On Differentiating Parameterized Argmin and Argmax Problems
with Application to Bi-level Optimization

Stephen Gould!?, Basura Fernando'*, Anoop Cherian!?, Peter Anderson'?,

Rodrigo Santa Cruz!?, and Edison Guo!?

! Australian Centre for Robotic Vision
2 Research School of Computer Science, ANU
3 Research School of Engineering, ANU

<firstname.lastname>@anu.edu.au

July 21, 2016

Abstract

Some recent works in machine learning and computer vision involve the solution of a bi-
level optimization problem. Here the solution of a parameterized lower-level problem binds
variables that appear in the objective of an upper-level problem. The lower-level problem
typically appears as an argmin or argmax optimization problem. Many techniques have
been proposed to solve bi-level optimization problems, including gradient descent, which is
popular with current end-to-end learning approaches. In this technical report we collect
some results on differentiating argmin and argmax optimization problems with and without
constraints and provide some insightful motivating examples.

1 Introduction

Bi-level optimization has a long history of study dating back to the early 1950s and investigation
of the so-called Stackelberg model [Bard, 1998]. In this model, two players—a market leader
and a market follower—compete for profit determined by the price that the market is willing to
pay as a function of total goods produced and each player’s production cost. Recently, bi-level
optimization problems have found application in machine learning and computer vision where
they have been applied to parameter and hyper-parameter learning [Do et al., 2007, Domke,
2012, Klatzer and Pock, 2015], image denoising [Samuel and Tappen, 2009, Ochs et al., 2015],
and most recently, video activity recognition [Fernando and Gould, 2016, Fernando et al., 2016].

A bi-level optimization problem consists of an upper problem and a lower problem. The former
defines an objective over two sets of variables, say « and y. The latter binds y as a function of
x, typically by solving a minimization problem. Formally, we can write the problem as

minimize, fY(x,y) (1)
subject to  y € argmin,, fL(a:,y’)

where fU and f are the upper- and lower-level objectives, respectively. As can be seen from
the structure of the problem, the lower-level (follower) optimizes its objective subject to the



value of the upper-level variable . The goal of the upper-level (leader) is to choose & (according
to its own objective) knowing that the lower-level will follow optimally.

In one sense the argmin appearing in the lower-level problem is just a mathematical function
and so bi-level optimization can be simply viewed as a special case of constrained optimization.
In another sense it is useful to consider the structure of the problem and study bi-level opti-
mization in its own right, especially when the argmin cannot be computed in closed-form. As
such, many techniques have been proposed for solving different kinds of bi-level optimization
problems [Bard, 1998, Dempe and Franke, 2015]. In this technical report we focus on first-order
gradient based techniques, which have become very important in machine learning and com-
puter vision with the wide spread adoption of deep neural network models [LeCun et al., 2015,
Schmidhuber, 2015, Krizhevsky et al., 2012].

Our main aim is to collect results on differentiating parameterized argmin and argmax problems.
Some of these results have appeared in one form or another in earlier works, e.g., Faugeras [1993,
§5.6.2-5.6.3] considers the case of unconstrained and equality constrained argmin problems when
analysing uncertainty in recovering 3D geometry. However, with the growth in popularity of
deep learning we feel it important to revisit the results (and present examples) in the context
of first-order gradient procedures for solving bi-level optimization problems.

We begin with a brief overview of methods for solving bi-level optimization problems to motivate
our results in Section 2. We then consider unconstrained variants of the lower-level problem,
either argmin or argmax (in Section 3), and then extend the results to problems with equality
and inequality constraints (in Section 4). We include motivating examples with gradient calcu-
lations and discussion throughout the paper leading to a small bi-level optimization example for
learning a novel softmax classifier in Section 5. Examples are accompanied by supplementary
Python code.!

2 Background

The canonical form of a bi-level optimization problem is shown in Equation 1. There are three
general approaches to solving such problems that have been proposed over the years. In the first
approach an analytic solution is found for the lower-level problem, that is, an explicit function
y*(x) that when evaluated returns an element of argmin,, fE(x,y). If such a function can be
found then we are in luck because we now simply solve the single-level problem

minimize; fY(x, y*(x)) (2)

Of course this problem, may itself be difficult to solve. Moreover, it is not always the case that
an analytic solution for the lower-level problem will exist.

