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Abstract tions and has been shown in empirical studies [25] to pro-

duce solutions that are near optimal. Thus, for the special

Many problems in computer vision can be modeled us- case of regular energies, the problem of MAP inference is

ing conditional Markov random fields (CRF). Since find- :
ing the maximum a posteriori (MAP) solution in such mod- essentially solved.

els is NP-hard, much attention in recent years has been Regular energies, and the associated minimization al-
placed on finding good approximate solutions. In partic- gorithms, are used ubiquitously in addressing early vision

ular, graph-cut based algorithms, such asexpansion, are tasks, such as dense stereo, image denoising, b_inary image
tremendously successful at solving problems with regular S€9mentation, etc. [25], where one often uses a simple (pair
potentials. However, for arbitrary energy functions, mes- wise) smoothness prior between neighboring pixels in a 2D

sage passing algorithms, such as max-product belief prop-9"id- However, as noted Szelisét al. [25], the energy for
agation, are still the only resort. the groundtruth assignment is often worse than the energy-

In this paper we describe a general framework for find- OPtimizing assignment, indicating that these simple energ

ing approximate MAP solutions of arbitrary energy func- functiqns fail to model important aspects of the problem.
tions. Our algorithm (called\lphabet SOURor Sequential The distance between tractable and useful models b_ecomes
Optimization for Unrestricted Potentials) performs asgar ~ €VeN more severe when we use CRFs to model mid-level

over variable assignments by iteratively solving subprob- and hlgh-level vision tasks, such as mult|-clas§ Image seg-
lems over a reduced state-space. We provide a theoreti-mentation [9, 20], joint segmentation and detection [18] an

cal guarantee on the quality of the solution when the inner SD_éasoning from monocular images [8]. These tasks,
loop of our algorithm is solved exactly. We show that this while usually having fewer variables than their early visio

approach greatly improves the efficiency of inference and cousins, have significantly more difficult energy functipns

achieves lower energy solutions for a broad range of vision WNich often include high-order terms, non-grid neighbor-
problems. hoods and heterogeneous variables.

Thus, for many vision applications, the CRFs that ade-
1. Introduction quately capture the important properties of the problem are
unlikely to be regular, and therefore are not amenable to
Many problems in computer vision can be modeled using the use of the highly-efficient graph-cut-based algorithms
conditional Markov random fields (CRFS) SoIving these Currenﬂy’ the 0n|y genera| purpose methods for So|\/ing
problems amounts to maximum a posteriori (MAP) infer- problems with arbitrary energy functions are message pass-
ence, or finding an assignment to each variable that jointly ing algorithms such as max-product (MP) belief propaga-
minimizes the energy function (maximizes the probability) tion [19], or its convex variants, such as tree-reweighted
defined by the model. Although MAP inference for a gen- message-passing (TRW) [28, 10] or GEMPLP [5]. Unfortu-
eral CRF is NP-hard, efficient algorithms exist for some nately, these algorithms are often very slow to converge, an
special cases. One important case is that of pairwise binarycannot handle graphs with very large value spaces. Indeed,
CRFs with regular potentials, a class that can be solved effi-as noted in [9], “the lack of efficient algorithms for per-
ciently using graph-cut-based algorithms. Inspired bg,thi  forming inference in these [higher-order] models has lim-
a number of works have attempted to develop efficient ap- jted their applicability.”
proximation algorithms for the non-binary case. Notably,
the a-expansion search method of Veksétral. [26, 1] can
be applied to problems with pairwise regdi@nergy func-

In this paper, we aim to meet this challenge, by provid-
ing a flexible framework that can produce good approxi-
mate solutions and that can scale to accommodate available

