

Deep Declarative Networks: A New Hope

A/Prof. Stephen Gould

Research School of Computer Science
The Australian National University
2019

What did we gain?

- ✓ Better-than-human performance on closed-world classification tasks
- ✓ Very fast inference (with the help of GPU acceleration)
 - versus very slow iterative optimization procedures
- ✓ Common tools and software frameworks for sharing research code
- ✓ Robustness to variations in realworld data if training set is sufficiently large and diverse

What did we lose?

- Clear mathematical models; separation between algorithm and objective (loss function)
- **★** Theoretical performance guarantees
- Interpretability and robustness to adversarial attacks
- * Ability to enforce hard constraints
- Intuition guided by physical models
- Parsimony capacity consumed learning what we already know

Deep learning models

- Linear transforms (i.e., convolutions)
- Elementwise non-linear transforms
- Spatial/global pooling

Deep learning layer

x: input

y: output

End-to-end computation graph

$$y = f_8 \left(f_4 \left(f_3 \left(f_2 (f_1(x)) \right) \right), f_7 \left(f_6 \left(f_5 (f_1(x)) \right) \right) \right)$$

End-to-end learning

- Learning is about finding parameters that maximize performance, $\operatorname{argmax}_{\theta}$ performance(model(θ))
- To do so we need to understand how the model output changes as a function of its input and parameters
- (Local based learning) incrementally updates parameters based on a signal back-propagated from the output of the network
- This requires calculation of gradients

$$\frac{dJ}{dx} = \frac{dJ}{dy}\frac{dy}{dx} \text{ and } \frac{dJ}{d\theta} = \frac{dJ}{dy}\frac{dy}{d\theta}$$

Example: Back-propagation through a node

Consider the following implementation of a node

$$\begin{aligned} \mathbf{fwd_fcn} & (\mathbf{x}) \\ y_0 &= \frac{1}{2}x \\ \text{for } t = 1, \dots, T \text{ do} \\ y_t &\leftarrow \frac{1}{2} \left(y_{t-1} + \frac{x}{y_{t-1}} \right) \\ \text{return } y_T \end{aligned}$$

We can back-propagate gradients as

$$\frac{\partial y_t}{\partial y_{t-1}} = \frac{1}{2} \left(1 - \frac{x}{y_{t-1}^2} \right)$$

$$\frac{\partial y_t}{\partial x} = \frac{1}{2y_{t-1}} + \frac{\partial y_t}{\partial y_{t-1}} \frac{\partial y_{t-1}}{\partial x}$$

It turns out that this node implements the Babylonian algorithm, which computes

$$y = \sqrt{x}$$

As such we can compute its derivative directly as

$$\frac{\partial y}{\partial x} = \frac{1}{2\sqrt{x}}$$
$$= \frac{1}{2y}$$

bck_fcn(x, y)
return
$$\frac{1}{2y}$$

Chain rule gives $\frac{\partial J}{\partial x}$ from $\frac{\partial J}{\partial y}$ (input) and $\frac{\partial y}{\partial x}$ (computed)

Separate of forward and backward operations

Deep declarative networks (DDNs)

In an **imperative node** the implementation of the forward processing function \tilde{f} is explicitly defined. The output is then $y = \tilde{f}(x; \theta)$

where x is the input and θ are the parameters of the node.

In a declarative node the input output relationship is specified as the solution to an optimization problem

$$y \in \operatorname{argmin}_{u \in C} f(x, u; \theta)$$

where f is the objective and C are the constraints.

Imperative vs. declarative node example: global average pooling

$$\{x_i \in \mathbb{R}^m \mid i = 1, ..., n\} \rightarrow \mathbb{R}^m$$

Imperative specification:

$$y = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Declarative specification:

$$y = \underset{u \in \mathbb{R}^m}{\operatorname{argmin}} \sum_{i=1}^n ||u - x_i||^2$$

"the vector u that is the minimum distance to all input vectors x_i "

Deep declarative nodes: special cases

Unconstrained

(e.g., robust pooling)

Equality Constrained

(e.g., projection onto L_p -sphere)