The second general approach to solving bi-level optimization problems is to replace the lower-
level problem with a set of sufficient conditions for optimiality (e.g., the KKT conditions for a
convex lower-level problem). If we think of these conditions being encapsulated by the function
h¥(x,y) = 0 then we can solve the following constrained problem instead of the original,

minimizeg, fY(x,y) (3)
subject to A (x,y) =0

The main difficulty here is that the sufficient conditions may be hard to express and the re-
sulting problem hard to solve. Indeed, even if the lower-level problem is convex, the resulting
constrained problem may not be.

! Available for download from http://users.cecs.anu.edu.au/sgould/.



The third general approach to solving bi-level optimization problems is via gradient descent on
the upper-level objective. The key idea is to compute the gradient of the solution to the lower-
level problem with respect to the variables in the upper-level problem and perform updates of
the form

afv  ofY 9?/) (4)

Qj(_x_n<8$ * Jy Ox

In this respect the approach appears similar to the first approach. However, now the function
y*(x) does not need to be found explicitly. All that we require is that the lower-level problem be
efficiently solveable and that a method exists for finding the gradient at the current solution.?

(=,y%)

This last approach is important in the context large-scale and end-to-end machine learning
applications where first-order (stochastic) gradient methods are often the preferred method.
This then motivates the results included in this technical report, i.e., computing the gradients
of parameterized argmin and argmax optimization problems where the parameters are to be
optimized for some external objective or are themselves the output of some other parameterized
function to be learned.

3 Unconstrained Optimization Problems

We begin by considering the gradient of the scalar function g(z) = argmingcp f(z,y) and
follow an approach similar to the implicit differentiation derivation that appears in earlier
works (e.g., [Samuel and Tappen, 2009, Faugeras, 1993]). In all of our results we assume that
the minimum (or maximum) over y of the function f(z,y) exists over the domain of . When
the minimum (maximum) is not unique then g(z) can be taken as any one of the minimum
(maximum) points. Moreover, we do not need for g(z) to have a closed-form representation.

Lemma 3.1.: Let f: R x R — R be a continuous function with first and second derivatives.
Let g(z) = argmin, f(z,y). Then the derivative of g with respect to z is

dg(z) _ fxv(z,9(x))

dr— fyy(z,g(x))
where fxy = 2L and fyy = giyg
Proof.
o) (since g(z) = arzmin f(z,)) 5)
y=9(z) Y
" szaf(méyg(:c)) =0 (differentiating lhs and rhs) (6)

But, by the chain rule,

d (0f(z,g()) O f(z,g(x)  0*f(x,g(x))dg(x)
dz < dy ) T Ozoy * dy? du "

2Note that we have made no assumption about the uniqueness of y* nor the convexity of f~ or fUV. When
multiple minima of f¥ exist care needs to be taken during iterative gradient updates to select consistent solutions
or when jumping between modes. However, these considerations are application dependent and do not invalidate
any of the results included in this report.



Equating to zero and rearranging gives the desired result
dg(x) __ (Pf(x.9(x)\ " f(z,g(x)) ®
dx Oy? 0xdy

__ fxv(z,g(z))
fry(z,g(z))

We now extend the above result to the case of optimizing over vector-valued arguments.

Lemma 3.2.: Let f: R x R™ — R be a continuous function with first and second derivatives.
Let g(r) = argmingcgn f(z,y). Then the vector derivative of g with respect to z is

g'(z) = —fry(z,9(x)) " fxv (2, g(x)).

where fyy = V?ijf(x,y) € R™ "™ and fxy = B%Vyf(as,y) e R

Proof. Similar to Lemma 3.1, we have:

fy(z,g9(x)) = Vy f(2,9)]y—g(z) = 0 (10)

< Fr(e.g@) =0 ()

o fxy (x,9(2) + fry(z, g(x))g'(z) =0 (12)

£ ga) = —frv(r,9(@) " Py (. 9(0)) (13)
O

The above lemma assumes that g(z) is parameterized by a single scalar value z € R. It is

trivial to extend the result to multiple parameters @ = (x1, ..., zy,) by performing the derivative
calculation for each parameter separately. That is,
Vag(z1,...,2m) = —fry(x.g(@) " [fxy (@ g®) - fx,.v(z,g(x))] (14)

Note that the main computational challenge of the inverting the n x n matrix fyy (or decom-
posing it to facilitate solving each system of n linear equations) only needs to be done once
and can then be reused for the derivative with respect to each parameter. Thus the overhead
of computing gradients for multiple parameters is small compared to the cost of computing
the gradient for just one parameter. Of course if  (or g(x)) is changed (e.g., during bi-level
optimization) then fyy will be different and its inverse recalculated.