Here the regularity condition is on the energy function dedityy the computing resources and problem complexity. B_rieﬂy' we
a-expansion moves, i.e;; (o, @) +0;;(8,7) < 0;;(8, @) + 05 (a, ). propose a method, calledlphabet SOURSequential Op-




timization for Unrestricted Potentials), that performsian A large body of literature exists covering MAP infer-
erative search over variable assignments. The method perence; here, we provide only a very brief review. We note
forms large global moves in the space by (temporarily) re- that Szeliskiet al. [25] provides a review of different energy
ducing the state-space for each variable, and finding theminimization methods for computer vision, and a quantita-
minimum energy assignment over the reduced state-spacetive comparison on a number of benchmark vision tasks.
The method is agnostic to the algorithm used for this opti-  One of the earliest energy-minimization methods is the
mization step, allowing the algorithm best-suited to the pa  still-popular max-product (MP) belief propagation [19].
ticular energy function to be used. Here, messages are sent between nodes in the MRF indicat-
Our method can be viewed as a generalization ofithe  ing a node’s preference for the assignment of its neighbor.
expansion search method of Vekskral [26, 1], which Each node accumulates messages from all of its neighbors
also iteratively proposes steps based on optimizing the en-and maintains a belief (distribution) over possible assign
ergy over a reduced state-space for each variable. Howeverments. The algorithm iterates until beliefs stop changing
our more general method is also applicable to CRFs with (or until a maximum number of messages have been sent).
higher-order cliques and arbitrary energy functions. Our The joint MAP assignment is discovered by taking the as-
method also allows us to consider a much larger subspaceignment which locally maximizes each belief.
during each iteration of the search, enabling the algorithm A different approach is based on viewing the MAP in-
to make larger global moves. ference problem of Eq. 1 as an integer programming opti-
Our contributions are threefold: First, we propose a mization problem, and solving its linear programming (LP)
wrapper method for performing approximate MAP infer- relaxation. Although solving the linear program directly
ence in graphical models which can be scaled to accom-is generally infeasible, several approaches use message-
modate different problem sizes and processing limitations passing-like algorithms to solve its dual; some of these
Second, we provide optimality guarantees when the innermethods are not guaranteed to converge to the dual-optimal
loop of our method is exact. Last, we show how the subsetsso|ution [28, 10, 5] whereas more recent methods [24, 13]
required by our method can be chosen and validate our apdo provide such guarantees. An important advantage of
proach on various contemporary problems. In many casesthese methods is that, due to the properties of linear pro-
our method results in lower energies than were achieved bYQramming duality, they provide a lower bound on the en-
the methods reported in the literature. ergy function. This lower bound can be used to guide the
Finally, we note that our Alphabet SOUP method is a addition of consistency constraints and result in an ogtima
general purpose energy minimization technique and not re-solution [24]. However, these methods have limited appli-
stricted to vision problems. For example, CRFs were first cability, as they are only usable when the entire problem
introduced in modeling natural language [16] where they can be fit in main memory, and are therefore inapplicable to
provide state-of-the-art solutions for problems rangimgrf ~ problems where the domain size of the variables is large, or
named-entity recognition to information extraction. They where cliques involve a large number of variables.
have also been used with great success in computational bi- | the context of computer vision problems, signifi-
ology, in applications that include 3D protein-structure-p  cant attention has been given to graph-cut based algo-
diction [30] and inferring the architecture of cellular net (ithms [6, 26, 1, 12, 4, 25] which have been shown to
works. perform exceptionally well on large grid-structured prob-

lems with (regular pairwise) smoothness priors, i.e., prob
2. Background and Related Work (regular p ) p P

lems of the formP (X) = £ exp {— > i (X, X]-)}
A Markov random field (MRF) defines a probability . ~\ed) /
distributionP () = L exp {3, 0.(X.)} over discrete where a term is included for every pair of adjacent variables

. B : (1,7) andd;;(X;, X;) is assumed to beraetric, encoding a
Lzzd;rseviga\?allleug;s_in{i) 1&@};‘2%56\?(%6) e"fll_chhev;rs'?r?le preference for adjacent variables to take on similar values
i) -

bution is parameterized by real-valued potential function When the problem 1S Over binary-valued varlab_les with S0-
6.(X.) over sets of variables, or cliqueX, C X. The caII.ed regular poten'FlaIs, these methpds obtain the glopal
pi)tenctials represent a relativé preferencecfo? evéry assig optimum. For nqn-bmary problems, i.e., where each vari-
ment to the variables in the cliquX¥ .. For example, in able can be a§5|gn_ed a value from a Ia_lrger label spiace
the standard Potts model a pairwisg potertjal X, X) a search. glgonthm is generally psed, with graph-cut meth-
assigns a uniform penalty,fdf £ X, and no penz;I’ty éth- ods providing the optimal move in some constrained search