Inequality Constrained

(e.g., projection onto L_p -ball)

$$y(x) \in \operatorname{argmin}_{u \in \mathbb{R}^m} f(x, u)$$

$$y(x) \in \left\{ \begin{array}{l} \operatorname{argmin}_{u \in \mathbb{R}^m} f(x, u) \\ \operatorname{subject to } h(x, u) = 0 \end{array} \right\}$$

$$y(x) \in \begin{cases} \operatorname{argmin}_{u \in \mathbb{R}^m} f(x, u) \\ \operatorname{subject to} h(x, u) \leq 0 \end{cases}$$

Imperative and declarative nodes can co-exist

$$y = f_8\left(f_4\left(\operatorname{argmin} f_3(f_2(f_1(x)), u)\right), \operatorname{argmin} f_7\left(f_6\left(f_5(f_1(x))\right), u\right)\right)$$

Learning as bi-level optimization

learning problem

```
minimize (over x) objective(x) subject to constraints(x)
```

bi-level learning problem

```
minimize (over x) objective(x, y)
subject to constraints(x) declarative node problem

minimize (over y) objective(x, y)
subject to constraints(y)
```

A game theoretic perspective

- Consider two players, a leader and a follower
 - The market dictates the price its willing to pay for some goods based on supply, i.e., quantity produced by both players, $P(q_1 + q_2)$
 - Each player has a cost structure associated with producing goods, $C_i(q_i)$ and wants to maximize profits, $q_i P(q_1 + q_2) C_i(q_i)$
 - The **leader** picks a quantity of goods to produce knowing that the **follower** will respond optimally. In other words, the **leader** solves

$$\begin{aligned} & \text{maximize}_{q_1} & q_1 P(q_1+q_2) - C_1(q_1) \\ & \text{subject to} & q_2 \in \text{argmax}_q \ q P(q_1+q) - C_2(q) \end{aligned}$$

Solving bi-level optimization problems

minimize_x
$$J(x,y)$$

subject to $y \in \operatorname{argmin}_u f(x,u)$

Closed-form lower-level problem: substitute for y in upper problem

$$minimize_x \quad J(x, y(x))$$

May result in a difficult (single-level) optimization problem

Solving bi-level optimization problems

minimize_x
$$J(x,y)$$

subject to $y \in \operatorname{argmin}_u f(x,u)$

• Convex lower-level problem: replace lower problem with sufficient conditions (e.g., KKT conditions)

minimize_{x,y}
$$J(x,y)$$

subject to $h(y) = 0$

May result in non-convex problem if KKT conditions are not convex

Solving bi-level optimization problems

minimize_x
$$J(x,y)$$

subject to $y \in \operatorname{argmin}_u f(x,u)$

• Gradient descent: compute gradient with respect to x

$$x \leftarrow x - \eta \left(\frac{\partial J(x,y)}{\partial x} + \frac{\partial J(x,y)}{\partial y} \frac{dy}{dx} \right)$$

• But this requires computing the gradient of y (itself a function of x)

Algorithm for solving bi-level optimization

SolveBiLevelOptimization:

initialize x

repeat until convergence:

solve $y \in \operatorname{argmin}_u f(x, u)$

compute J(x, y)

compute
$$\frac{dJ}{dx} = \frac{\partial J(x,y)}{\partial x} + \frac{\partial J(x,y)}{\partial y} \frac{dy}{dx}$$

update $x \leftarrow x - \eta \frac{dJ}{dx}$

return x

How do we compute $\frac{d}{dx} \operatorname{argmin}_{u \in C} f(x, u)$?

Implicit differentiation

Let $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a twice differentiable function and let

$$y(x) = \operatorname{argmin}_{u} f(x, u)$$

The derivative of f vanishes at (x, y). By Dini's implicit function theorem (1878)

$$\frac{dy(x)}{dx} = -\left(\frac{\partial^2 f}{\partial y^2}\right)^{-1} \frac{\partial^2 f}{\partial x \partial y}$$

The result extends to vector-valued functions, vector-argument functions and (equality) constrained problems. See [Gould et al., 2019].

