

Consistency Potentials for Scene Understanding:

from Pairwise to Higher-order

Stephen Gould, ANU

Graphical Models for Scene Understanding: Challenges and Perspectives, ICCV 2013

2 December 2013

Multi-class Pixel Labeling

Label every pixel in an image with a class label from some pre-defined set, i.e., $y_i \in \mathcal{L}$

[Boykov and Jolly, 2001; Rother et al., 2004]

[Hoiem et al., 2005]

[He et al., 2004; Shotter et al., 2006; Gould et al., 2009]

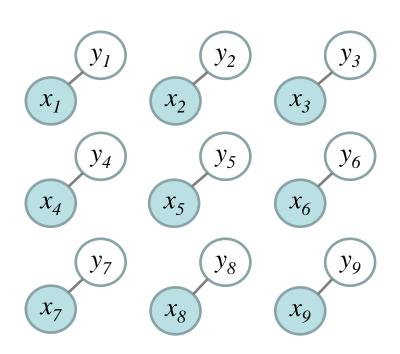
Stereo reconstruction [Scharstein and Szeliski, 2005]

Digital photo montage [Agarwala et al., 2004]

Denoising and Inpainting

Pixelwise Pixel Labeling

$$P(\boldsymbol{y} \mid \boldsymbol{x}) = \prod_{i} P(y_i \mid \boldsymbol{x}_i)$$



	bldg	grass	tree	cow	sheep	sky	airplne	water	face	car
bicycle	flower	sign	bird	book	chair	road	cat	dog	body	boat

Pixelwise Pixel Labeling

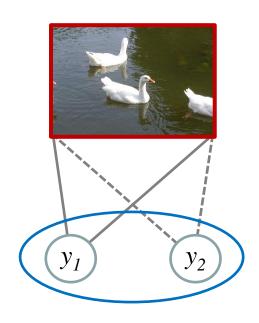
$$P(\boldsymbol{y} \mid \boldsymbol{x}) = \prod_{i} P(y_i \mid \boldsymbol{x}_i)$$

	bldg	grass	tree	cow	sheep	sky	airplne	water	face	car
bicycle	flower	sign	bird	book	chair	road	cat	dog	body	boat

Introducing (Data Dependent) Priors

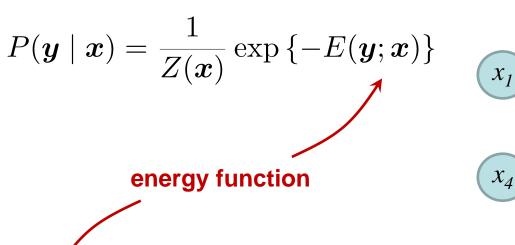
- Options for improving accuracy:
 - (i) use more features, more data, more complex models
 - (ii) use priors to guide the labeling towards a more plausible solution

- Most common priors enforce smoothness (e.g., pairwise)
- Data dependent priors can take into account image features

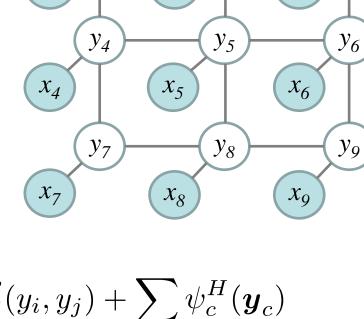


constraint on joint assignment

Conditional Markov Random Fields



 $E(\boldsymbol{y}; \boldsymbol{x}) = \sum \psi_c(\boldsymbol{y}_c)$



 x_2

 y_3

 x_3

Binary CRFs and Pseudo-Boolean Fcns

A pseudo-Boolean function is a mapping

$$f: \{0,1\}^n \to \mathbb{R}$$

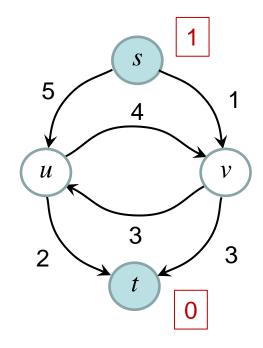
- Can be written (uniquely) as a multi-linear polynomial or (non-uniquely) in posiform
- A binary pairwise MRF is just a quadratic (bilinear) pseudo-Boolean function (QPBF)
- Submodular QPBFs can be minimized by graph cuts
 - identified by negative coefficients on pairwise terms