. ’ J. space. One such method, which is closely related to ours,
erwise. The tern¥(x) = > _6.(x.) is called theenergy

. - is the a-expansion algorithm [26, 1]. The algorithm main-
?hned;rr]oebll\g?n? assignment f6¥(X) can be found by solving tains a current best joint assignment and iterates oveldabe

oo a € L trying to find a better assignment by allowing vari-
minimize  E(x) =3 0.(x.) 1) ables to either keep their current assignment or change to
subjectto z; € dom (X;) VXie X This is called arn-expansiormove. The algorithm cycles



until no further improvement to the objective can be made. 3.1.~-expansion Moves
The solution is a local minimum in the sense that no sin-
gle a-expansion move can result in a lower energy. Here, a
global optimum is not guaranteed, but the approach seem
to work very well in practice.

There are two main problems with the basiexpansion
algorithm described above. First, it can only be used on
pairwise MRFs with regular potentials (and hence also lim-
ited to MRFs with homogeneous variables). Second, when
the cardinality of each variable is large, it needs many iter
ations and risks getting stuck in local minima. . : _ A AN _

Several works attempt to address the first of these issues 07 (&) = { Oc(@c) 1T VX € X di€ Ay Uz}
by extending the graph-cut approach to non-regular poten-
tials. One approach is to approximately solve the pairwise That is, for every value in the potential, we either copy the
binary MRF required byr-expansion using algorithms such - yalue if it corresponds to an assignment in our restricted
as quadratic pseudo-binary optimization (QPBO) [11, 21]; state-space, or set it to infinity otherwise. This reduction
this method is only applicable when most of the potentials pperation is illustrated in Figure 1. Notice that the erstrie
are regular. Another approach is to develop algorithms for corresponding to assignments outside of the restrictée-sta

special-case energy functions, such as truncated coniex pr space can be removed from the potential, creating a poten-

ors [27]. While all of these methods are effective for some 45 \whose size is a factor Ky cx [dom(X)| - gmaller
P P ; Xi€X. [ATU{z,}] :
problems, they are limited FO pairwise potentials and dq not This decrease in size can lead to substantial speed improve-
address the problem of optimizing general energy functions
Other works aim to address the issue of large value

ments by allowing potentials to fit in memory.
spaces by reducing the set of labels considered. The novel

Let A7 C dom(X;) be a subset of the domain for each
variableX;. We define ay-expansiommove to be a mapping
?or each variableX; from its current valuer; to a value
#; € A] U{z;}. Our goal is to find the assignment that is
ay-expansion move that has minimum energy. We do this
by defining a new energy functiofi” (z; x) = > _ 07 (x.)
over the restricted domain for each varialdllU{z; } where
we construct each potentiél (z.) as

2

00 otherwise

fusion-move approach [18] makes moves by combining two P(Xi, X) (X, X)
proposed solutions” andx'. These fusion-moves usually x=1x=3 i @
resultin non-regular energies and so the algorithm resorts A= {0, I o0 o0
approximate inference (e.g., QPBO). Our work generalizes A*={0, 1 ol 20| o0l ol
this approach by allowing thiising of multiple proposed I::>

solutions in a single search step. In addition, we provide bl Ml Ml Ml i

theoretical guarantees when the search steps are exact. Figlure 1: lllustration of restr:ilcting a ploterr:tial for evabluating tiogti-
Recent work in computer vision has started to make use'! VVXE;_);pizn(sl'?g) _m,?vj;_w n (e ixa{”(}f’ﬁ ihincﬁﬁée?éstﬁffeﬁsrf'cﬂgmt °

of h|gher—order cliques and problems over heterogeneousWiIIbe over the entriesir{o,l}]x (0,1, 3} as shown.

variables. Laret al. [17] showed that for the problem of

image denoising the value space for each variable can be

pruned reliably (by examining its local neighborhood) mak-

ing belief propagation tractable. However, their method

is not general and does not provide any guarantee on thegpservation 3.1. Finding the MAP assignment for the
quality of the solution. Other recent work [20] shows how problem with all potentials restricted td) U {x;} is equiv-

second-order binary ones which can then be solved by ap-

proximation techniques. It is not clear the extent to which 3.2, Usingy-Expansion Moves

the approximation at the binary level affects the multidbab ) )
result. Furthermore, for problems with large variable do-  Based on the notion of a-expansion move, we can now

