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Abstract

Many problems in computer vision can be modeled us-
ing conditional Markov random fields (CRF). Since find-
ing the maximum a posteriori (MAP) solution in such mod-
els is NP-hard, much attention in recent years has been
placed on finding good approximate solutions. In partic-
ular, graph-cut based algorithms, such asα-expansion, are
tremendously successful at solving problems with regular
potentials. However, for arbitrary energy functions, mes-
sage passing algorithms, such as max-product belief prop-
agation, are still the only resort.

In this paper we describe a general framework for find-
ing approximate MAP solutions of arbitrary energy func-
tions. Our algorithm (calledAlphabet SOUPfor Sequential
Optimization for Unrestricted Potentials) performs a search
over variable assignments by iteratively solving subprob-
lems over a reduced state-space. We provide a theoreti-
cal guarantee on the quality of the solution when the inner
loop of our algorithm is solved exactly. We show that this
approach greatly improves the efficiency of inference and
achieves lower energy solutions for a broad range of vision
problems.

1. Introduction

Many problems in computer vision can be modeled using
conditional Markov random fields (CRFs). Solving these
problems amounts to maximum a posteriori (MAP) infer-
ence, or finding an assignment to each variable that jointly
minimizes the energy function (maximizes the probability)
defined by the model. Although MAP inference for a gen-
eral CRF is NP-hard, efficient algorithms exist for some
special cases. One important case is that of pairwise binary
CRFs with regular potentials, a class that can be solved effi-
ciently using graph-cut-based algorithms. Inspired by this,
a number of works have attempted to develop efficient ap-
proximation algorithms for the non-binary case. Notably,
theα-expansion search method of Veksleret al. [26, 1] can
be applied to problems with pairwise regular1 energy func-

1Here the regularity condition is on the energy function defined by the
α-expansion moves, i.e.,θij(α, α)+θij(β, γ) ≤ θij(β, α)+θij(α, γ).

tions and has been shown in empirical studies [25] to pro-
duce solutions that are near optimal. Thus, for the special
case of regular energies, the problem of MAP inference is
essentially solved.

Regular energies, and the associated minimization al-
gorithms, are used ubiquitously in addressing early vision
tasks, such as dense stereo, image denoising, binary image
segmentation, etc. [25], where one often uses a simple (pair-
wise) smoothness prior between neighboring pixels in a 2D
grid. However, as noted Szeliskiet al. [25], the energy for
the groundtruth assignment is often worse than the energy-
optimizing assignment, indicating that these simple energy
functions fail to model important aspects of the problem.
The distance between tractable and useful models becomes
even more severe when we use CRFs to model mid-level
and high-level vision tasks, such as multi-class image seg-
mentation [9, 20], joint segmentation and detection [15] and
3D reasoning from monocular images [8]. These tasks,
while usually having fewer variables than their early vision
cousins, have significantly more difficult energy functions,
which often include high-order terms, non-grid neighbor-
hoods and heterogeneous variables.

Thus, for many vision applications, the CRFs that ade-
quately capture the important properties of the problem are
unlikely to be regular, and therefore are not amenable to
the use of the highly-efficient graph-cut-based algorithms.
Currently, the only general purpose methods for solving
problems with arbitrary energy functions are message pass-
ing algorithms such as max-product (MP) belief propaga-
tion [19], or its convex variants, such as tree-reweighted
message-passing (TRW) [28, 10] or GEMPLP [5]. Unfortu-
nately, these algorithms are often very slow to converge, and
cannot handle graphs with very large value spaces. Indeed,
as noted in [9], “the lack of efficient algorithms for per-
forming inference in these [higher-order] models has lim-
ited their applicability.”

In this paper, we aim to meet this challenge, by provid-
ing a flexible framework that can produce good approxi-
mate solutions and that can scale to accommodate available
computing resources and problem complexity. Briefly, we
propose a method, calledAlphabet SOUP(Sequential Op-
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timization for Unrestricted Potentials), that performs anit-
erative search over variable assignments. The method per-
forms large global moves in the space by (temporarily) re-
ducing the state-space for each variable, and finding the
minimum energy assignment over the reduced state-space.
The method is agnostic to the algorithm used for this opti-
mization step, allowing the algorithm best-suited to the par-
ticular energy function to be used.

Our method can be viewed as a generalization of theα-
expansion search method of Veksleret al. [26, 1], which
also iteratively proposes steps based on optimizing the en-
ergy over a reduced state-space for each variable. However,
our more general method is also applicable to CRFs with
higher-order cliques and arbitrary energy functions. Our
method also allows us to consider a much larger subspace
during each iteration of the search, enabling the algorithm
to make larger global moves.