[Boros and Hammer, 2001]

Graph-Cuts

- construct a graph where every st-cut corresponds to a joint assignment to the variables
- the cost of the cut should equal the energy of the assignment
- the minimum-cut then corresponds to the energy minimizing assignment

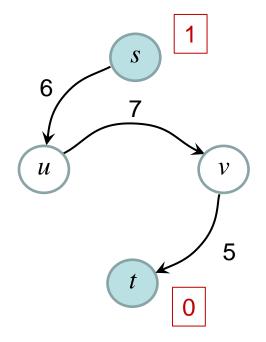
$$E(u,v) = 2u + 5\bar{u} + 3v + \bar{v} + 3\bar{u}v + 4u\bar{v}$$



Graph-Cuts

- construct a graph where every st-cut corresponds to a joint assignment to the variables
- the cost of the cut should equal the energy of the assignment
- the minimum-cut then corresponds to the energy minimizing assignment

$$E(u,v) = 6\bar{u} + 5v + 7u\bar{v}$$



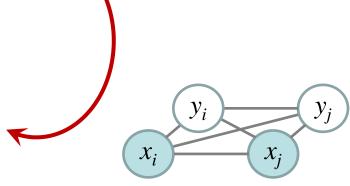
Energy Minimization via Graph-Cuts

- Start with a pixel labeling problem
- Formulate as multi-label CRF inference
- (move-making: α-expansion, αβ-swap, ICM)
 - Convert to a sequence of binary pairwise CRF inference problems
 - Write CRF as a quadratic pseudo-Boolean function
 - Solve by finding the minimum cut (maximum flow)
- (relaxation)
- (approximation)

[Boykov et al., 2001]

Contrast Sensitive Pairwise Smoothness

$$\psi_{ij}^{P}(y_i, y_j) = \begin{cases} 0 & \text{if } y_i = y_j \\ \frac{\lambda}{d_{ij}} \left(\exp\left\{ -\frac{\|x_i - x_j\|^2}{2\beta} \right\} \right) & \text{if } y_i \neq y_j \end{cases}$$

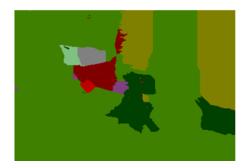


Pairwise Smoothness Results

Image



Independent (unary only)

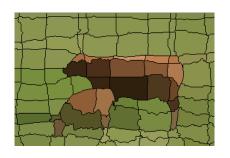


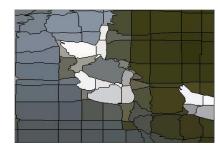
Pairwise CRF

	bldg	grass	tree	cow	sheep	s ky	airplne	water	face	car
bicycle	flower	sign	bird	book	chair	road	cat	dog	body	boat

Why Not Use Superpixels?

 Ideal: Suppose an oracle told us which pixels belong together. Then all we would need to do is predict the class labels.



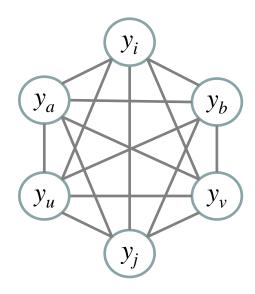


- Problem: no over-segmentation algorithm is perfect.
 Even if they were, our label predictions may be wrong.
- Solution: use superpixels as soft constraints.