The restricted potential allows us to efficiently find the
optimal~-expansion move:

mains, the transformation to binary can be prohibitive. define an algorithm that iteratively searches over the space
At each point, we select a particulgrexpansion opera-
3. Alphabet SOUP tion. We then use the energy-minimization algorithm of

our choice to find the assignmeat that is the optimaly-

We now describe a new algorithm for approximate MAP expansion move frone and accept the move if it results in a
inference. Likea-expansion, we aim to optimize the as- lower energy, i.e., iff(x’) < E(x). The algorithm contin-
signment by performing a search over the value space: weues until none of the-expansion moves that we are willing
maintain a current best joint assignment to the random vari-to consider improves the energy, so that we have found a
ables, which we modify by searching over a space of possi-local optimum in our search space.
ble moves. However we will consider a much richer set of  To define the algorithm concretely, we need to specify
moves tham-expansion. which y-expansions we want to consider at each iteration.



Most simply, we can statically partition the domain of each 3.3. Theoretical Guarantees
variable intoK subsetsd!, ..., AX; these subsets need not
be disjoint and may even be empty. Then, we defipe
to be the sef{ A}, ..., Ak}, and iterate over thé’s in a
round-robin fashion. We note that standaréxpansion is a
special case of this static variant of our algorithm, wheee w
selectA¥ to be the singleton set containing theh label.

However, our framework also allows substantially We define a set of-expansion moves; vk 1o be
e

greater flexibility, in several dimensions. First, we can se coveringif, for everyz; € dom (X;), there exists & such
. . ) 1 1)
lect subsets that include more than one value for each Varlishat . e AJ*. When eachy-expansion move is optimal,

able. For example, it is very common for variaple as's.ign—. we can make the following guarantee.
ments to represent some ordinal values (e.g., disparities i
stereo reconstruction). In this case, an obvious partiion Theorem 3.2. Lety,...,vx be a covering set of moves.
group labels into contiguous ranges. At each iteration, the Assume that.(x.) > 0 for all cliquesc, with equality only
algorithm chooses to keep the current assignment to eachf there exists some;, such thatz; € AJ}* for all vari-
variable X; or change it to one of the values in the range ablesX; in the clique. Ifz is a local optimum relative to
specified byA¥. By allowing overlapping partitions, vari- 71, ...,7x, thenE(z) is within a factor ofA (max, | X .|)
ables can smoothly move from one ordinal range to the next.of the optimal energy, where

A second dimension of flexibility is our method’s ability maxa, 0, (x.)
to choose the subsets to reflect the properties of the energy A= max ( - Lo EATC )
function. For example, one useful heuristic for choosing alXc[>1 \milg, 0, ()20 fe(c)
expansion moves is to group low energy assignmen;s to'and|Xc| is the number of variables in clique
gether, as these are likely to occur in low energy solutions.
In particular, when singleton potentials are very strong, w  This theorem (see appendix for proof) subsumes the op-
might choose to constructathat places in eacd the as-  timality result for a-expansion [26], i.e., that-expansion
signments taX; that receive low values ifi;(X;). When returns an assignment that is within a constant factor of the
pairwise (or higher-order) terms are strong, we can chooseglobal optimum. For a Potts model, this ensures that the
to group values that jointly give rise to low energy config- energy is within a factor of two of the optimum.
urations within individual cliques; that is, &;;(x;,z;) is Many state-of-the-art techniques exist for solving small
low, then we might puta;, z;) € A7 x AJ, for somey. probl_ems exactly and can be used fo_r the inner loop of our