So far we have only considered minimization problems. However, studying the proofs above
we see that they do not require that g(z) be a local-minimum point; any stationary point will
suffice. Thus, the result extends to the case of argmax problems as well.

Lemma 3.3.: Let f: R x R"™ — R be a continuous function with first and second derivatives.
Let g(z) = argmax,cgn f(2,y). Then the vector derivative of g with respect to x is

g'(x) = —fry(z,g(2)) " fxv(z,9(2)).

where fyy = szf(x,y) € R™™ and fxy = %Vyf(m,y) € R™.

Proof. Follows from proof of Lemma 3.2. O



3.1 Example: Scalar Mean

In this section we consider the simple example of finding the point whose sum-of-squared dis-
tance to all points in the set {h;(x)}", is minimized. Writing out the problem as a mathematical

optimization problem we have g(x) = argmin, f(x,y) where f(x,y) = 31" (hi(z) — y)*. Here

a well-known analytic solution exists, namely the mean g(z) = = > h;(x).

Applying Lemma 3.1 we have:
fr(@,y) = =2 (hi(x) =) (15)
i=1

Fxy(z,y) = =2 hi(x) (16)
=1
frv(z,y) =2m (17)

1 m
@)= 3 ) (19)
i=1
which agrees with the analytical solution (assuming the derivatives h}(z) exist).

3.2 Example: Scalar Function with Three Local Minima

The results above do not require that the function f being optimized have a single global optimal
point. Indeed, as discussed above, the results hold for any stationary point (local optima or
inflection point). In this example we present a function with up to three stationary points and
show that we can calculate the gradient with respect to x at each stationary point.> Consider
the function

fla,y) = zy* + 222° — 12y (19)

with the following partial first- and second-order derivatives

fr(z,y) = day® + 62°y* — 24y (20)
fxv(z,y) = 4y° + 122y° (21)
fry(z,y) = 122y* + 1222y — 24 (22)

Then for any stationary point g(x) of f(x,y), where stationarity is with respect to y for fixed
xz, we have

 g()® + 3ug(e)’
3zg(z)? + 322g(x) — 6

g'(z) = (23)

Here the gradient describes how each stationary point g(z) moves locally with an infintisimal
change in x. If such a problem, with multiple local minima, were to be used within a bi-
level optimization learning problem then care should be taken during each iteration to select
corresponding solution points at each iteration of the algorithm.

@l

3Technically the function that we present only has three stationary points when = < —2 (%) orxz > 0. It

1
has two stationary points at © = —2 (%) 3 and a unique stationary point elsewhere.
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Figure 1: Example of a parameterized scalar function f(z,y) = xy*+22%y3—12y? with three stationary
points for any fixed x > 0. The top-left panel shows a contour plot of f; the bottom-left panel shows
the function at z = 1; and the remaining panels show the three solutions for g(x) = argmin,, f(x,y) and
corresponding gradients ¢’(z) at each stationary point.

The (three) stationary points occur when 2/ ((99;,7;) = 0, which (in this example) we can compute

analytically as

(24)

—322 + V924 + 9656}
’ 4z

g(x) € argmin f(z,y) = {0
y

which we use when generating the plots below.

Figure 1 shows a surface plot of f(z,y) and a slice through the surface at x = 1. Clearly visible
in the plot are the three stationary points. The figure also shows the three values for g(z) and
their gradients ¢'(x) for a range of 2. Note that one of the solutions (i.e., y = 0) is independent
of x.

3.3 Example: Maximum Likelihood of Soft-max Classifier

Now consider the more elaborate example of exploring how the maximum likelihood feature
vector of a soft-max classifier changes as a function of the classifier’s parameters. Assume
m classes and let classifier be parameterized by © = {(a;,b;)}7,. Then we can define the
likelihood of feature vector x for the i-th class of a soft-max distribution as

li(x) =P(Y =i| X =x;0) (25)
— Z(a:l@) exp (af = + b;) (26)

where Z(z;0) = > UL, exp (a]Tm + bj> is the partition function.?