Generalized Potts Model

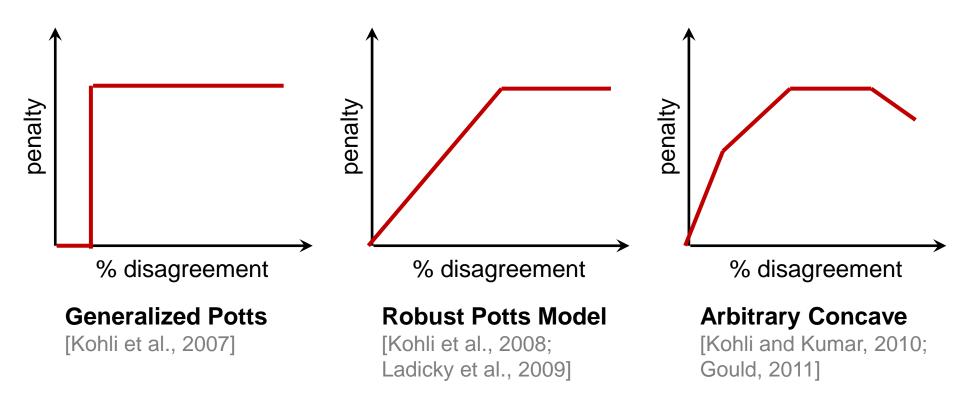
- Pairwise Potts Potential:
 - Penalize if two pixels disagree

- Higher-order Potts Potential:
 - Penalize if any two pixels in a clique disagree
 - Penalty paid once



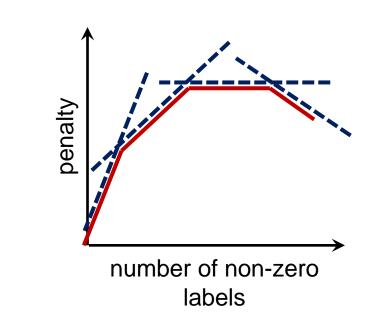
[Kohli et al., 2007]

Higher-order Smoothness Potentials



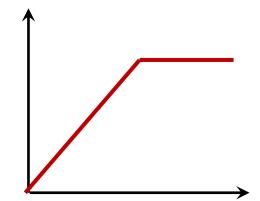
Binary Lower Linear Envelope MRFs

$$\psi^{\mathrm{H}}(\boldsymbol{y}) = \min_{k} \left\{ a_k \sum_{i} y_i + b_k \right\}$$

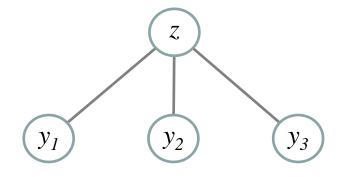


Inference (Binary Case)

$$\psi^{\mathrm{H}}(\boldsymbol{y}) = \min \left\{ \eta \sum_{i} y_{i}, M \right\}$$

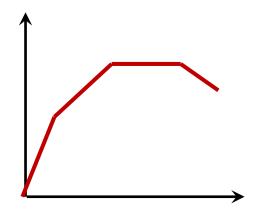


$$egin{aligned} \min_{oldsymbol{y}} \psi^{\mathrm{H}}(oldsymbol{y}) &= \min_{oldsymbol{y},z} Mz + (1-z)\eta \sum_{i} y_i \ &= \min_{oldsymbol{y},z} Mz + \sum_{i} \eta y_i ar{z} \end{aligned}$$

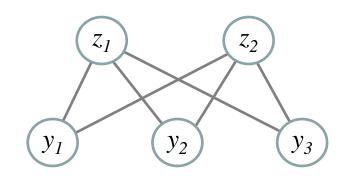


Inference (Binary Case)

$$\psi^{\mathrm{H}}(\boldsymbol{y}) = \min_{k} \left\{ a_k \sum_{i} y_i + b_k \right\}$$



$$\min_{oldsymbol{y}} \psi^{\mathrm{H}}(oldsymbol{y}) = \min_{oldsymbol{y}, oldsymbol{z}} a_1 \sum_i y_i + b_1 + \sum_k z_k$$



negative (submodular)

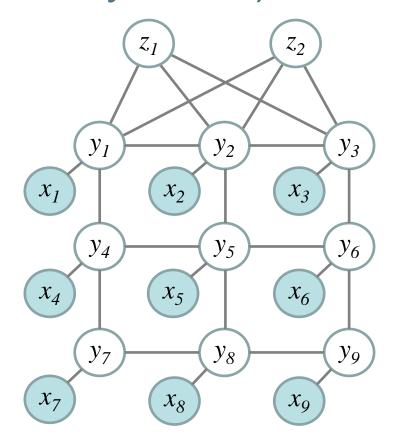
$$\min_{\mathbf{y}} \psi^{\mathrm{H}}(\mathbf{y}) = \min_{\mathbf{y}, \mathbf{z}} a_1 \sum_{i} y_i + b_1 + \sum_{k} z_k \left((a_k - a_{k-1}) \sum_{i} y_i + (b_k - b_{k-1}) \right)$$

