
Deep Declarative Networks:
A New Hope

A/Prof. Stephen Gould

Research School of Computer Science

The Australian National University

2019

slide credit: Dylan Campbell

What did we gain?

✓ Better-than-human performance
on closed-world classification tasks

✓ Very fast inference (with the help
of GPU acceleration)
✓ versus very slow iterative optimization

procedures

✓ Common tools and software
frameworks for sharing research
code

✓ Robustness to variations in real-
world data if training set is
sufficiently large and diverse

 Clear mathematical models;
separation between algorithm and
objective (loss function)

 Theoretical performance guarantees

 Interpretability and robustness to
adversarial attacks

 Ability to enforce hard constraints

 Intuition guided by physical models

 Parsimony – capacity consumed
learning what we already know

What did we lose?

S Gould | 3

What if we could have the best of both worlds?

S Gould | 4

Deep learning models

• Linear transforms (i.e., convolutions)

• Elementwise non-linear transforms

• Spatial/global pooling

S Gould | 5

Deep learning layer
𝑥: input

𝑦: output

𝜃: local parameters

𝑓: forward function

𝐽: global error / loss

𝑦 = 𝑓 𝑥; 𝜃
𝑥 𝑦

𝑑𝐽

𝑑𝑦

𝑑𝐽

𝑑𝑥

𝜃

𝑑𝐽

𝑑𝜃

processing node

S Gould | 6

End-to-end computation graph

𝑓2 𝑧1; 𝜃 𝑓3 𝑧2; 𝜃 𝑓4 𝑧3; 𝜃

𝑓5 𝑧1; 𝜃 𝑓6 𝑧5; 𝜃 𝑓7 𝑧6; 𝜃

𝑓1 𝑥; 𝜃 𝑓8 𝑧4, 𝑧7; 𝜃

𝑥

𝑦

𝑦 = 𝑓8 𝑓4 𝑓3 𝑓2 𝑓1 𝑥 , 𝑓7 𝑓6 𝑓5 𝑓1 𝑥

S Gould | 7

End-to-end learning

• Learning is about finding parameters that maximize performance,
argmax𝜃 performance(model(𝜃))

• To do so we need to understand how the model output changes as a
function of its input and parameters

• (Local based learning) incrementally updates parameters based on a
signal back-propagated from the output of the network

• This requires calculation of gradients

𝑦 = 𝑓 𝑥; 𝜃
𝑥 𝑦

𝑑𝐽

𝑑𝑦

𝑑𝐽

𝑑𝑥

𝜃
𝑑𝐽

𝑑𝜃
𝑑𝐽

𝑑𝑥
=

𝑑𝐽

𝑑𝑦

𝑑𝑦

𝑑𝑥
and

𝑑𝐽

𝑑𝜃
=

𝑑𝐽

𝑑𝑦

𝑑𝑦

𝑑𝜃

S Gould | 8

Example: Back-propagation through a node

Consider the following implementation of a node

We can back-propagate gradients as

𝜕𝑦𝑡
𝜕𝑦𝑡−1

=
1

2
1 −

𝑥

𝑦𝑡−1
2

𝜕𝑦𝑡
𝜕𝑥

=
1

2𝑦𝑡−1
+

𝜕𝑦𝑡
𝜕𝑦𝑡−1

𝜕𝑦𝑡−1
𝜕𝑥

It turns out that this node implements the Babylonian
algorithm, which computes

𝑦 = 𝑥

As such we can compute its derivative directly as

𝜕𝑦

𝜕𝑥
=

1

2 𝑥

=
1

2𝑦

Chain rule gives
𝜕𝐽

𝜕𝑥
from

𝜕𝐽

𝜕𝑦
(input) and

𝜕𝑦

𝜕𝑥
(computed)

fwd_fcn(x)

y0 =
1

2
𝑥

for 𝑡 = 1, …, 𝑇 do

y𝑡 ←
1

2
𝑦𝑡−1 +

𝑥

𝑦𝑡−1
return 𝑦𝑇

bck_fcn(x, y)

return
1

2𝑦

S Gould | 9

Separate of forward and backward operations

𝑥 𝑦

𝑑𝐽

𝑑𝑦

𝑑𝐽

𝑑𝑥
processing node

y0 =
1

2
𝑥

for 𝑡 = 1, …, 𝑇 do

y𝑡 ←
1

2
𝑦𝑡−1 +

𝑥

𝑦𝑡−1
return 𝑦𝑇

return
1

2𝑦

𝑑𝐽

𝑑𝑦

forward function

backward function

S Gould | 10

Deep declarative networks (DDNs)