4Note that we use a different notation here to be consistent with the standard notation in machine learning.
In particular, the role of « is differs from its appearance elsewhere in this article.



The maximum (log-)likelihood feature vector for class i can be found as

g,(0) = argmaxlog ¢;(x) (27)
xreR"
= argmax { a’ x + b; — log Zexp a; a:—i—b) (28)
xreR"
7j=1

whose objective is concave and so has a unique global maximum. However, the problem, in
general, has no closed-form solution. Yet we can still compute the derivative of the maximum
likelihood feature vector g,;(©) with respect to any of the model parameters as follows.

Ve log li(z) = a; — i@ (29)
V2 logli(x ZZ@ x)a;ai — ZZJ (30)
7j=1k=1

i(®) = [i = jlex — £;( (ay Zﬁl ) —tj(z)ek (31)

%Vw log li(z) = —{;(x) (aj - ka(x)ak) (32)
i k=1

where ey, is the k-th canonical vector (k-th element one and the rest zero) and [-] is the indicator
function (or iverson bracket), which takes value 1 when its argument is true and 0 otherwise.

Letting * = g,(0), H = VZ_log{;(z*) and @ = >_}*, r(z*)ay, we have

Jg; _ H7'(li(x*) — e, i=J (33)
Oaji | Li(a*)H ™" (zf(a; —a)+er), i#]

dg; 0, 1=

obj {ﬁj(aﬂ*)H‘l (aj —a), i#j .

where we have used the fact that a; = a since Vg log¢;(x*) = 0.

Figure 2 shows example maximum-likelihood surfaces for one of the likelihood functions ¢;(x)
from a soft-max distribution over ten classes and two-dimensional feature vectors. The pa-
rameters of the distribution were chosen randomly. Shown are the initial surface and the
surface after adjusting all parameters in the negative gradient direction for the first feature
dimension, i.e., § « 6 — nel T9% 7. where we have used 6 to stand for any of the parameters in
{aij,bi |i=1,. 10]-12}

This example will be developed further below by adding equality and inequality constraints and
then applying it in the context of bi-level optimization.

3.4 Invariance Under Monotonic Transformations

This section explores the idea that the optimal point of a function is invariant under certain
transformations, e.g., exponentiation. Let g(r) = argmin, f(z,y). Now let f(z,y) = ef@Y)
and g(z) = argmin,, f(z,y). Clearly, §(z) = g(z) (since the exponential function is smooth and
monotonically increasing).



Likelihood Surface Likelihood Surface after Negative z; Gradient Step
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Figure 2: Example maximum-likelihood surfaces ¢;(x) before and after taking a small step on all
parameters in the negative gradient direction for z7.

Computing the gradients we see that

fr(a,y) = 7@ fy (2, y) (35)
Fxyv(@,y) = el fyy (2, y) + @Y fx (2,y) fy (2, y) (36)
]FYY(‘Tv y) = ef(xyy)fYY(x7 y) + ef(x,y)f}% (1’, y) (37)

So applying Lemma 3.1, we have

~, fxv(z,9(z))

T = @ g .

B ef@9@) froy (z, g(x)) + ef@9@) fx (2, g(2)) fy (z, g(x))
ef(@.9(@) fyy (2, g(z)) + e/ (@9() f2(z, g(x))

_Ixy (@, 9(2) + fx(z,9(2)) fy (2, 9(x))

N n in f(z,9(x))
frv(z,g9(2) + f2(z, 9(z)) (cancelling e/ (®9()))

(39)

(40)
_ Sl 9@) since fy (z,g(z)) =
= (@) inee fr (gl [2)41)
=4 (z) (42)

Similarly, now assume f(z,y) > 0 for all z and y, and let f(z,y) = log f(z,y) and §(z) =
argmin, f(x,y). Again we have g(x) = g(v) (since the logarithmic function is smooth and
monotonically increasing on the positive reals).

Verifying Lemma 3.1, we have

~ 1

fY(a:?y) = me(x7y) (43)
fXY(x,y) _ f(x’y)fXY('x’L;/z)(; ig(xvy)fX('x’y) (44)
- x, z,y) — f2(z,



and once again we can set fy(x, g(z)) to zero and cancel terms to get §'(x) = ¢'(x).