Inference (Full CRF---Binary Case)

$$E(\boldsymbol{y}; \boldsymbol{x}) = \sum_{i} \psi_{i}^{U}(y_{i}; x_{i})$$

$$+ \sum_{ij} \psi_{ij}^{P}(y_{i}, y_{j})$$

$$+ \sum_{c} \psi_{c}^{H}(\boldsymbol{y}_{c})$$

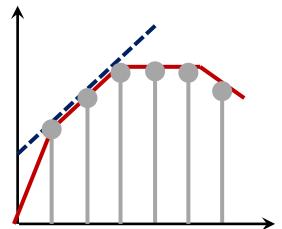


sum of submodular potentials is submodular

Learning (Binary Case)

minimize
$$\frac{1}{2} \|\boldsymbol{\theta}\|^2 + \frac{C}{T} \sum_t \xi_t$$
 subject to
$$\boldsymbol{\theta}^T \delta \phi_t(\boldsymbol{y}) \geq \Delta_t(\boldsymbol{y}) - \xi_t$$
 difference in energy functions
$$D^2 \boldsymbol{\theta} \geq 0$$

$$(\phi(\mathbf{y}))_m = \begin{cases} 1 & \text{if } \sum_i y_i = m \\ 0 & \text{otherwise} \end{cases}$$

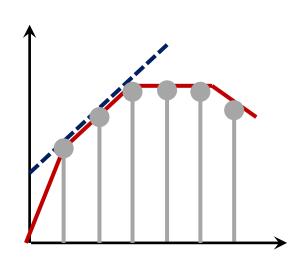


[Gould, ICML 2011]

Learning (Binary Case)

$$a_k = \theta_k - \theta_{k-1}$$
$$b_k = \theta_k - a_k k$$

$$(\phi(\mathbf{y}))_m = \begin{cases} 1 & \text{if } \sum_i y_i = m \\ 0 & \text{otherwise} \end{cases}$$



[Gould, ICML 2011]

Learning Variants (Binary Case)

Sampled lower linear envelope (2nd order)

$$a_k = \theta_k - \theta_{k-1}$$
$$b_k = \theta_k - a_k k$$

Slope (1st order)

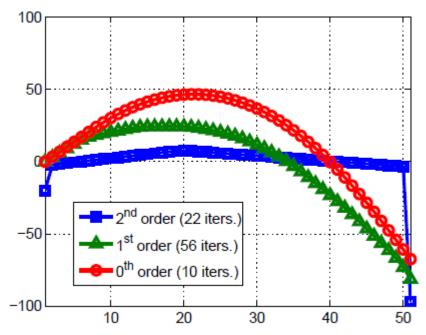
$$b_1 = 0$$

$$a_k = \theta_k \quad (\theta_k \le \theta_{k-1})$$

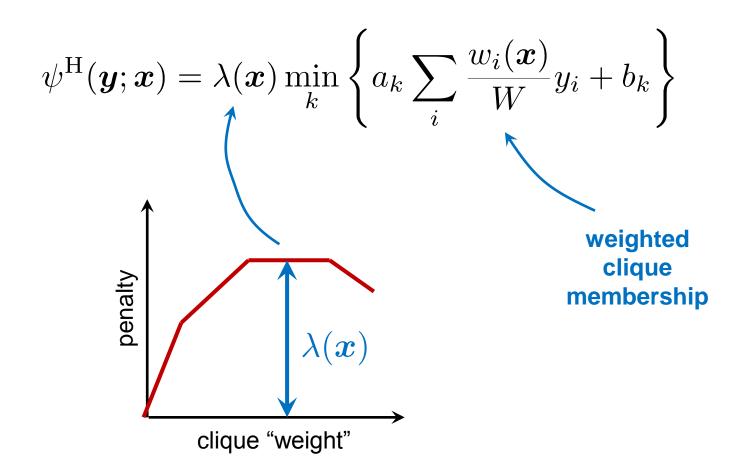
Curvature (0th order)

$$b_1 = 0, a_1 = \theta_1$$

 $a_k = \theta_k + a_{k-1} \quad (\theta_k \le 0)$



Weighted Smoothness Potentials



Aside: Relationship to RBM

$$E(\boldsymbol{y}, \boldsymbol{z}) = -\sum_{i} a_{i} y_{i} - \sum_{j} b_{j} z_{j} - \sum_{ij} w_{ij} y_{i} z_{j}$$