Proof sketch

$$y \in \operatorname{argmin}_{u} f(x, u) \Rightarrow \frac{\partial f(x, y)}{\partial y} = 0$$

LHS:
$$\frac{d}{dx}\frac{\partial f(x,y)}{\partial y} = \frac{\partial^2 f(x,y)}{\partial x \partial y} + \frac{\partial^2 f(x,y)}{\partial y^2} \frac{dy}{dx}$$

RHS:
$$\frac{d}{dx}0 = 0$$

Rearranging gives
$$\frac{dy}{dx} = -\left(\frac{\partial^2 f}{\partial y^2}\right)^{-1} \frac{\partial^2 f}{\partial x \partial y}$$
.

Deep declarative nodes: what do we need?

Forward pass

A method to solve the optimization problem

Backward pass

- Specification of objective and constraints
- (And cached result from the forward pass)
- Do <u>not</u> need to know how the problem was solved

examples

Global average pooling

$$\{x_i \in \mathbb{R}^m \mid i = 1, ..., n\} \rightarrow \mathbb{R}^m$$

Robust penalty functions, ϕ

Quadratic

 $\frac{1}{2}Z^2$

closed-form, convex, smooth, unique solution

Pseudo-Huber

 $\sqrt{1+\left(\frac{z}{\alpha}\right)^2}-1$

convex, smooth, unique solution

Huber

 $\begin{cases} \frac{1}{2}z^2 \text{ for } |z| \le \alpha \\ \text{else } \alpha(|z| - \frac{1}{2}\alpha) \end{cases}$

convex, non-smooth, non-isolated solutions

Welsch

 $1 - \exp\left(\frac{-z^2}{2\alpha^2}\right)$

non-convex, smooth, isolated solutions

Truncated Quad.

 $\begin{cases} \frac{1}{2}z^2 & \text{for } |z| \le \alpha \\ \frac{1}{2}\alpha^2 & \text{otherwise} \end{cases}$

non-convex, non-smooth, isolated solutions

Example: robust pooling

minimize (over
$$x$$
)
$$J(x,y) \triangleq \frac{1}{2} ||y||^2$$
 subject to
$$y \in \operatorname{argmin}_u \sum_{i=1}^n \phi(u - x_i; \alpha)$$

Example: Euclidean projection

Example: quadratic programs

Can be differentiated with respect to its parameters:

$$P \in \mathbb{R}^{m \times m}$$
, $q \in \mathbb{R}^m$, $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$

Example: convex programs

Can be differentiated with respect to its parameters:

$$A \in \mathbb{R}^{n \times m}$$
, $b \in \mathbb{R}^n$, $c \in \mathbb{R}^m$

Implementing deep declarative nodes

- Need: objective and constraint functions, solver to obtain y
- Gradient by automatic differentiation

$$\frac{dy(x)}{dx} = -\left(\frac{\partial^2 f}{\partial y^2}\right)^{-1} \frac{\partial^2 f}{\partial x \partial y}$$

```
import autograd.numpy as np
from autograd import grad, jacobian

def gradient(x, y, f)
   fY = grad(f, 1)
   fYY = jacobian(fY, 1)
   fXY = jacobian(fY, 0)
   return -1.0 * np.linalg.solve(fYY(x,y), fXY(x,y))
```

cvxpylayers

- Disciplined convex optimization
 - Subset of optimization problems

- Write problem using CVX
 - Solver and gradient computed automatically!

```
x = cp. Parameter(n)
y = cp. Variable(n)
obj = cp. Minimize(cp.sum_squares(x - y ))
cons = [ y >= 0]
prob = cp. Problem(obj, cons)
layer = CvxpyLayer(prob, parameters=[x], variables=[y])
```

applications

Robust point cloud classification

Robust point cloud classification

O	Top-1 Accuracy %							Mean Average Precision ×100					
%	[34]	Q	PH	Н	W	TQ	[34]	Q	PH	Н	W	TQ	
0	88.4	84.7	84.7	86.3	86.1	85.4	95.6	93.8	95.0	95.4	95.0	93.8	
10	79.4	84.3	85.6	85.5	86.6	85.5	89.4	94.3	94.6	95.1	94.6	94.7	
20	76.2	84.8	84.8	85.2	86.3	85.5	87.8	94.8	95.0	95.0	94.8	95.0	
50	72.0	84.0	83.1	83.9	84.3	83.9	83.3	93.8	93.5	94.3	94.8	94.8	
90	29.7	61.7	63.4	63.1	65.3	61.8	38.9	76.8	78.7	78.5	79.1	76.6	