These examples motivate the following lemma, which formalizes the fact that composing a
function with a monotonically increasing or monotonically decreasing function does not change
its stationary points.

Lemma 3.4.: Let f : R Xx R — R be a continuous function with first and second derivatives.
Let h: R — R be a smooth monotonically increasing or monotoncially decreasing function and
let g(x) = argmin, h(f(x,y)). Then the derivative of g with respect to z is

dg(z)  fxv(z,g(z))

dx fry(z,g(x))

. 92 ;2
where fxy = BTny and fyy = a—y’;.

Proof. Follows from Lemma 3.1 observing that %jy)) =h(f(x, y))%@’y) by the chain rule

and that h'(f(z,y)) is always non-zero for monotonically increasing or decreasing h. O

4 Constrained Optimization Problems

In this section we extend the results of the argmin and argmax derivatives to problems with
linear equality and arbitrary inequality constraints.

4.1 Equality Constraints

Let us introduce linear equality constraints Ay = b into the vector version of our minimization
problem. We now have g(z) = argmin,, 4, f(,y) and wish to find g’(z).

Lemma 4.1.: Let f: R x R"™ — R be a continuous function with first and second derivatives.
Let A € R™*™ and b € R™. Let y, € R" be any vector satisfying Ay, = b and let the columns
of F span the null-space of A. Let z*(x) € argmin, f(z,yy + Fz) so that g(x) =y, + Fz*(x).
Then

g'(x) = —F (F7 fyy(z,9(2))F) "' FT fxy(z,9(x))

where fyy = szf(a;,y) € R™™ and fxy = %Vyf(w,y) € R™.

Proof.
Vaf(2,yo+ F2)| iz =0 (46)
FT fy(z,9(x)) =0 (47)
FTfxy(z,9(x) + F" fyy(z,9(x))F2'(z) = 0 (48)
2 (z) = —(F" fyy(z,g(x))F) 'F fxy(z,g(x))  (49)
g'(x) = —F(F" fyy(z,g(x))F) "' F" fxy(z,g(x)) (50)
]

Alternatively, we can construct the g’(z) directly as the following lemma shows.



Lemma 4.2.: Let f : R x R™ — R be a continuous function with first and second derivatives.
Let A € R™ " and b € R™ with rank(A) = m. Let g(x) = argming, 4., f(7,y). Let H =
fYY(x7g(x))‘ Then

g'(w) = (H'AT (AHTAT) AR = B7Y) fxy (2, g(2)
where fyy = Vi, f(z,y) € R"" and fxy = a%vyf(m,y) € R™.

Proof. Consider the Lagrangian £ for the constrained optimization problem,
mlyné%}}ze f(z,y)
subject to Ay =0b
We have
L(z,y,A) = f(z,y) + AT (Ay — b) (52)

Assume g(z) = (y*(z), A\*(z)) is a optimal primal-dual pair. Then

AN B LR B -
[ =0 e

=
[fXY((ﬂ)f7y*):| n [fyy(j‘,y*) %T] EXE;C)) 0 )
P SR

From the first row of the block matrix equation above, we have
gy (x) = H ™' (—fxv(z,9y7) — ATg(x)) (57)
where H = fyy(x,y*).
Substituting into the second row gives
AH™ (fxy(z,y*) + ATgy(z)) =0 (58)
- _ -1 _ N
coga() =— (AH AT AH ! fxy (2,9%) (59)
which when substituted back into the first row gives the desired result with g(xz) = y* and
g'(z) = gy (). O

Note that for A =0 (and b = 0) this reduces to the result from Lemma 3.2. Furthermore, g'(x)
is in the null-space of A, which we require if the linear equality constraint is to remain satisfied.

4.2 Inequality Constraints

Consider a family of optimization problems, indexed by z, with inequality constraints. In
standard form we have

minimizeyer  fo(z, y) (60)
subject to filz,y) <0 i=1,...,m

10



where fo(z,y) is the objective function and f;(x,y) are the inequality constraint functions.

Let g(x) € R™ be an optimal solution. We wish to find g’(x), which we approximate using
ideas from interior-point methods [Boyd and Vandenberghe, 2004]. Introducing the log-barrier
function ¢(z,y) =~ log(—fi(z,y)), we can approximate the above problem as

minimize, tfo(z,y) — Y vy log(—fi(z,y)) (61)

where ¢ > 0 is a scaling factor that controls the approximation (or duality gap when the problem
is convex). We now have an unconstrained problem and can invoke Lemma 3.2.