A third dimension of flexibility allows us to construct the ~algorithm, €.g., the junction tree algorithm [2] for profsie
expansion moves dynamically, based on the current assignWith small treewidth, min-cut [12] for binary problems with
mentz. For example, we might construct our current regular potentlals,. or linear programming (LE) rel.axatlon
expansion move so as to includeAd assignments;; that Wlth cluster pursuit [24]. However our algorithm is wgll
are compatible (achieve low energy) with the current assign defined even if the inner loop is not solved exactly, allowing
ments to variables(; # X;. This approach is related to the researchers to use approximate MAP inference algorithms
value pruning methods found in the literature [17, 14], but that are appropriate for their problem.
does not require that the values be pruned permanently. In Recall thatamajor benefit of the class of LP-based meth-
fact, our Alphabet SOUP method can provide a theoretical 0dS iS that they exploit duality to place a bound on the dis-
foundation for these methods: We can use the value pruningiance between the energy of the current assignment and the
techniques to define the-expansion moves in early itera- OPtimal energy. When such a method is used to perform
tions of the algorithm, but then use a covering setyisf the optimization for they-expa_nsmn steps in the |_nner_I0(_)p
as a final iteration to provide ourselves with the theorética Of the Alphabet SOUP algorithm, we can provide similar
guarantees as we discuss in Section 3.3 below. bounds. In particular, Globerscet al [5] show that the

Dynamic construction is also useful when vector-valued dual of the LP relaxation of Eq. 1 can be reformulated as:

variables (€.g., 3D surface normals) are quantized intsadi — maximize Y, ming, 3 ,c ) min,.. 52 (.)
crete label space. Here, a natural search procedure is to ¢ ,piact to D 35 (x0) = 0
. . . . ] s€S(c) Pe ‘Bc) = c(mc)a

apply coordinate descent on each dimension. In this case
the partitions are chosen dynamically based on the decodegvhere s enumerates the set of non-empty intersections, or
coordinate value for each assignment. Here, the subsets corseparators, between cliques, afigt) and N (s) represent
rgspond to all the ass.ignmen'ts consistent With the best asthe neighborhoods of cliqueand separatos, respectively.
signment at hand, while allowing one coordinate to vary.  The 3(x..) are the dual variables to the primal LP con-

Many other heuristics are possible, and their develop- straints. As usual, the dual objective at any feasible as-
ment is an interesting direction for further research. signment provides a lower bound di{x). Globersonet

Above, we discussed different options for selecting the
set of possible expansion moves that we consider. We now
provide a result that shows that, under weak conditions,
the local optimality of an assignmeatin the y-expansion
space implies a bound on the distance between the energy
of x and the optimal energy.

©)

(4)

Ve, x.



al. show that this dual LP can be solved efficiently using a
message-passing algorithm similar to belief propagation.
When using this LP-based approach to solve the re-
stricted optimization defined by-gexpansion step, the pri-
mal is restricted to the value-space defined by e&thThe
effect on the dual is that$(x.)’s corresponding to assign-
ments not allowed by the-expansion move can be removed
from the objective. The dual optimum of the restricted prob- J
lem is now not guaranteed to be a feasible point for the orig- 0) (i) E=3.37 (i) E=497 (v) E=2.84
inal unrestricted dual of Eq. 4. However, we can use the (a) Bungee jumping example from [3].
restricted solution to produce a dual-feasible assignneent
Eq. 4, which thereby immediately provides a bound on the
duality gap for the original problem. Specifically, the so-
lution to the restricted dual provides dual-feasible assig
ments to thes3s(x.) corresponding tac.’s allowed by the -
~-expansion move, leaving us only to find a feasible assign- S5
ment to the remaining?(x.)’s. A simple solution is to split '

[14]

Original image Result of

Greedy

Alphabet SOUP

g s 1 R ' ,. > : '. > " >
sulting solqtlon is dual feasible and hence prowdes a bound (b) Author removed from an image.
A on the distance between our current assignment’s energyrigure 2: Comparison of different methods on image completion task. We
and the optimal energy as use a7 x 7 grid spacing; (a) required 280 patches to fill, (b) requir@é 1
patches. Results are annotated with cost (energy) per.p@gahmethod

) . ; 1 achieves lower energy than the other more greedy approaches.
o) =min{{s2@)}_ {statil, b © greedy app

. s Tzititas propose a priority-based message scheduling algo
A=Bx) - Znim Z 0c(@s)- ©) rithm with label pruning. Their approach is to run a belief
° ceN(s) propagation algorithm in which messages are scheduled ac-

An interesting avenue for future research is to investigate cording to the current belief and the value-space for each
using the termg? that cause an increase in the dual objec- variable is pruned the first time it sends a message. This
tive to guide the construction of dynamic expansion moves. greedy approach results in a smaller MRF in which pairwise

terms can be computed efficiently. However, the pruned la-
4. Experimental Results bels are never reconsidered and therefore the approach may
) result in suboptimal energies.