Our contributions are threefold: First, we propose a
wrapper method for performing approximate MAP infer-
ence in graphical models which can be scaled to accom-
modate different problem sizes and processing limitations.
Second, we provide optimality guarantees when the inner
loop of our method is exact. Last, we show how the subsets
required by our method can be chosen and validate our ap-
proach on various contemporary problems. In many cases,
our method results in lower energies than were achieved by
the methods reported in the literature.

Finally, we note that our Alphabet SOUP method is a
general purpose energy minimization technique and not re-
stricted to vision problems. For example, CRFs were first
introduced in modeling natural language [16] where they
provide state-of-the-art solutions for problems ranging from
named-entity recognition to information extraction. They
have also been used with great success in computational bi-
ology, in applications that include 3D protein-structure pre-
diction [30] and inferring the architecture of cellular net-
works.

2. Background and Related Work
A Markov random field (MRF) defines a probability

distributionP(X ) = 1
Z exp {−

∑

c θc(Xc)} over discrete
random variablesX = {X1, . . . ,Xn}, where each variable
can take on values in somedomaindom(Xi). The distri-
bution is parameterized by real-valued potential functions
θc(Xc) over sets of variables, or cliques,Xc ⊆ X . The
potentials represent a relative preference for every assign-
ment to the variables in the cliqueXc. For example, in
the standard Potts model, a pairwise potentialθij(Xi,Xj)
assigns a uniform penalty forXi 6= Xj and no penalty oth-
erwise. The termE(x) =

∑

c θc(xc) is called theenergy
and the MAP assignment forP(X ) can be found by solving
the problem:

minimize E(x) =
∑

c θc(xc)
subject to xi ∈ dom(Xi) ∀Xi ∈ X

(1)

A large body of literature exists covering MAP infer-
ence; here, we provide only a very brief review. We note
that Szeliskiet al. [25] provides a review of different energy
minimization methods for computer vision, and a quantita-
tive comparison on a number of benchmark vision tasks.

One of the earliest energy-minimization methods is the
still-popular max-product (MP) belief propagation [19].
Here, messages are sent between nodes in the MRF indicat-
ing a node’s preference for the assignment of its neighbor.
Each node accumulates messages from all of its neighbors
and maintains a belief (distribution) over possible assign-
ments. The algorithm iterates until beliefs stop changing
(or until a maximum number of messages have been sent).
The joint MAP assignment is discovered by taking the as-
signment which locally maximizes each belief.

A different approach is based on viewing the MAP in-
ference problem of Eq. 1 as an integer programming opti-
mization problem, and solving its linear programming (LP)
relaxation. Although solving the linear program directly
is generally infeasible, several approaches use message-
passing-like algorithms to solve its dual; some of these
methods are not guaranteed to converge to the dual-optimal
solution [28, 10, 5] whereas more recent methods [24, 13]
do provide such guarantees. An important advantage of
these methods is that, due to the properties of linear pro-
gramming duality, they provide a lower bound on the en-
ergy function. This lower bound can be used to guide the
addition of consistency constraints and result in an optimal
solution [24]. However, these methods have limited appli-
cability, as they are only usable when the entire problem
can be fit in main memory, and are therefore inapplicable to
problems where the domain size of the variables is large, or
where cliques involve a large number of variables.

In the context of computer vision problems, signifi-
cant attention has been given to graph-cut based algo-
rithms [6, 26, 1, 12, 4, 25] which have been shown to
perform exceptionally well on large grid-structured prob-
lems with (regular pairwise) smoothness priors, i.e., prob-

lems of the form:P(X ) = 1
Z exp

{

−
∑

(i,j) θij(Xi,Xj)
}

where a term is included for every pair of adjacent variables
(i, j) andθij(Xi,Xj) is assumed to be ametric, encoding a
preference for adjacent variables to take on similar values.
When the problem is over binary-valued variables with so-
called regular potentials, these methods obtain the global
optimum. For non-binary problems, i.e., where each vari-
able can be assigned a value from a larger label spaceL,
a search algorithm is generally used, with graph-cut meth-
ods providing the optimal move in some constrained search
space. One such method, which is closely related to ours,
is theα-expansion algorithm [26, 1]. The algorithm main-
tains a current best joint assignment and iterates over labels
α ∈ L trying to find a better assignment by allowing vari-
ables to either keep their current assignment or change toα.
This is called anα-expansionmove. The algorithm cycles



until no further improvement to the objective can be made.
The solution is a local minimum in the sense that no sin-
gleα-expansion move can result in a lower energy. Here, a
global optimum is not guaranteed, but the approach seems
to work very well in practice.