Restricted Boltzmann Machine

$$P(\boldsymbol{y}) \propto \sum_{\boldsymbol{z}} \exp\left\{-E(\boldsymbol{y}, \boldsymbol{z})\right\}$$

 a_i, b_j arbitrary

 w_{ij} arbitrary

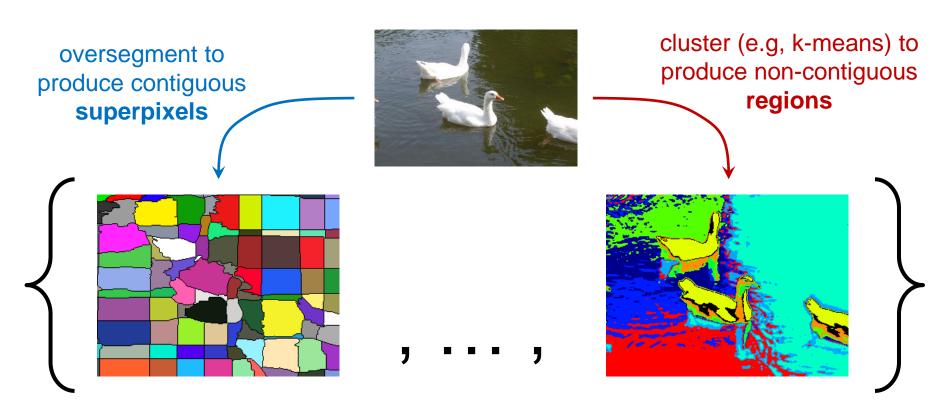
Lower Linear Envelope

$$P(\boldsymbol{y}) \propto \max_{\boldsymbol{z}} \exp\left\{-E(\boldsymbol{y}, \boldsymbol{z})\right\}$$

 a_i, b_j arbitrary

 w_{ij} positive

Defining the Higher-order Cliques



importantly, higher-order cliques can overlap

Extending to Multiple Labels

Aggregation by summation

$$\psi^{\mathrm{H}}(\boldsymbol{y}) = \sum_{\ell \in \mathcal{L}} \min_{k} \left\{ a_k \sum_{i} [[y_i = \ell]] + b_k \right\}$$

Aggregation by minimization

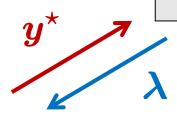
$$\psi^{\mathrm{H}}(\boldsymbol{y}) = \min_{k} \left\{ a_k \sum_{i} [[y_i = \ell_k]] + b_k \right\}$$

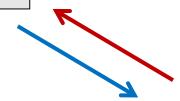
Move-making (approximate) inference

Dual Decomposition Inference

master

$$E(\boldsymbol{y}) = \sum \psi^{\mathrm{H}}(\boldsymbol{y})$$





slave

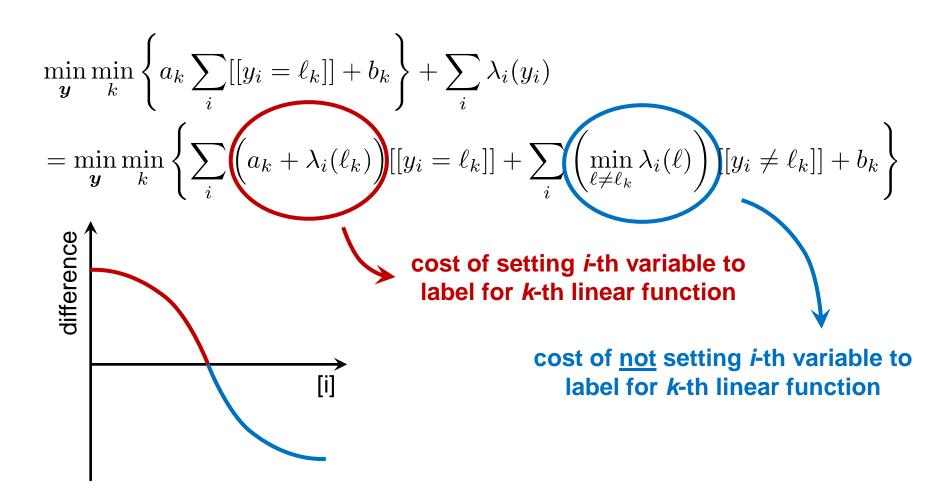
$$E^{\text{slave}}(\boldsymbol{y}) = \psi^{\text{H}}(\boldsymbol{y}) + \sum_{i} \lambda_{i}(y_{i})$$