We now provide an Alphabet soup of example problems  |nstead of pruning values we applied our method of iter-
that can be solved by our framework. ating over subsets of label assignments, but still consiger
Image Completion and Inpainting. Exemplar-based im-  all possible labels in the end. Concretely, we divided the la
age completion [3, 14] is a method for filling-in missing bel space (set of possible patches) into non-overlappitsg se
parts of an image by copying patches from other parts of the £*, each containing 250 patches. During each iteration
image. Recently, Komodakis and Tzititas [14] formulated we setA]* for the first variableX; in each row of the miss-
the problem as a pairwise MRF over grid locations within ing grid to£*. We then set the remaining* in each row to
the missing region. Briefly, fixed-sized patches (from the take labels from the observed part of the image correspond-
observed part of the image) are placed in overlapping fash-ing to labels inC* offset by the same distance as between
ion on the grid to complete the image. Grid locations around X; and.X ;. This approach helped provide many low energy
the perimeter of the missing region are assigned a single-pairwise matches.
ton term 6;(X;) measuring the sum-of-square-difference  In our experiments we found the method of Komodakis
(SSD) between the observed region of the grid location and Tzititas to be very sensitive to the priority schedulé an
and the candidate patch. Similarly, a pairwise SSD term amount of pruning. This makes it susceptible to the same
9;;(X;, X;) is defined for every neighboring grid location sort of errors produced by more greedy approaches. We ran
(see [14] for details). This energy function is not metridan a number of trials and report the best energy found.
hence thex-expansion algorithm cannot be used. Our naive implementation did not include any speed ups

Since patches can be drawn from any location within the for computing the SSD terms (e.g., computing them in the
observed part of the image, the value space is enormousfrequency domain); thus, running time was dominated by
e.g., roughly 70,000 for 820 x 240 image. Clearly, stan- the SSD calculations. Nevertheless, our method only ran
dard message passing algorithms cannot support a problenabout 5 times slower than the competing approach.
of this magnitude. To solve the problem, Komodakis and  Results are shown in Figure 2. Here we compare the en-



ergy per variable for the method of Komodakis and Tzititas, Energy per Pixel || Running Time (s)
a naive greedy approach, and Alphabet SOUP (using max- | Problem @ | ) | (i) Jj @) )| (i)
product message passing as the inner loop). On both test| (8)40 x 43~ 1/0.50710.509)0.5211 39| 1 | <1
images, we achieve a lower energy. (b)112 x 116 || n/a |0.527| 0.555| 0o | 23| 5

Object Detection and Outlining. The task of object out- Table 1: Resu!ts fqr thg 3D surfacg recons.truction exp_erimentg. Bhow
Iining involves finding instances of an object class in novel gre results for (|)‘opt|m|zmg gll coordlnate§_smulta_negu@l) coordlnat_e

escent over pairs of coordinates, and (iii) coordinateeesover indi-
images and providing a precise outline around those objectsvidual coordinates. Problem (a) was ovettx 43 mesh; (b) was over a
We tried out our method on the CRF-based LOOPS model112 x 116 grid (and too large to solve by (i)). Variables were quartize
of Heitz et al. [7], in which correspondences are found be- 0 (13,7,7,13) and(23,9,9, 23) bins, respectively.

tween landmarks on the online of an object (e.g., animal’s . . . .
nose) and image pixels. Their model defines a CRF wherepatChes’ where each is parameterized by a 4-dimensional

the variables are the landmarks, and their assignments vector defining its (3!3) orientation and (1D) radigl offset.