There are two main problems with the basicα-expansion
algorithm described above. First, it can only be used on
pairwise MRFs with regular potentials (and hence also lim-
ited to MRFs with homogeneous variables). Second, when
the cardinality of each variable is large, it needs many iter-
ations and risks getting stuck in local minima.

Several works attempt to address the first of these issues
by extending the graph-cut approach to non-regular poten-
tials. One approach is to approximately solve the pairwise
binary MRF required byα-expansion using algorithms such
as quadratic pseudo-binary optimization (QPBO) [11, 21];
this method is only applicable when most of the potentials
are regular. Another approach is to develop algorithms for
special-case energy functions, such as truncated convex pri-
ors [27]. While all of these methods are effective for some
problems, they are limited to pairwise potentials and do not
address the problem of optimizing general energy functions.

Other works aim to address the issue of large value
spaces by reducing the set of labels considered. The novel
fusion-move approach [18] makes moves by combining two
proposed solutionsx0 andx

1. These fusion-moves usually
result in non-regular energies and so the algorithm resortsto
approximate inference (e.g., QPBO). Our work generalizes
this approach by allowing thefusingof multiple proposed
solutions in a single search step. In addition, we provide
theoretical guarantees when the search steps are exact.

Recent work in computer vision has started to make use
of higher-order cliques and problems over heterogeneous
variables. Lanet al. [17] showed that for the problem of
image denoising the value space for each variable can be
pruned reliably (by examining its local neighborhood) mak-
ing belief propagation tractable. However, their method
is not general and does not provide any guarantee on the
quality of the solution. Other recent work [20] shows how
to transform multi-label high-order energy functions into
second-order binary ones which can then be solved by ap-
proximation techniques. It is not clear the extent to which
the approximation at the binary level affects the multi-label
result. Furthermore, for problems with large variable do-
mains, the transformation to binary can be prohibitive.

3. Alphabet SOUP

We now describe a new algorithm for approximate MAP
inference. Likeα-expansion, we aim to optimize the as-
signment by performing a search over the value space: we
maintain a current best joint assignment to the random vari-
ables, which we modify by searching over a space of possi-
ble moves. However we will consider a much richer set of
moves thanα-expansion.

3.1.γ-expansion Moves

Let A
γ
i ⊆ dom(Xi) be a subset of the domain for each

variableXi. We define aγ-expansionmove to be a mapping
for each variableXi from its current valuexi to a value
x̂i ∈ A

γ
i ∪ {xi}. Our goal is to find the assignment that is

a γ-expansion move that has minimum energy. We do this
by defining a new energy functionEγ(x̂;x) =

∑

c θγ
c (x̂c)

over the restricted domain for each variableA
γ
i ∪{xi}where

we construct each potentialθγ
c (x̂c) as

θγ
c (x̂c)=

{

θc(x̂c) if ∀Xi ∈Xc : x̂i∈A
γ
i ∪ {xi}

∞ otherwise
(2)

That is, for every value in the potential, we either copy the
value if it corresponds to an assignment in our restricted
state-space, or set it to infinity otherwise. This reduction
operation is illustrated in Figure 1. Notice that the entries
corresponding to assignments outside of the restricted state-
space can be removed from the potential, creating a poten-
tial whose size is a factor of

∏

Xi∈Xc

|dom(Xi)|
|Aγ

i
∪{xi}|

smaller.
This decrease in size can lead to substantial speed improve-
ments by allowing potentials to fit in memory.

∞
Φk(Xi, Xj)Φ(Xi, Xj)

∞
∞
∞

∞
∞

∞
∞

∞
∞

∞
∞

∞
∞

xi = 1, xj = 3
Ai

k = { 0, 1}
Aj

k = { 0, 1}

Figure 1: Illustration of restricting a potential for evaluating theopti-
mal γ-expansion move. In this example the current best assignment to
(Xi, Xj) is (1, 3). If A

γ
i

= A
γ
j

= {0, 1} then the restricted potential
will be over the entries in{0, 1} × {0, 1, 3} as shown.

The restricted potential allows us to efficiently find the
optimalγ-expansion move:

Observation 3.1. Finding the MAP assignment for the
problem with all potentials restricted toAγ

i ∪{xi} is equiv-
alent to finding the optimalγ-expansion move fromx.