In an imperative node the
implementation of the forward
processing function ሚ𝑓 is explicitly
defined. The output is then

𝑦 = ሚ𝑓(𝑥; 𝜃)

where 𝑥 is the input and 𝜃 are the
parameters of the node.

In a declarative node the input–
output relationship is specified as
the solution to an optimization
problem

𝑦 ∈ argmin𝑢∈𝐶 𝑓(𝑥, 𝑢; 𝜃)

where 𝑓 is the objective and 𝐶 are
the constraints.

[Gould et al., 2019]

𝑦 = ሚ𝑓 𝑥; 𝜃
𝑥 𝑦

D𝑦𝐽D𝑥𝐽

𝜃 𝐷𝜃𝐽

𝑦 = argmin𝑢∈𝐶
𝑓 𝑥, 𝑢; 𝜃

𝑥 𝑦
D𝑦𝐽D𝑥𝐽

𝜃 D𝜃𝐽

S Gould | 11

Imperative vs. declarative node example:
global average pooling

Imperative specification:

𝑦 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖

Declarative specification:

𝑦 = argmin
𝑢∈ℝ𝑚

෍

𝑖=1

𝑛

𝑢 − 𝑥𝑖
2

𝑥𝑖 ∈ ℝ𝑚 ∣ 𝑖 = 1,… , 𝑛 → ℝ𝑚

“the vector 𝑢 that is the minimum
distance to all input vectors 𝑥𝑖”

S Gould | 12

Deep declarative nodes: special cases

Unconstrained
(e.g., robust pooling)

𝑦 𝑥 ∈ argmin𝑢∈ℝ𝑚𝑓 𝑥, 𝑢

Equality Constrained
(e.g., projection onto 𝐿𝑝-sphere)

𝑦 𝑥 ∈
argmin𝑢∈ℝ𝑚𝑓 𝑥, 𝑢

subject to ℎ 𝑥, 𝑢 = 0

Inequality Constrained
(e.g., projection onto 𝐿𝑝-ball)

𝑦 𝑥 ∈
argmin𝑢∈ℝ𝑚𝑓 𝑥, 𝑢

subject to ℎ 𝑥, 𝑢 ≤ 0

𝑦 = argmin𝑢∈𝐶
𝑓 𝑥, 𝑢; 𝜃

𝑥 𝑦
D𝑦𝐽D𝑥𝐽

𝜃 D𝜃𝐽

[Gould et al., 2019]

S Gould | 13

Imperative and declarative nodes can co-exist

𝑓2 𝑧1; 𝜃
argmin

𝑓3 𝑧2, 𝑢; 𝜃
𝑓4 𝑧3; 𝜃

𝑓5 𝑧1; 𝜃 𝑓6 𝑧5; 𝜃
argmin

𝑓7 𝑧6, 𝑢; 𝜃

𝑓1 𝑥; 𝜃 𝑓8 𝑧4, 𝑧7; 𝜃

𝑥

𝑦

𝑦 = 𝑓8 𝑓4 argmin 𝑓3 𝑓2 𝑓1 𝑥 , 𝑢 , argmin 𝑓7 𝑓6 𝑓5 𝑓1 𝑥 , 𝑢

S Gould | 14

Learning as bi-level optimization

minimize (over x) objective(x, y)

subject to constraints(x)

minimize (over y) objective(x, y)

subject to constraints(y)

bi-level learning problem

declarative node problem

minimize (over x) objective(x)

