Decision tree heuristics can fail, even in the smoothed setting

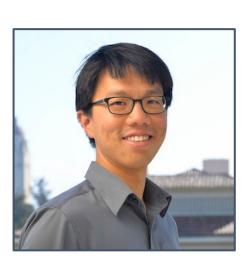
Guy Blanc Stanford

Jane Lange MIT

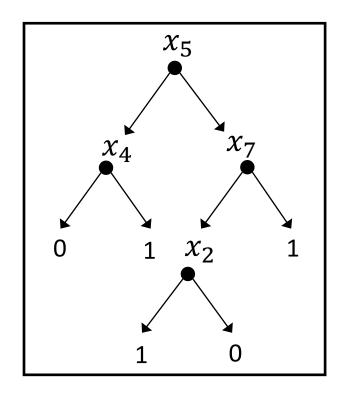
Mingda Qiao Stanford

Li-Yang TanStanford

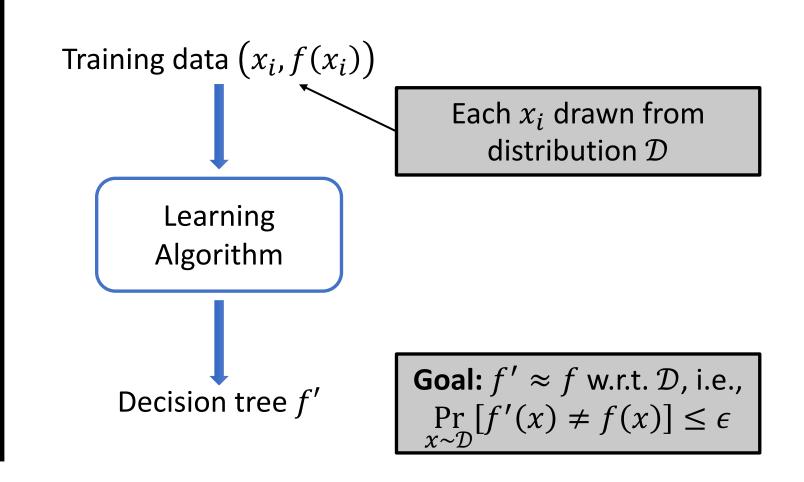




Decision Tree Learning



Unknown decision tree $f: \{0,1\}^n \rightarrow \{0,1\}$

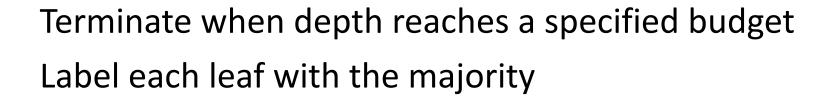


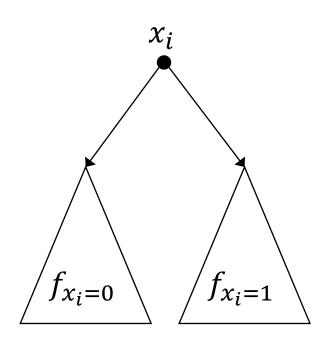
Top-Down Heuristics

Step 1. Find variable x_i that "provides the most information" about f(x)

Step 2. (Split) Query variable x_i at the root of the decision tree

Step 3. (Recurse) Build trees for $f_{x_i=0}$ and $f_{x_i=1}$ recursively and use as subtrees



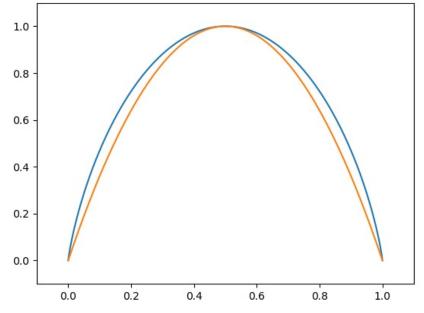


Impurity Function

 $\mathfrak{G}: [0,1] \to [0,1]$ is an *impurity function* if:

- \mathfrak{G} is concave and symmetric w.r.t. 1/2;
- $\mathfrak{G}(0) = \mathfrak{G}(1) = 0$ and $\mathfrak{G}(1/2) = 1$

 $\mathfrak{G}(p) \approx \text{amount of uncertainty if } f \text{ evaluates to } 1 \text{ on } p \text{-fraction of inputs}$