3.2. Usingγ-Expansion Moves

Based on the notion of aγ-expansion move, we can now
define an algorithm that iteratively searches over the space.
At each point, we select a particularγ-expansion opera-
tion. We then use the energy-minimization algorithm of
our choice to find the assignmentx

′ that is the optimalγ-
expansion move fromx and accept the move if it results in a
lower energy, i.e., ifE(x′) < E(x). The algorithm contin-
ues until none of theγ-expansion moves that we are willing
to consider improves the energy, so that we have found a
local optimum in our search space.

To define the algorithm concretely, we need to specify
which γ-expansions we want to consider at each iteration.



Most simply, we can statically partition the domain of each
variable intoK subsetsA1

i , . . . , A
K
i ; these subsets need not

be disjoint and may even be empty. Then, we defineγk

to be the set{Ak
1 , . . . , Ak

n}, and iterate over thek’s in a
round-robin fashion. We note that standardα-expansion is a
special case of this static variant of our algorithm, where we
selectAk

i to be the singleton set containing thek-th label.
However, our framework also allows substantially

greater flexibility, in several dimensions. First, we can se-
lect subsets that include more than one value for each vari-
able. For example, it is very common for variable assign-
ments to represent some ordinal values (e.g., disparities in
stereo reconstruction). In this case, an obvious partitionis to
group labels into contiguous ranges. At each iteration, the
algorithm chooses to keep the current assignment to each
variableXi or change it to one of the values in the range
specified byAk

i . By allowing overlapping partitions, vari-
ables can smoothly move from one ordinal range to the next.

A second dimension of flexibility is our method’s ability
to choose the subsets to reflect the properties of the energy
function. For example, one useful heuristic for choosing
expansion moves is to group low energy assignments to-
gether, as these are likely to occur in low energy solutions.
In particular, when singleton potentials are very strong, we
might choose to construct aγ that places in eachAγ

i the as-
signments toXi that receive low values inθi(Xi). When
pairwise (or higher-order) terms are strong, we can choose
to group values that jointly give rise to low energy config-
urations within individual cliques; that is, ifθij(xi, xj) is
low, then we might put(xi, xj) ∈ A

γ
i × A

γ
j , for someγ.

A third dimension of flexibility allows us to construct the
expansion moves dynamically, based on the current assign-
mentx. For example, we might construct our currentγ-
expansion move so as to include inA

γ
i assignmentsxi that

are compatible (achieve low energy) with the current assign-
ments to variablesXj 6= Xi. This approach is related to the
value pruning methods found in the literature [17, 14], but
does not require that the values be pruned permanently. In
fact, our Alphabet SOUP method can provide a theoretical
foundation for these methods: We can use the value pruning
techniques to define theγ-expansion moves in early itera-
tions of the algorithm, but then use a covering set ofγ’s
as a final iteration to provide ourselves with the theoretical
guarantees as we discuss in Section 3.3 below.

Dynamic construction is also useful when vector-valued
variables (e.g., 3D surface normals) are quantized into a dis-
crete label space. Here, a natural search procedure is to
apply coordinate descent on each dimension. In this case
the partitions are chosen dynamically based on the decoded
coordinate value for each assignment. Here, the subsets cor-
respond to all the assignments consistent with the best as-
signment at hand, while allowing one coordinate to vary.

Many other heuristics are possible, and their develop-
ment is an interesting direction for further research.

3.3. Theoretical Guarantees

Above, we discussed different options for selecting the
set of possible expansion moves that we consider. We now
provide a result that shows that, under weak conditions,
the local optimality of an assignmentx in theγ-expansion
space implies a bound on the distance between the energy
of x and the optimal energy.

We define a set ofγ-expansion movesγ1, . . . , γK to be
coveringif, for everyxi ∈ dom(Xi), there exists aγk such
that xi ∈ A

γk

i . When eachγ-expansion move is optimal,
we can make the following guarantee.

Theorem 3.2. Let γ1, . . . , γK be a covering set of moves.
Assume thatθc(xc) ≥ 0 for all cliquesc, with equality only
if there exists someγk such thatxi ∈ A

γk

i for all vari-
ablesXi in the clique. Ifx is a local optimum relative to
γ1, . . . , γK , thenE(x) is within a factor ofλ (maxc |Xc|)
of the optimal energy, where

λ = max
c:|Xc|>1

(

maxxc
θc(xc)

minxc:θc(xc) 6=0 θc(xc)

)

(3)

and|Xc| is the number of variables in cliquec.

This theorem (see appendix for proof) subsumes the op-
timality result forα-expansion [26], i.e., thatα-expansion
returns an assignment that is within a constant factor of the
global optimum. For a Potts model, this ensures that the
energy is within a factor of two of the optimum.