subject to constraints(x)

learning problem

S Gould | 15

A game theoretic perspective

• Consider two players, a leader and a follower
• The market dictates the price its willing to pay for some goods based on

supply, i.e., quantity produced by both players, 𝑷 𝒒𝟏 + 𝒒𝟐
• Each player has a cost structure associated with producing goods, 𝑪𝒊 𝒒𝒊 and

wants to maximize profits, 𝒒𝒊𝑷 𝒒𝟏 + 𝒒𝟐 − 𝑪𝒊 𝒒𝒊
• The leader picks a quantity of goods to produce knowing that the follower

will respond optimally. In other words, the leader solves

maximize𝑞1 𝑞1𝑃 𝑞1 + 𝑞2 − 𝐶1 𝑞1
subject to 𝑞2 ∈ argmax𝑞 𝑞𝑃 𝑞1 + 𝑞 − 𝐶2 𝑞

[Stackelberg, 1930s]

S Gould | 16

• Closed-form lower-level problem: substitute for 𝒚 in upper problem

• May result in a difficult (single-level) optimization problem

Solving bi-level optimization problems

[Bard, 1998; Dempe and Franke, 2015]

minimize𝑥 𝐽(𝑥, 𝑦)
subject to 𝑦 ∈ argmin𝑢𝑓(𝑥, 𝑢)

minimize𝑥 𝐽(𝑥, 𝑦 𝑥)

S Gould | 17

Solving bi-level optimization problems

• Convex lower-level problem: replace lower problem with sufficient
conditions (e.g., KKT conditions)

• May result in non-convex problem if KKT conditions are not convex

[Bard, 1998; Dempe and Franke, 2015]

minimize𝑥 𝐽(𝑥, 𝑦)
subject to 𝑦 ∈ argmin𝑢𝑓(𝑥, 𝑢)

minimize𝑥,𝑦 𝐽(𝑥, 𝑦)

subject to ℎ 𝑦 = 0

S Gould | 18

Solving bi-level optimization problems

• Gradient descent: compute gradient with respect to 𝒙

• But this requires computing the gradient of 𝒚 (itself a function of 𝒙)

[Bard, 1998; Dempe and Franke, 2015]

minimize𝑥 𝐽(𝑥, 𝑦)
subject to 𝑦 ∈ argmin𝑢𝑓(𝑥, 𝑢)

𝑥 ← 𝑥 − 𝜂
𝜕𝐽(𝑥, 𝑦)

𝜕𝑥
+
𝜕𝐽(𝑥, 𝑦)

𝜕𝑦

𝑑𝑦

𝑑𝑥

S Gould | 19

Algorithm for solving bi-level optimization

SolveBiLevelOptimization:

initialize 𝑥

repeat until convergence:

solve 𝑦 ∈ argmin𝑢𝑓(𝑥, 𝑢)

compute 𝐽(𝑥, 𝑦)

compute
𝑑𝐽

𝑑𝑥
=

𝜕𝐽(𝑥,𝑦)

𝜕𝑥
+

𝜕𝐽(𝑥,𝑦)

𝜕𝑦

𝑑𝑦

𝑑𝑥

update 𝑥 ← 𝑥 − 𝜂
𝑑𝐽

𝑑𝑥

return 𝑥

[Bard, 1998; Dempe and Franke, 2015; Gould et al., 2019]

S Gould | 20

[Gould et al., 2019]

How do we compute
𝑑

𝑑𝑥
argmin𝑢∈𝐶𝑓 𝑥, 𝑢 ?

S Gould | 21

Implicit differentiation

Let 𝑓:ℝ × ℝ → ℝ be a twice differentiable function and let

𝑦 𝑥 = argmin𝑢𝑓 𝑥, 𝑢

The derivative of 𝑓 vanishes at (𝑥, 𝑦). By Dini’s implicit function theorem (1878)

𝑑𝑦(𝑥)

𝑑𝑥
= −

𝜕2𝑓

𝜕𝑦2

−1
𝜕2𝑓

𝜕𝑥𝜕𝑦

The result extends to vector-valued functions, vector-argument functions and
(equality) constrained problems. See [Gould et al., 2019].