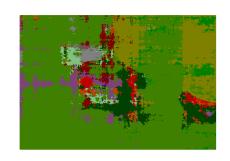
slave

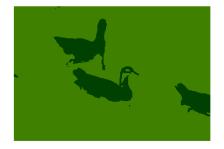
$$E^{\text{slave}}(\boldsymbol{y}) = \psi^{\text{H}}(\boldsymbol{y}) + \sum_{i} \lambda_{i}(y_{i})$$

[Komodakis et al., PAMI 2010]

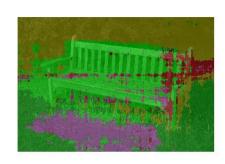
Dual Decomposition Inference (Details)

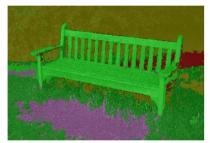


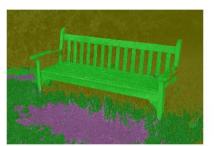


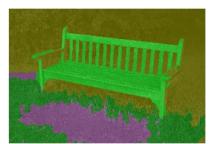


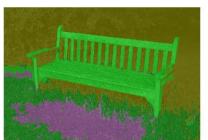
increasing pairwise prior



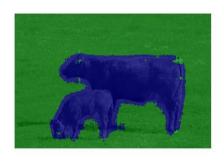






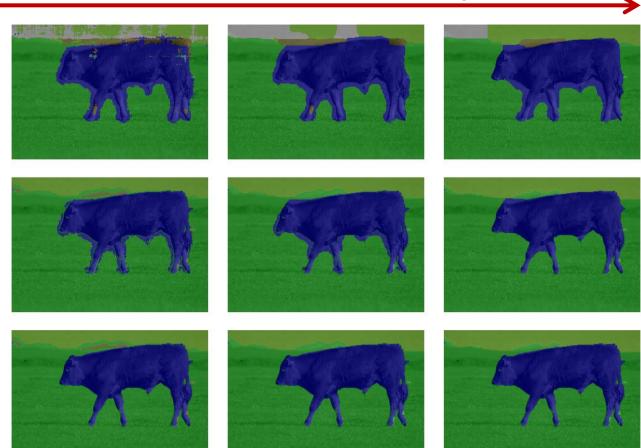


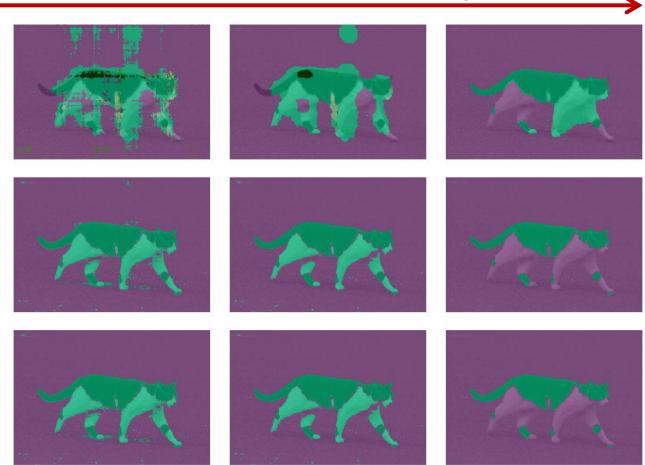
increasing higher-order prior









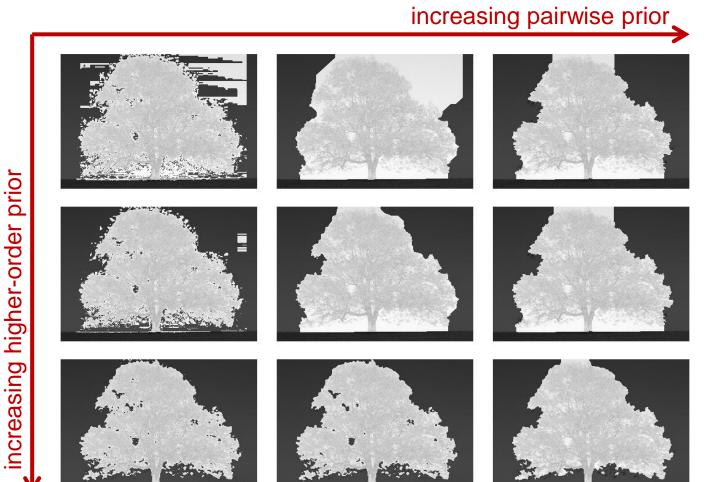


increasing pairwise prior

increasing higher-order prior

increasing pairwise prior

increasing higher-order prior

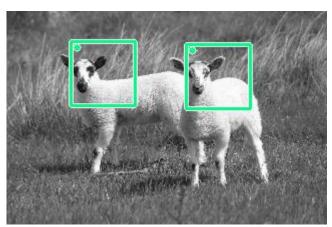


increasing pairwise prior



increasing higher-order prior

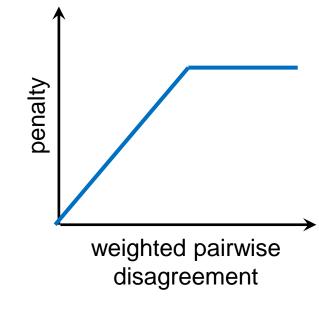
Higher-order Matching Potentials



patch A

patch B

pixelwise weight



[Gould, CVPR 2012]

Inference with Matching Potentials

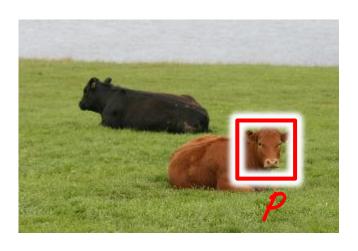