represent options for corresponding image pixels. To al- The smgleton' potentlals ggnerally measure the fit between
low the use of discrete energy optimization techniqueg, the the pa.tch. position and the wnage(s) obtallned. from the rele-
consider, for each landmark, the pixels that give rise to vant viewing angles. The painwise potentials impose a pref-

the lowest energy values in the (learned) singleton poten-erence forsmoothness of the re_co_nstr.ucted surface._

tials. Asn andm are often reasonably small (around 50 or 10 allow discrete energy optimization to be applied to
60), the LOOPS models fit easily into memory. Neverthe- this task, we can dlscretlze thls 4-dimensional vector. The
less, due to the dense connectivity of the model, standard®"€rgy function here is metric and so amenable tocthe
belief propagation has trouble performing inference and of €XPansion algorithm. However, depending on the number
ten fails to converge. The LOOPS method [7] handles this of quantlzatlon bins per dimension, the_s’gate-space fdr eac
problem by removing weak pairwise relationships to pro- variable can be very large (often_ cqntamlng around 40,000
duce a sparse model. values). In these cases, the pairwise smo_othness term can

We performed experiments on 42 images of giraffes us- be too Iarge to prec_ompu.te and too expensive to compute on
ing a LOOPS model with 60 landmarks (see Figure 3), com- the fly during each iteration af-expansion. .The Alphabet
paring results from our method with the best singleton land- SOUP approach provides a way for reducing the computa-
mark locations and those found by the discrete stage of thefional cost, by using a coordinate descent variation, vien t
LOOPS approach. As the singleton potentials are very in-4: chosen dynamically, as described in Section 3.2.
formative in this application, we partitioned the domain of ~ We experiment with this approach over the task of re-
each variable into subsets according to the score of the sin£onstructing the outermost surface layer (S-layer) of a bac
gleton potentials, using three candidates in ed¢h We  teria from images obtained by 3D-tomography from cryo-
ordered subsets with the lowest energy first, so that a lowelectron microscopes. The S-layer often exhibits geometri
energy assignment was generally found in the very first iter- cal lattice-like 2D structure [23, 22], which provides igist
ation, with later iterations serving only to correct a few-ou into how the bacteria interacts with its environment. These
liers. In our significantly smaller models, belief propagat ~ Structures are not easily visible in the raw 2D images, but
had no convergence prob'ems’ and so we could use the fu|much more eas”y discerned in a 3D surface reconstruction.
LOOPS model with all pairwise interactions, rather thanthe ~ We evaluated on two different size problems using three
sparsified version. This approach consistently found solu- approaches: (i) optimizing all coordinates at once, (ijreo
tions that have lower energy and are more visually appeal-dinate descent over pairs of coordinates, and (iii) coagin
ing than the other two. descent over individual dimensions. In each case (for our
inner loop) we use the--expansion algorithm using code
available online. Results are shown in Table 1.

As expected, optimizing over all coordinates simulta-
neously obtains the lowest energy. However, very little
oo O penalty is paid in terms of energy when performing coor-
B dinate descent over pairs of coordinates, while a significan
Figure 3: Object outlining using the model of Heiet al. [7] comparing Improvement in running time can be gam_ed. In .the Smal.ler
best scoring independent match (red dashed), discrete @funference of our two problems, a 40-fold reduction in running time is
in [7] (green dotted), and Alphabet SOUP (blue solid). Ourhrdtconsis- obtained, at negligible cost in the energy obtained; in the
tently finds a lower-energy solution than the other two apphes (right). |arger prob]em, Standam_expansion was S|mp|y too |arge
to be solved without coordinate ascent.

Surface Reconstruction. One general class of vision ap-
plications is that of 3D surface reconstruction from a set Rosetta Protein Design. We also ran our algorithm on
of 2D measurements collected from different viewing an- some non-vision applications to verify its ability to solve
gles. Here, we can model the surface as a mesh of smalbifficult problems consisting of heterogeneous variables



with large domains. We chose the challenging Rosetta Pro-It would also be interesting to see whether our theoretical
tein Design dataset made available by Yanasteal. [29]. bound can be used to provide more formal guidance as to
The dataset contains 97 models that aim to find the mostwhich subsets are likely to give better bounds. Along sim-
stable sequence of amino-acids that give rise to a given 3Dilar lines, it would be valuable to further explore the con-
structure. These problems cannot be solved using standarahections between these value-based approximations and the
min-cut approaches since each variable has a different dodinear-program relaxation of the MAP problem, with the
main. Sontaget al. [24] showed that these models could goal of providing a bound on the gap between the cur-
be solved using a state-of-the-art dual message passing akent solution and the optimal one. Last, the ability to dy-
gorithm [5] with cluster pursuit. Using their method we namically select expansion moves suggesslaset pursuit
were able to find the true MAP solution for 93 of the 97 method, in which subsets are dynamically chosen in a way
problems? In Figure 4 we compare the energy and run- that facilitates greatest decrease in energy.