[Krantz and Parks, 2013; Dontchev and Rockafellar, 2014; Gould et al., 2016; Gould et al., 2019]

S Gould | 22

Proof sketch

𝑦 ∈ argmin𝑢 𝑓 𝑥, 𝑢 ⇒
𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
= 0

LHS:
𝑑

𝑑𝑥

𝜕𝑓(𝑥,𝑦)

𝜕𝑦
=

𝜕2𝑓 𝑥,𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝑓 𝑥,𝑦

𝜕𝑦2
𝑑𝑦

𝑑𝑥

RHS:
𝑑

𝑑𝑥
0 = 0

Rearranging gives
𝑑𝑦

𝑑𝑥
= −

𝜕2𝑓

𝜕𝑦2

−1
𝜕2𝑓

𝜕𝑥𝜕𝑦
.

𝑢

𝑓

𝑦

[Gould et al., 2019]

S Gould | 23

Deep declarative nodes: what do we need?

• Forward pass
• A method to solve the optimization problem

• Backward pass
• Specification of objective and constraints
• (And cached result from the forward pass)
• Do not need to know how the problem was solved

[Gould et al., 2019]

𝑦 = argmin𝑢∈𝐶
𝑓 𝑥, 𝑢; 𝜃

𝑥 𝑦
D𝑦𝐽D𝑥𝐽

𝜃 D𝜃𝐽

𝑢

𝑓

𝑦
S Gould | 24

examples

S Gould | 25

𝑦 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖
further processing
(e.g., classification)

𝑥

𝑦
𝐽

data generating
network

y = argminu

෍
𝑖=1

𝑛
1
2 𝑢 − 𝑥𝑖

2

Global average pooling

𝑥𝑖 ∈ ℝ𝑚 ∣ 𝑖 = 1,… , 𝑛 → ℝ𝑚

[Gould et al., 2019]

S Gould | 26

Robust penalty functions, 𝜙

Quadratic Pseudo-Huber Huber Welsch Truncated Quad.

1
2𝑧

2
1 +

𝑧

𝛼

2

− 1 ቐ
1
2𝑧

2 for 𝑧 ≤ 𝛼

else 𝛼(𝑧 − 1
2𝛼)

1 − exp
−𝑧2

2𝛼2
ቐ
1
2𝑧

2 for 𝑧 ≤ 𝛼
1
2𝛼

2 otherwise

closed-form,
convex, smooth,
unique solution

convex, smooth,
unique solution

convex,
non-smooth,
non-isolated

solutions

non-convex,
smooth,

isolated solutions

non-convex,
non-smooth,

isolated solutions

[Gould et al., 2019]

S Gould | 27

Example: robust pooling

argminu

෍
𝑖=1

𝑛

𝜙 𝑢 − 𝑥𝑖; 𝛼

1

2
𝑦 2

𝑥

𝑦
𝐽

data generating
network

minimize (over 𝑥) 𝐽 𝑥, 𝑦 ≜ 1
2 𝑦 2

subject to 𝑦 ∈ argmin𝑢 ෍

𝑖=1

𝑛

𝜙(𝑢 − 𝑥𝑖; 𝛼)

[Gould et al., 2019]

S Gould | 28

𝑳𝟐 𝑳𝟏 𝑳∞

closed-form, smooth,
unique solution*

non-smooth, isolated solutions non-smooth,
isolated solutions

Example: Euclidean projection

[Gould et al., 2019]

S Gould | 30

argmin𝑢∈ℝ𝑚
1

2
𝑢𝑇𝑃𝑢 + 𝑞𝑇𝑢 + 𝑟

subject to
𝐴𝑢 = 𝑏
𝐺𝑢 ≤ ℎ

Can be differentiated with respect to its parameters:

𝑃 ∈ ℝ𝑚×𝑚, 𝑞 ∈ ℝ𝑚, 𝐴 ∈ ℝ𝑛×𝑚, 𝑏 ∈ ℝ𝑛

Example: quadratic programs

[Amos and Kolter, 2017]

S Gould | 31

Can be differentiated with respect to its parameters:

𝐴 ∈ ℝ𝑛×𝑚, 𝑏 ∈ ℝ𝑛, 𝑐 ∈ ℝ𝑚

Example: convex programs

[Agrawal et al., 2019]

argmin𝑢∈ℝ𝑚 𝑐𝑇𝑢
subject to 𝑏 − 𝐴𝑢 ∈ 𝐾

S Gould | 32

Implementing deep declarative nodes

• Need: objective and constraint functions, solver to obtain 𝑦

• Gradient by automatic differentiation

import autograd.numpy as np

from autograd import grad, jacobian

def gradient(x, y, f)

fY = grad(f, 1)

fYY = jacobian(fY, 1)

fXY = jacobian(fY, 0)

return -1.0 * np.linalg.solve(fYY(x,y), fXY(x,y))

𝑑𝑦(𝑥)

𝑑𝑥
= −

𝜕2𝑓

𝜕𝑦2

−1
𝜕2𝑓

𝜕𝑥𝜕𝑦

[Gould et al., 2019]

S Gould | 33

cvxpylayers

• Disciplined convex optimization
• Subset of optimization problems

• Write problem using cvx
• Solver and gradient computed automatically!

[Agrawal et al., 2019]

x = cp. Parameter(n)

y = cp. Variable(n)

obj = cp. Minimize(cp.sum_squares(x - y))

cons = [y >= 0]

prob = cp. Problem(obj, cons)

layer = CvxpyLayer(prob, parameters=[x], variables=[y])

S Gould | 34

applications

S Gould | 35

Robust point cloud classification

[Gould et al., 2019]

S Gould | 36

Robust point cloud classification

[Gould et al., 2019]

S Gould | 37

Video activity recognition

Stand Up Sit Down

[Marszalek et al., 2009; Carreira et al., 2019]

S Gould | 38

stand up

Frame encoding

abstract feature 1

ab
st

ra
ct

 f
ea

tu
re

 2

[Fernando and Gould, 2016]

S Gould | 39

stand up

sit down

stand up

answer
phone

answer
phone

abstract feature 1

ab
st

ra
ct

 f
ea

tu
re

 2

[Fernando and Gould, 2016]

S Gould | 40

Video clip classification pipeline

frame 1

frame 2

frame t

…

C
o

n
v-

1

R
eL

U
-1

Po
o

l-
1

C
o

n
v-

2

R
eL

U
-2

Po
o

l-
2

C
o

n
v-

3

R
eL

U
-3

Po
o

l-
3

C
o

n
v-

4

R
eL

U
-4

Po
o

l-
4

C
o

n
v-

5

R
eL

U
-5

Po
o

l-
5

FC
-6

R
eL

U
-6

FC
-7

R
eL

U
-7

L2
-n

o
rm

C
o

n
v-

1

R
eL

U
-1

Po
o

l-
1

C
o

n
v-

2

R
eL

U
-2

Po
o

l-
2

C
o

n
v-

3

R
eL

U
-3

Po
o

l-
3

C
o

n
v-

4

R
eL

U
-4

Po
o

l-
4

C
o

n
v-

5

R
eL

U
-5

Po
o

l-
5

FC
-6

R
eL

U
-6

FC
-7

R
eL

U
-7

L2
-n

o
rm

C
o

n
v-

1

R
eL

U
-1

Po
o

l-
1

C
o

n
v-

2

R
eL

U
-2

Po
o

l-
2

C
o

n
v-

3

R
eL

U
-3

Po
o

l-
3

C
o

n
v-

4

R
eL

U
-4

Po
o

l-
4

C
o

n
v-

5

R
eL

U
-5

Po
o

l-
5

FC
-6

R
eL

U
-6

FC
-7

R
eL

U
-7

L2
-n

o
rm

T-
Po

o
l

L2
-n

o
rm

So
ft

m
ax

[Fernando and Gould, 2016]