For completeness, recall that the gradient and Hessian of the log-barrier function, ¢(z) =
ot log(—fi(2)), are given by

sz (62)

Z 7 Vi(2) V(= Z r V2f1 (63)

1

Thus the gradient of an inequality constrained argmin function can be approximated as

g'(@) ~ = (thr(@.9() = ovy (r,9()))  (thxr(@.9(x) = oxv(@.9() (64

In many cases the constraint functions f; will not depend on = and the above expression can
be simplified by setting ¢xy (x,y) to zero.

4.3 Example: Positivity Constraints

We consider an inequality constrained version of our scalar mean example from above,

g(x) = argminyeR Z;‘il (hl(x) - y)2 (65)
subject to y >0

where we have added a positivity constraint on y. This problem has closed-form solution
1 m
g(x) = max {0, ;:1 (3:)} (66)

Following Section 4.2 we can construct the approximation

gi(x) = argmint f(x,y) — log(y) (67)
yeR

where f(z,y) = > (hi(z) — y)2. Applying Lemma 3.1 gives

gy (100) = 0) = =2 3 i) — ) = (68)
af;)y (tf(z,y) — oly)) = —2t i:; hi(z) (69)
S WSe) o) = 20m + (70)
) = @

11
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Figure 3: Example graph of both function value and gradient for g(z) = argminyzo(x —1)? and
approximations g;(x) = argmin,, t(z — y)? — log(y) for different values of t. As ¢ — co the approximation
converges to the actual function and gradient.

Note that here we can solve the quadratic equation induced by 6% (tf(z,y) —o(y)) = 0 to
obtain a closed-form solution of g;(z) and hence g;(x). We leave this as an exercise.

Observe from Equation 71 that as ¢ — oo,

oy S ity hi(x) if g(z) > 0
9¢(x) = {0 ! it g(z) = 0 (72)

We demonstrate this example on a special case with m = 1 and hj(x) = x. The true and
approximate function and their gradients are plotted in Figure 3.

4.4 Example: Maximum Likelihood of Constrained Soft-max Classifier

Let us now continue our soft-max example from Section 3.3 by adding constraints on the solu-
tion. We begin by adding the linear equality constraint 17z = 1 to give

g;,(0) = argmax,cgn {aiTa: + b; — log (Z;nﬂ exp (a;;m + bj))} (73)
subject to 1Tz =1

Following Lemma 4.2 and letting Hf = (H e
gradients with respect to each parameter,

ﬁﬂ_lllTH*) we have the following

dg; _ JH(li(x*) — ey, i=j (74
dajy, Ci(@)H (zj(a; —a) +ex), i#j

Ob; (i(x)H (aj—a), i#j

where H and a are as defined in Section 3.3.

Figure 4 shows the constrained solutions before and after taking a gradient step for the same
maximum-likelihood surface as described in Section 3.3. Notice that the solution lies along the

12



Likelihood Surface Likelihood Surface after Negative z; Gradient Step
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Figure 4: Example maximum-likelihood surfaces ¢;(x) before and after taking a small step on all
parameters in the negative gradient direction for 2} with constraint 17z = 1.

line x1+x2 = 1. Moreover, the sum of gradients for x1 and xo are zero, i.e., the gradient is in the
null-space of 17. To show this it is sufficient to prove that Hf1 = 0, which is straightforward.

Next we consider adding the inequality constraint ||z||? < 1 to the soft-max maximum-likelihood
problem. That is, we constrain the solution to lie within a unit ball centered at the origin. The
new function is given by

m
9,(0) =argmax { al z + b; — log Z exp (a]Tac +b;) (76)
rcRn” ;
7j=1
subject to ||z|* < 1 (77)

Following Section 4.2 we can compute approximate gradients as

99; {(H + V(@) (Gia) — Dex. i=j 78)
daje | 4;(@*)(H + V2h(a*) " (2 (a; — @) +ex), i#]
and
99, _ 0, =7
ob; {@-(zc*)(H £ V() (ag—a), 4] 2

where H and a are as defined in Section 3.3, and the second derivative for the log-barrier
¢(z) = log (1 — ||z||?) is given by

4 . 2

2 — - -
O el T T el )

Similar to previous examples, Figure 5 shows the maximum-likelihood surfaces and correspond-
ing solutions before and after taking a gradient step (on all parameters) in the negative x
direction.
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Figure 5: Example maximum-likelihood surfaces ¢;(x) before and after taking a small step on all

parameters in the negative gradient direction for 7 with constraint ||z < 1.