$$\psi(\boldsymbol{y}) = \min_{\boldsymbol{z}} \eta \sum_{ij \in \mathcal{M}} w_i \boldsymbol{j} \boldsymbol{z} y_i (1-y_j) + w_i \boldsymbol{j} \boldsymbol{z} (1-y_i) y_j + M (1-z)$$
 non-submodular pairwise terms

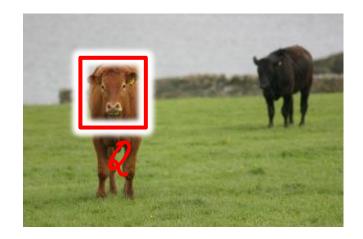
- **Problem:** non-submodular terms (in move making steps when labels already agree before the move)
- Solution: approximate with (tight) upper-bound by setting z = 1

[Gould, CVPR 2012]

Cross-Image Consistency Potentials

$$E(y_1, y_2; x_1, x_2) = E(y_1; x_1) + E(y_2; x_2) + \sum_c \psi^{\text{MATCH}}(\mathcal{P}_c, \mathcal{Q}_c)$$





Cross-Image Results

+ more unary pairwise match

Summary and Challenges for (Higher-order) Consistency Potentials

- Priors/constraints provide a mechanism for scene understanding that simply adding more features cannot
- Many other (higher-order) consistency potentials, e.g.,
 - Cardinality [Tarlow et al., 2010], label co-occurrence [Ladicky et al., 2010], label cost [Delong et al., 2010], densely connected [Krahenbuhl and Koltun, 2011], connectivity [Vincete et al., 2008]
- Biggest challenge is in learning the parameters of these
 - Currently, piecewise learning and cross-validation works best
- Opportunities: higher-order (supermodular) loss functions [Tarlow and Zemel, 2011; Pletscher and Kohli, 2012]