S Gould | 41

Temporal pooling

• Max/avg/robust pooling summarizes an unstructured set of objects

𝑥𝑖 ∣ 𝑖 = 1,… , 𝑛 → ℝ𝑚

• Rank pooling summarizes a structured sequence of objects

𝑥𝑖 𝑖 = 1,… , 𝑛 → ℝ𝑚

[Fernando et al., 2015; Fernando and Gould, 2016]

S Gould | 42

Rank Pooling

• Find a ranking function 𝑟:ℝ𝑛 → ℝ such that 𝑟 𝑥𝑡 < 𝑟 𝑥𝑠 for 𝑡 < 𝑠

• In our case we assume that 𝑟: 𝑥 ↦ 𝑢𝑇𝑥 is a linear function

• Use 𝑢 as the representation

[Fernando et al., 2015; Fernando and Gould, 2016]

S Gould | 43

Experimental results

Method Accuracy (%)

Max-Pool + SVM 66

Avg-Pool + SVM 67

Rank-Pool + SVM 66

Max-Pool-CNN (end-to-end) 71

Avg-Pool-CNN (end-to-end) 70

Rank-Pool-CNN (end-to-end) 87

Improved trajectory features +
fisher vectors + rank-pooling

87

[Rodriguez et al., 2008]

21% improvement!

150 video clips from BBC and ESPN footage
10 sports actions

[Fernando and Gould, 2016]

S Gould | 44

Visual attribute ranking

1. Order a collection of images according to a given attribute

2. Recover the original image from shuffled image patches

[Santa Cruz et al., 2017]

S Gould | 45

Birkhoff polytope

• Permutation matrices form discrete points in
Euclidean space which imposes difficulties for
gradient based optimizers

• The Birkhoff polytope is the convex hull for the
set of 𝑛 × 𝑛 permutation matrices

• This coincides exactly with the set of 𝑛 × 𝑛 doubly stochastic matrices

• We relax our visual permutation learning problem over permutation
matrices to a problem over doubly stochastic matrices

{𝑥1, … , 𝑥𝑛} → 𝐵𝑛

[Santa Cruz et al., 2017]

S Gould | 46

End-to-end visual permutation learning

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

X

𝑃

𝑥

CNN

CNN

… CNN

0 0.7 0.2 0.1
0 0.1 0.8 0
0.1 0.1 0 0.8
0.9 0.1 0 0

𝑄

?

𝐴

positive matrix

doubly stochastic matrix

[Santa Cruz et al., 2017]

S Gould | 47

Sinkhorn normalization or projection onto 𝐵𝑛

Alternatively, define a deep
declarative module

[Santa Cruz et al., 2017]

sinkhorn_fcn(A)

𝑄 = 𝐴

for 𝑡 = 1, …, 𝑇 do

𝑄𝑖,𝑗 ←
𝑄𝑖,𝑗

σ𝑘𝑄𝑖,𝑘

𝑄𝑖,𝑗 ←
𝑄𝑖,𝑗

σ𝑘𝑄𝑘,𝑗

return 𝑄

S Gould | 48

Visual attribute learning results

[Santa Cruz et al., 2017]

S Gould | 49

Blind perspective-n-point

[Campbell et al., 2019 (unpublished)]

S Gould | 50

Blind perspective-n-point

[Campbell et al., 2019 (unpublished)]

𝑍𝐹2D feature
extraction

𝐹

𝑍𝑃3D feature
extraction

𝑃

pairwise
distance

sinkhorn
normalization

RANSAC
weighted

BPnP
(𝑅, 𝑡)

declarative
node

declarative
node

S Gould | 51

Blind perspective-n-point

[Campbell et al., 2019 (unpublished)]

S Gould | 52

code and tutorials at http://deepdeclarativenetworks.com

CVPR 2020 Workshop (http://cvpr2020.deepdeclarativenetworks.com)

S Gould | 53