Many state-of-the-art techniques exist for solving small
problems exactly and can be used for the inner loop of our
algorithm, e.g., the junction tree algorithm [2] for problems
with small treewidth, min-cut [12] for binary problems with
regular potentials, or linear programming (LP) relaxation
with cluster pursuit [24]. However our algorithm is well
defined even if the inner loop is not solved exactly, allowing
researchers to use approximate MAP inference algorithms
that are appropriate for their problem.

Recall that a major benefit of the class of LP-based meth-
ods is that they exploit duality to place a bound on the dis-
tance between the energy of the current assignment and the
optimal energy. When such a method is used to perform
the optimization for theγ-expansion steps in the inner loop
of the Alphabet SOUP algorithm, we can provide similar
bounds. In particular, Globersonet al. [5] show that the
dual of the LP relaxation of Eq. 1 can be reformulated as:

maximize
∑

s minxs

∑

c∈N(s) minxc\s
βs

c (xc)

subject to
∑

s∈S(c) βs
c (xc) = θc(xc), ∀c,xc

(4)

wheres enumerates the set of non-empty intersections, or
separators, between cliques, andS(c) andN(s) represent
the neighborhoods of cliquec and separators, respectively.
The βs

c (xc) are the dual variables to the primal LP con-
straints. As usual, the dual objective at any feasible as-
signment provides a lower bound onE(x). Globersonet



al. show that this dual LP can be solved efficiently using a
message-passing algorithm similar to belief propagation.

When using this LP-based approach to solve the re-
stricted optimization defined by aγ-expansion step, the pri-
mal is restricted to the value-space defined by eachA

γ
i . The

effect on the dual is thatβs
c (xc)’s corresponding to assign-

ments not allowed by theγ-expansion move can be removed
from the objective. The dual optimum of the restricted prob-
lem is now not guaranteed to be a feasible point for the orig-
inal unrestricted dual of Eq. 4. However, we can use the
restricted solution to produce a dual-feasible assignmentto
Eq. 4, which thereby immediately provides a bound on the
duality gap for the original problem. Specifically, the so-
lution to the restricted dual provides dual-feasible assign-
ments to theβs

c (xc) corresponding toxc’s allowed by the
γ-expansion move, leaving us only to find a feasible assign-
ment to the remainingβs

c (xc)’s. A simple solution is to split
the mass ofθc(xc), giving βs

c (xc) = 1
|S(c)|θc(xc). The re-

sulting solution is dual feasible and hence provides a bound
∆ on the distance between our current assignment’s energy
and the optimal energy as

δs
c(xs) = min

xc\s

{

{

βs
c (xc)

}

xc∈γ
,
{

1
|S(c)|θc(xc)

}

xc /∈γ

}

(5)

∆ = E(x) −
∑

s

min
xs

∑

c∈N(s)

δs
c(xs). (6)

An interesting avenue for future research is to investigate
using the termsδs

c that cause an increase in the dual objec-
tive to guide the construction of dynamic expansion moves.

4. Experimental Results
We now provide an Alphabet soup of example problems

that can be solved by our framework.

Image Completion and Inpainting. Exemplar-based im-
age completion [3, 14] is a method for filling-in missing
parts of an image by copying patches from other parts of the
image. Recently, Komodakis and Tzititas [14] formulated
the problem as a pairwise MRF over grid locations within
the missing region. Briefly, fixed-sized patches (from the
observed part of the image) are placed in overlapping fash-
ion on the grid to complete the image. Grid locations around
the perimeter of the missing region are assigned a single-
ton term θi(Xi) measuring the sum-of-square-difference
(SSD) between the observed region of the grid location
and the candidate patch. Similarly, a pairwise SSD term
θij(Xi,Xj) is defined for every neighboring grid location
(see [14] for details). This energy function is not metric and
hence theα-expansion algorithm cannot be used.

Since patches can be drawn from any location within the
observed part of the image, the value space is enormous,
e.g., roughly 70,000 for a320 × 240 image. Clearly, stan-
dard message passing algorithms cannot support a problem
of this magnitude. To solve the problem, Komodakis and

Original image Result of [14] Greedy Alphabet SOUP

(i) (ii) E = 3.37 (iii) E = 4.97 (iv) E = 2.84

(a) Bungee jumping example from [3].

(i) (ii) E = 3.26 (iii) E = 3.36 (iv) E = 2.03

(b) Author removed from an image.
Figure 2: Comparison of different methods on image completion task. We
use a7 × 7 grid spacing; (a) required 280 patches to fill, (b) required 179
patches. Results are annotated with cost (energy) per patch. Our method
achieves lower energy than the other more greedy approaches.

