. Best viewed in colour. Example matches for patches sizes of 100×
100 at fixed grid locations. Shown are the top matches for each grid location
in the center image to other images in the same cluster. Matches from other
images in the cluster to the center image are not shown.

average of 1.0% and the average class accuracy by 0.5% for

the 100 × 100. While using 25 × 25 gives a slightly lower

average improvement of 0.7% for the overall class accuracy

and 0.3% for the average class accuracy. Our results show a

consistent improvement in overall accuracy in all folds and

improvement in class-averaged accuracy in most of the folds.

We also show the qualitative results to see how the soft

constraint over similar regions affect the labeling of the im-

ages. In Figure 4, we show some of the images with improved

labelings using our model. On the other hand, our model has

also introduced some degradation to the labeling accuracy. We

show some of the degraded labelings in Figure 5.

Figure 3 shows the top matching regions for one of the

images in our dataset. Clearly all of the matches are in the

correct context (i.e., aeroplanes on a field). This is helped

by our clustering algorithm, which groups similar images

together based on global structure. Moreover, a number of the

matches are consistent with respect to the semantics of the

corresponding pixels, for example, the front of the aeroplane

(bottom-right). However, there are also matches which are

partially inconsistent, e.g., the aeroplane’s tail (top-left). This

explains why performance sometimes degrades and suggests

that a more robust pairwise potential, which only requires a

subset of the pixels within each pair of matched regions to

agree, may improve performance.

Finally, Figure 6 shows that the running time and memory

usage of our algorithm grow linear to the number of images

in the cluster. We have chosen a maximum of 15 images per

cluster in our experiments. At this size, it seems to already

have a reasonable number of matching images within the

cluster while keeping the running time below 7 minutes and

the memory usage below 1GB. For larger sets inference can

become intractable and we are currently investigating ways to

reduce some of the computational overhead, e.g., by limiting

the total number of edges per variable or using other inference

algorithms.
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Fig. 4. Best viewed in colour. These images show improved pixel labeling accuracy when using our model. The images in row (a) show the labeling
of the sheep gets corrected from a baseline model labeling of bird using our model. Row (b) shows that the building was labeled as an airplane using the
baseline model and that its labeling gets corrected using our model. Rows (c) and (d) show significant improvements in the labeling of the cow and bicycles,
respectively.

(a) Running Time (b) Memory Usage

Fig. 6. Running time and memory consumption as a function of the size
of the image set for joint segmentation using patch sizes of 25 × 25 and
100× 100. Both show a linear increase with increase in number of images.

V. DISCUSSION

This work introduces a novel approach to the problem of

multi-class pixel labeling. Instead of treating each image in

the test set as an isolated test case, we find regions with

similar appearance between images and prefer solutions where

these regions are labeled consistently across the dataset. The

advantage of this approach is that contextual information can

propagate through all images in a collection thereby improving

overall accuracy across the images.

Our research suggests a number of directions for future

work. First, there are a number of meta-parameters—patch

size, image and patch similarity metric, etc.—which effect

the performance of our method and a detailed exploration of

these parameters may lead to greater gains from our approach.

One important meta-parameter, governed by computational

and memory constrains, is the size of the sets over which we

can perform tractable inference. Expanding to larger image

sets necessitates distributed algorithms for multi-label energy

minimization. Such approaches have been explored in the case

of graphs with regular structure [25], but it is unclear whether

these are appropriate to the less regular structures admitted by

our between-image constraints.

Second, our matches are currently constrained to be of the

same size and orientation. Generalizing the matches to be scale

and rotation invariant would almost certainly result in some

better matches. Furthermore, analysis of the matches (e.g., see

Figure 3) suggests that enforcing that all corresponding pixels

within the matched regions agree may contribute to degrada-

tion in performance in some cases. Constructing a more robust

constraint, such as only requiring a subset of the pixels to

agree, would avoid this issue and is related to current active

research in higher-order potentials for Markov random fields.

Third, we would like to explore model-free approaches

where instead of using the training data to learn appearance

models for each of the classes of interest, we could simply add

soft constraints between images in the training set and images

in the test set. Unlike the constraints we have now between two

images in the test set, these additional constraints would allow

for labels to be transferred from the training set. This could

have a number of advantages for large-scale systems, such

as the ability to incrementally grow the training set without

having to re-learn the model parameters.

Last, there will always be vastly more unlabeled images

than images with available annotations. Our current work

suggests that there exist opportunities to exploit these images

for constraining label configurations and improving scene

understanding. We are excited about exploring other ways in
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Fig. 5. Best viewed in colour. These images show some degradation in the pixel labeling accuracy when using our model. Row (a) shows how the labeling
of a cow switches to sheep with our model. Row (b) shows how the road gets incorrectly labeled as sea with our model. Rows (c) and (d) show how a sign
and a cat both get incorrectly labeled as building with our model.

which considering image collections jointly can help to pro-

duce better interpretations for all the images in the collection.
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