O	Top-1 Accuracy %							Mean Average Precision ×100					
%	[34]	Q	PH	Н	W	TQ	[34]	Q	PH	Н	W	TQ	
0	88.4	84.7	84.7	86.3	86.1	85.4	95.6	93.8	95.0	95.4	95.0	93.8	
1	32.6	84.9	84.7	86.4	86.2	85.3	48.6	93.8	95.1	95.3	95.1	93.0	
10	6.47	83.9	84.6	85.3	86.0	85.9	8.20	93.4	94.8	94.4	94.9	93.9	
20	5.95	79.6	82.8	81.1	84.7	84.9	7.73	91.9	93.4	92.7	94.2	94.6	
30	5.55	70.9	74.2	72.2	77.6	83.2	6.00	87.8	89.5	85.1	90.9	92.8	
40	5.35	55.3	59.1	55.4	63.1	75.6	6.41	77.6	80.2	72.7	83.2	90.6	
50	4.86	32.9	36.0	34.6	44.1	57.9	5.68	62.3	60.2	60.1	66.4	85.3	
60	4.42	14.5	16.2	18.1	27.1	30.6	5.08	39.1	36.3	38.5	42.7	68.5	
70	4.25	5.03	6.33	7.95	14.1	11.9	4.66	22.5	19.3	18.4	25.7	47.9	
80	3.11	4.10	4.51	5.64	8.88	5.11	4.21	10.8	8.91	8.98	14.9	26.7	
90	3.72	4.06	4.06	4.30	5.68	4.22	4.49	8.20	5.98	5.80	8.37	9.78	

Video activity recognition

Stand Up

Sit Down

[Fernando and Gould, 2016]

Video clip classification pipeline

Temporal pooling

Max/avg/robust pooling summarizes an unstructured set of objects

$$\{x_i \mid i=1,\ldots,n\} \to \mathbb{R}^m$$

Rank pooling summarizes a structured sequence of objects

$$\langle x_i \mid i = 1, ..., n \rangle \to \mathbb{R}^m$$

Rank Pooling

- Find a ranking function $r: \mathbb{R}^n \to \mathbb{R}$ such that $r(x_t) < r(x_s)$ for t < s
- In our case we assume that $r: x \mapsto u^T x$ is a linear function
- Use u as the representation

Experimental results

Method	Accuracy (%)
Max-Pool + SVM	66
Avg-Pool + SVM	67
Rank-Pool + SVM	66
Max-Pool-CNN (end-to-end)	71
Avg-Pool-CNN (end-to-end)	70
Rank-Pool-CNN (end-to-end)	87
Improved trajectory features + fisher vectors + rank-pooling	87

150 video clips from BBC and ESPN footage 10 sports actions

[Rodriguez et al., 2008]

21% improvement!

Visual attribute ranking

- 1. Order a collection of images according to a given attribute
- 2. Recover the original image from shuffled image patches

Birkhoff polytope

- Permutation matrices form discrete points in Euclidean space which imposes difficulties for gradient based optimizers
- The Birkhoff polytope is the convex hull for the set of $n \times n$ permutation matrices

- This coincides exactly with the set of $n \times n$ doubly stochastic matrices
- We relax our visual permutation learning problem over permutation matrices to a problem over doubly stochastic matrices

$$\{x_1,\ldots,x_n\}\to B^n$$

End-to-end visual permutation learning

Sinkhorn normalization or projection onto B^n

sinkhorn fcn(A) Q = Afor t = 1, ..., T do $Q_{i,j} \leftarrow \frac{Q_{i,j}}{\sum_{k} Q_{i,k}}$ return Q

Alternatively, define a deep declarative module

minimize
$$\|Q-A\|$$
 $Q \in \mathbb{R}^{n \times n}_+$ subject to $Q \mathbf{1} = \mathbf{1}$ $Q^T \mathbf{1} = \mathbf{1}$

Visual attribute learning results

Blind perspective-n-point

Blind perspective-n-point

Blind perspective-n-point

code and tutorials at http://deepdeclarativenetworks.com CVPR 2020 Workshop (http://cvpr2020.deepdeclarativenetworks.com)