Tzititas propose a priority-based message scheduling algo-
rithm with label pruning. Their approach is to run a belief
propagation algorithm in which messages are scheduled ac-
cording to the current belief and the value-space for each
variable is pruned the first time it sends a message. This
greedy approach results in a smaller MRF in which pairwise
terms can be computed efficiently. However, the pruned la-
bels are never reconsidered and therefore the approach may
result in suboptimal energies.

Instead of pruning values we applied our method of iter-
ating over subsets of label assignments, but still considering
all possible labels in the end. Concretely, we divided the la-
bel space (set of possible patches) into non-overlapping sets
Lk, each containing 250 patches. During each iterationk,
we setAγk

i for the first variableXi in each row of the miss-
ing grid toLk. We then set the remainingAγk

j in each row to
take labels from the observed part of the image correspond-
ing to labels inLk offset by the same distance as between
Xi andXj . This approach helped provide many low energy
pairwise matches.

In our experiments we found the method of Komodakis
and Tzititas to be very sensitive to the priority schedule and
amount of pruning. This makes it susceptible to the same
sort of errors produced by more greedy approaches. We ran
a number of trials and report the best energy found.

Our naive implementation did not include any speed ups
for computing the SSD terms (e.g., computing them in the
frequency domain); thus, running time was dominated by
the SSD calculations. Nevertheless, our method only ran
about 5 times slower than the competing approach.

Results are shown in Figure 2. Here we compare the en-



ergy per variable for the method of Komodakis and Tzititas,
a naive greedy approach, and Alphabet SOUP (using max-
product message passing as the inner loop). On both test
images, we achieve a lower energy.

Object Detection and Outlining. The task of object out-
lining involves finding instances of an object class in novel
images and providing a precise outline around those objects.
We tried out our method on the CRF-based LOOPS model
of Heitz et al. [7], in which correspondences are found be-
tween landmarks on the online of an object (e.g., animal’s
nose) and image pixels. Their model defines a CRF where
the variables are then landmarks, and their assignments
represent options for corresponding image pixels. To al-
low the use of discrete energy optimization techniques, they
consider, for each landmark, them pixels that give rise to
the lowest energy values in the (learned) singleton poten-
tials. Asn andm are often reasonably small (around 50 or
60), the LOOPS models fit easily into memory. Neverthe-
less, due to the dense connectivity of the model, standard
belief propagation has trouble performing inference and of-
ten fails to converge. The LOOPS method [7] handles this
problem by removing weak pairwise relationships to pro-
duce a sparse model.

We performed experiments on 42 images of giraffes us-
ing a LOOPS model with 60 landmarks (see Figure 3), com-
paring results from our method with the best singleton land-
mark locations and those found by the discrete stage of the
LOOPS approach. As the singleton potentials are very in-
formative in this application, we partitioned the domain of
each variable into subsets according to the score of the sin-
gleton potentials, using three candidates in eachA

γ
i . We

ordered subsets with the lowest energy first, so that a low
energy assignment was generally found in the very first iter-
ation, with later iterations serving only to correct a few out-
liers. In our significantly smaller models, belief propagation
had no convergence problems, and so we could use the full
LOOPS model with all pairwise interactions, rather than the
sparsified version. This approach consistently found solu-
tions that have lower energy and are more visually appeal-
ing than the other two.
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Figure 3: Object outlining using the model of Heitzet al. [7] comparing
best scoring independent match (red dashed), discrete roundof inference
in [7] (green dotted), and Alphabet SOUP (blue solid). Our method consis-
tently finds a lower-energy solution than the other two approaches (right).

Surface Reconstruction. One general class of vision ap-
plications is that of 3D surface reconstruction from a set
of 2D measurements collected from different viewing an-
gles. Here, we can model the surface as a mesh of small

Energy per Pixel Running Time (s)
Problem (i) (ii) (iii) (i) (ii) (iii)
(a)40 × 43 0.507 0.509 0.521 39 1 < 1
(b) 112 × 116 n/a 0.527 0.555 ∞ 23 5

Table 1: Results for the 3D surface reconstruction experiments. Shown
are results for (i) optimizing all coordinates simultaneously, (ii) coordinate
descent over pairs of coordinates, and (iii) coordinate descent over indi-
vidual coordinates. Problem (a) was over a40 × 43 mesh; (b) was over a
112 × 116 grid (and too large to solve by (i)). Variables were quantized
into (13, 7, 7, 13) and(23, 9, 9, 23) bins, respectively.

patches, where each is parameterized by a 4-dimensional
vector defining its (3D) orientation and (1D) radial offset.
The singleton potentials generally measure the fit between
the patch position and the image(s) obtained from the rele-
vant viewing angles. The pairwise potentials impose a pref-
erence for smoothness of the reconstructed surface.