ning time of our algorithm with asynchronous max-product  Finally, as noted by Szelislgt al. [25], groundtruth as-
belief propagation (MP) and the exact method. We also signments often fare worse in terms of energy than solutions
compare against the dual message passing algorithm, GEMproduced by current state-of-the-art energy minimization
PLP [5], without cluster pursuit. Surprisingly, our results techniques, indicating that the energy functions are too si
show that, not only does Alphabet SOUP run faster (in ple and fail to model important aspects of the problem. A
91.4% cases) and require less memory than MP or GEM-flexible MAP inference algorithm that caters to large cligue
PLP, it also often produces lower energies. In particular, and heterogeneous variables may allow vision researchers
in 96.8% of cases our method is within 5% of the optimal to more explore energy functions that are better-suited to
solution. their problems.
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Figure 4: Results for the Rosetta Design Dataset. (left) comparesmgnn
time in seconds of Alphabet SOUP against async. MP beliefggap
tion. (right) shows the quality of solutions for MP, GEMPLRdeAlphabet

SOUP compared to the optimum energy. For MP we ran for a maximum

of 1000 iterations, most problems failing to converge. Forhapet SOUP
we set the subset size for all variables to 50 and ran asynobsMP as
the inner loop. Mean running time for the exact method [24] wakdurs.

Proof of Theorem 3.2Letz' be alocal minimum in the ex-
pansion move space and et be the global optimum. Fix
somek and letX;, = {X; : 27 € A%}, i.e., the set of vari-
ables whose optimal assignment is within kRth subset for
that variable. We can produce a labeligwithin one~-
expansion move frome' as follows:z; = z7 if X; € A},

andz} = z! otherwise. Now, since:' is a local minimum,
B(z*) < E(z') < B(z') ™)

For any set of clique$, defineEs(x) to be the restriction
of the energy to that set. Formalls(z) = > g 0.(x.).

5. Discussion

In this work, we presented a method for finding approx-
imate solutions to the MAP inference problem for arbitrary

energy functions. We can provide an optimality bound on Define three setsf* — {c : X, C X;}, the set of all

the solution when the inner loop of our method is exact. i h h iabl h hei imal ;
However, as we showed in our experiments, even when the_dues wnere the variable¥; have their optimal assign-
’ ' mentinA*; B¥ = {c: X. N X # 0,X. ¢ X}, the

inner loop cannot be solved exactly, our method stil PO et of all cligues where at least one variallighas optimal
vides several advantages over other approaches. In partlcéssignment M7 and one variablel; has optimal assign-
ular, our method is faster than standard max-product beliefment outside 0%4% andO* — {c -]X A X 0}, the
1 H H H ;o - . c k - ’
propagation, requires S|gn|f|_cantly less memory, and often set of all cliques e/vhere the variablé§ have their optimal
produces lower energy squtlpns. N assignment outside of’*. For any assignment we can
Perhaps the most interesting directions for further study :
: - X : write E(x) = Ep(x) + Egr(x) + Eor ().
are in providing more formal foundations for the choice of The following is true:Eox (2') = Eor (), Epx ()
subsets used for the different variables. First, the empir- . (z*) andEg () - fbkj (w:) W%]:are)\ i cﬂ;ﬁned -
ical observation that problems with smaller domains can Tﬁkeorerﬁ 39 'I?r:e first two eﬁke obvious (and can be seen by

be solved more easily deserves more theoretical attent|on.Summing the relevart, (x,)). The the last holds because

Epr(x') <max Epk(x) < E max 0. (x.)
x Tc
ceBk

2The exact method is very computationally intensive and the irema
ing four problems exceeded the runtime limits (160 hours) onctuster
computer before convergence and so we could not solve theatlgxa
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-\ ming,.0.20 Oc(xc) ) ®e:6.7£0 ' tials for enforcing label consistency. GVPR 2008.
ceB [10] V. Kolmogorov. Convergent tree-reweighted message pass-
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