5 Bi-level Optimization Example

We now build on previous examples to demonstrate the application of the above results to the
problem of bi-level optimization. We consider the constrained maximum-likelihood problem
from Section 4.4 with the goal of optimizing parameter to achieve a desired location for the
maximum-likelihood feature vectors. We consider a three class problem over two dimensional
space. Here we use the constrained version of the problem since for a three class soft-max
classifier over two-dimensional space there will always be a direction in which the likelihood
tends to one as the magnitude of the maximum-likelihood feature vector x tends to infinity.

Let the target location for the i-th maximum-likelihood feature vector be denoted by t; and
given. Optimizing the parameters of the classifier to achieve these locations (with the maximum-
likelihood feature vectors constrained to the unit ball centered at the origin) can be formalised
as

m
Z lg;(©) — t:]*
=1

minimizeg
(81)
subject to  g;(©) = argmax log ¢;(x; ©)
x:[|fl2 <1
Solving by gradient descent gives updates
0 — 00—y " (g;(0) — t:)" g(0) (82)

i=1
for any 6 € © = {(a4j,b;)}",. Here 7 is the step size.

Example likelihood surfaces for the three classes in our example are shown in Figure 6 for both
initial parameters and final (optimized) parameters where we have set the target locations to
be evenly spaced around the unit circle. Notice that this is achieved by the final parameter
settings. Also shown in Figure 6(c) is the learning curve (in log-scale). Here we see a rapid
decrease in the objective in the first 20 iterations and final convergence (to within 10~ of the
optimal value) in under 100 iterations.
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Figure 6: Example bi-level optimization to position maximum-likelihood points on inequality con-
strained soft-max model. Shown are the initial and final maximum-likelihood surfaces ¢;(x) fori = 1,2, 3
and constraint |||z < 1 in (a) and (b), respectively. Also shown is the learning curve in (c¢) where the
objective value is plotted on a log-scale versus iteration number.

6 Discussion

We have presented results for differentiating parameterized argmin and argmax optimization
problems with respect to their parameters. This is useful for solving bi-level optimization prob-
lems by gradient descent [Bard, 1998]. The results give exact gradients but (i) require that
function being optimized (within the argmin or argmax) be smooth and (ii) involve computing
a Hessian matrix inverse, which could be expensive for large-scale problems. However, in prac-
tice the methods can be applied even on non-smooth functions by approximating the function
or perturbing the current solution to a nearby differentiable point. Moreover, for large-scale
problems the Hessian matrix can be approximated by a diagonal matrix and still give a descent
direction as was recently shown in the context of convolutional neural network (CNN) parameter
learning for video recognition via stochastic gradient descent [Fernando and Gould, 2016].

The problem of solving non-smooth large-scale bi-level optimization problems, such as in CNN
parameter learning for video recognition, present some interesting directions for future research.
First, given that the parameters are likely to be changing slowly for any first-order gradient up-
date it would be worth investigating whether warm-start techniques would be effectivey for
speeding up gradient calculations. Second, since large-scale problems often employ stochastic
gradient procedures, it may only be necessary to find a descent direction rather than the di-
rection of steepest descent. Such an approach may be more computationally efficient, however
it is currently unclear how such a direction could be found (without first computing the true
gradient). Last, the results reported herein are based on the optimal solution to the lower-level
problem. It would be interesting to explore whether non-exact solutions could still lead to
descent directions, which would greatly improve efficiency for large-scale problems, especially
during the early iterations where the parameters are likely to be far from their optimal values.

Models that can be trained end-to-end using gradient-based techniques have rapidly become the
leading choice for applications in computer vision, natural language understanding, and other
areas of artificial intelligence. We hope that the collection of results and examples included in
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this technical report will help to develop more expressive models—specifically, ones that include
optimization sub-problems—that can still be trained in an end-to-end fashion. And that these
models will lead to even greater advances in Al applications into the future.
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