To allow discrete energy optimization to be applied to
this task, we can discretize this 4-dimensional vector. The
energy function here is metric and so amenable to theα-
expansion algorithm. However, depending on the number
of quantization bins per dimension, the state-space for each
variable can be very large (often containing around 40,000
values). In these cases, the pairwise smoothness term can
be too large to precompute and too expensive to compute on
the fly during each iteration ofα-expansion. The Alphabet
SOUP approach provides a way for reducing the computa-
tional cost, by using a coordinate descent variation, with the
A

γ
i chosen dynamically, as described in Section 3.2.
We experiment with this approach over the task of re-

constructing the outermost surface layer (S-layer) of a bac-
teria from images obtained by 3D-tomography from cryo-
electron microscopes. The S-layer often exhibits geometri-
cal lattice-like 2D structure [23, 22], which provides insight
into how the bacteria interacts with its environment. These
structures are not easily visible in the raw 2D images, but
much more easily discerned in a 3D surface reconstruction.

We evaluated on two different size problems using three
approaches: (i) optimizing all coordinates at once, (ii) coor-
dinate descent over pairs of coordinates, and (iii) coordinate
descent over individual dimensions. In each case (for our
inner loop) we use theα-expansion algorithm using code
available online. Results are shown in Table 1.

As expected, optimizing over all coordinates simulta-
neously obtains the lowest energy. However, very little
penalty is paid in terms of energy when performing coor-
dinate descent over pairs of coordinates, while a significant
improvement in running time can be gained. In the smaller
of our two problems, a 40-fold reduction in running time is
obtained, at negligible cost in the energy obtained; in the
larger problem, standardα-expansion was simply too large
to be solved without coordinate ascent.

Rosetta Protein Design. We also ran our algorithm on
some non-vision applications to verify its ability to solve
difficult problems consisting of heterogeneous variables



with large domains. We chose the challenging Rosetta Pro-
tein Design dataset made available by Yanoveret al. [29].
The dataset contains 97 models that aim to find the most
stable sequence of amino-acids that give rise to a given 3D
structure. These problems cannot be solved using standard
min-cut approaches since each variable has a different do-
main. Sontaget al. [24] showed that these models could
be solved using a state-of-the-art dual message passing al-
gorithm [5] with cluster pursuit. Using their method we
were able to find the true MAP solution for 93 of the 97
problems.2 In Figure 4 we compare the energy and run-
ning time of our algorithm with asynchronous max-product
belief propagation (MP) and the exact method. We also
compare against the dual message passing algorithm, GEM-
PLP [5], without cluster pursuit. Surprisingly, our results
show that, not only does Alphabet SOUP run faster (in
91.4% cases) and require less memory than MP or GEM-
PLP, it also often produces lower energies. In particular,
in 96.8% of cases our method is within 5% of the optimal
solution.
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Figure 4: Results for the Rosetta Design Dataset. (left) compares running
time in seconds of Alphabet SOUP against async. MP belief propaga-
tion. (right) shows the quality of solutions for MP, GEMPLP and Alphabet
SOUP compared to the optimum energy. For MP we ran for a maximum
of 1000 iterations, most problems failing to converge. For Alphabet SOUP
we set the subset size for all variables to 50 and ran asynchronous MP as
the inner loop. Mean running time for the exact method [24] was 15 hours.

5. Discussion
In this work, we presented a method for finding approx-

imate solutions to the MAP inference problem for arbitrary
energy functions. We can provide an optimality bound on
the solution when the inner loop of our method is exact.
However, as we showed in our experiments, even when the
inner loop cannot be solved exactly, our method still pro-
vides several advantages over other approaches. In partic-
ular, our method is faster than standard max-product belief
propagation, requires significantly less memory, and often
produces lower energy solutions.

Perhaps the most interesting directions for further study
are in providing more formal foundations for the choice of
subsets used for the different variables. First, the empir-
ical observation that problems with smaller domains can
be solved more easily deserves more theoretical attention.

2The exact method is very computationally intensive and the remain-
ing four problems exceeded the runtime limits (160 hours) on ourcluster
computer before convergence and so we could not solve them exactly.

It would also be interesting to see whether our theoretical
bound can be used to provide more formal guidance as to
which subsets are likely to give better bounds. Along sim-
ilar lines, it would be valuable to further explore the con-
nections between these value-based approximations and the
linear-program relaxation of the MAP problem, with the
goal of providing a bound on the gap between the cur-
rent solution and the optimal one. Last, the ability to dy-
namically select expansion moves suggests asubset pursuit
method, in which subsets are dynamically chosen in a way
that facilitates greatest decrease in energy.

Finally, as noted by Szeliskiet al. [25], groundtruth as-
signments often fare worse in terms of energy than solutions
produced by current state-of-the-art energy minimization
techniques, indicating that the energy functions are too sim-
ple and fail to model important aspects of the problem. A
flexible MAP inference algorithm that caters to large cliques
and heterogeneous variables may allow vision researchers
to more explore energy functions that are better-suited to
their problems.
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A. Appendix
Proof of Theorem 3.2.Letx† be a local minimum in the ex-
pansion move space and letx

⋆ be the global optimum. Fix
somek and letXk = {Xi : x⋆

i ∈ A
γk

i }, i.e., the set of vari-
ables whose optimal assignment is within thek-th subset for
that variable. We can produce a labelingx

′ within oneγk-
expansion move fromx† as follows:x′

i = x⋆
i if Xi ∈ Xk,

andx′
i = x

†
i otherwise. Now, sincex† is a local minimum,

E(x⋆) ≤ E(x†) ≤ E(x′) (7)

For any set of cliquesS, defineES(x) to be the restriction
of the energy to that set. Formally,ES(x) =

∑

c∈S θc(xc).
Define three sets:Ik = {c : Xc ⊆ Xk}, the set of all

cliques where the variablesXi have their optimal assign-
ment inA

γk

i ; Bk = {c : Xc ∩ Xk 6= ∅,Xc * Xk}, the
set of all cliques where at least one variableXi has optimal
assignment inAγk

i and one variableXj has optimal assign-
ment outside ofAγk

j ; andOk = {c : Xc ∩ Xk = ∅}, the
set of all cliques where the variablesXi have their optimal
assignment outside ofAγk

i . For any assignmentx we can
write E(x) = EIk(x) + EBk(x) + EOk(x).

The following is true:EOk(x′) = EOk(x†), EIk(x′) =
EIk(x⋆), andEBk(x′) ≤ λEBk(x⋆) whereλ is defined in
Theorem 3.2. The first two are obvious (and can be seen by
summing the relevantθc(xc)). The the last holds because

EBk(x′) ≤ max
x

EBk(x) ≤
∑

c∈Bk

max
xc

θc(xc)



=
∑

c∈Bk

(

maxxc
θc(xc)

minxc:θc 6=0 θc(xc)

)

min
xc:θc 6=0

θc(xc)

≤ λ
∑

c∈Bk

min
xc:θc 6=0

θc(xc) ≤ λ
∑

c∈Bk

θc(x
⋆
c) = λEBk(x⋆)

where for the last inequality used the fact that forc ∈ Bk

we haveθc(x
⋆
c) 6= 0 by the conditions of our theorem.

Substituting the above into Eq. 7 and applying some sim-
ple algebraic manipulation, we have that

EIk(x†) + EBk(x†) ≤ EIk(x⋆) + λEBk(x⋆).

Now consider the case that theAγk

i are disjoint. Sum-
ming overk we have for the left-hand side:
∑

k

(

∑

c∈Ik

θc(x
†
c) +

∑

c∈Bk

θc(x
†
c)

)

≥
∑

c∈
S

k Ik∪Bk

θc(x
†
c) = E(x†)

Similarly for the right-hand side:
(
∑

k

∑

c∈Ik θc(x
⋆
c)

)

+ λ
(
∑

k

∑

c∈Bk θc(x
⋆
c)

)

≤
(
∑

k

∑

c∈Ik θc(x
⋆
c)

)

+ λ
(

∑

c∈
S

Bk |Xc| · θc(x
⋆
c)

)

=
(

∑

c∈
S

Ik θc(x
⋆
c) +

∑

c∈
S

Bk θc(x
⋆
c)

)

+
(

∑

c∈
S

Bk (λ|Xc| − 1) · θc(x
⋆
c)

)

≤ E(x⋆) + (λ maxc |Xc| − 1)
∑

c∈
S

Bk θc(x
⋆
c)

≤ E(x⋆) + (λ maxc |Xc| − 1) E(x⋆)
= λ (maxc |Xc|) E(x⋆)

where we have used the fact that due to the disjointness
of the A

γk

i we cannot have terms appearing inBk more
than |Xc| times. Now forAγk

i not disjoint, defineÃγk

i =

A
γk

i \
⋃k−1

l=1 A
γk

i . The proof above holds for̃Aiγk which are
subsets of theAγk

i and so holds in general. Thus we have
E(x⋆) ≤ E(x†) ≤ λ (maxc |Xc|) E(x⋆).
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