Binary entropy:

$$\mathfrak{G}(p) = -p \log_2 p - (1-p) \log_2 (1-p)$$

Normalized variance:
$$\mathfrak{G}(p) = 4p(1-p)$$

Impurity-Based Heuristics

The "purity gain" of querying variable x_i :

PurityGain
$$(f, x_i) \coloneqq \mathfrak{G}(\mathbb{E}[f]) - \left[\Pr[x_i = 0] \cdot \mathfrak{G}(\mathbb{E}[f_{x_i = 0}]) + \Pr[x_i = 1] \cdot \mathfrak{G}(\mathbb{E}[f_{x_i = 1}])\right]$$
uncertainty before querying x_i remaining uncertainty after seeing x_i

Top-down algorithm based on impurity function \mathfrak{G} :

- Find variable x_i that (roughly) maximizes PurityGain (f, x_i)
- (Split) Query variable x_i at the root of the decision tree
- (Recurse) Build trees for $f_{x_i=0}$ and $f_{x_i=1}$ recursively and use them as subtrees

Impurity-Based Heuristics

Empirical success: ID3, C4.5, CART, ...

Hoped-for theoretical guarantee:

For any depth-k DT f and distribution \mathcal{D} , these heuristics build a high-accuracy DT of depth k', where k' is not too much larger than k.

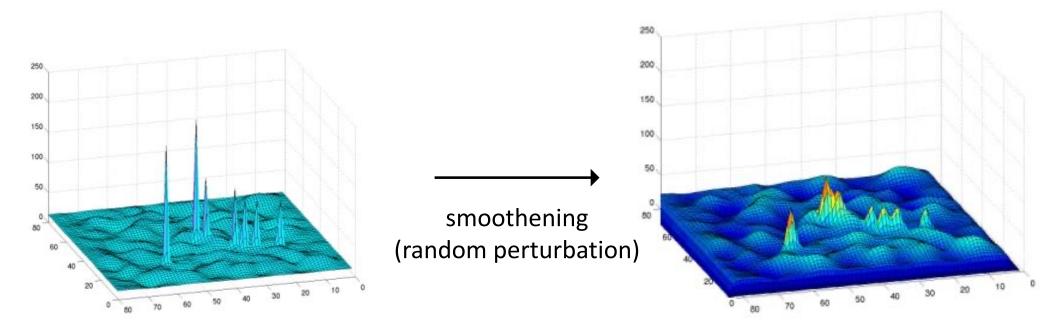
Unfortunately, such guarantee is known to be impossible:

- Even if distribution \mathcal{D} is uniform over $\{0,1\}^n$
- Even if f is a DT of depth k=2
- Need depth $k' = \Omega(n)$ to achieve nontrivial accuracy

Smoothed Analysis

First developed by [Spielman-Teng'04] for the simplex algorithm

Hard instances are pathological



Pictures produced by Daniel A. Spielman and Shang-Hua Teng: https://www.cs.yale.edu/homes/spielman/SmoothedAnalysis/framework.html

Smoothed Learning

Smoothed learning setting of [Kalai-Samorodnitsky-Teng'09]:

Hard <u>data distributions</u> are pathological

Learning over a **smoothed product distribution** over $\{0,1\}^n$

- Biases p_1, p_2, \dots, p_n are set as $p_i \leftarrow \hat{p}_i + \Delta_i$
- $\hat{p}_1, \dots, \hat{p}_n$ are fixed, whereas $\Delta_1, \dots, \Delta_n \sim \text{Uniform}([-c, c])$

Many hard distributions... p_2 0... but they can be rare

Smoothed Learning of Decision Trees

Conjecture of Brutzkus, Daniely and Malach (COLT'20):

Conjecture: For any depth-k decision tree f, any impurity-based heuristic builds a high-accuracy DT of depth O(k) given samples from a smoothed product distribution.

Evidence: Provable guarantee for learning k-juntas

Theorem [BDM20]: For any k-junta f, any impurity-based heuristic builds a high-accuracy DT of depth k given samples from a smoothed product distribution.

Our Results

Counterexample to the conjecture of [BDM20]:

Theorem 1. There is a depth-k decision tree f such that: any impurity-based heuristic must build a DT of depth $2^{\Omega(k)}$ given samples from any balanced product distribution \mathcal{D} .

 \mathcal{D} is balanced if $\Pr_{x \sim \mathcal{D}}[x_i = 1] \in [0.01, 0.99]$ for every coordinate $i \in [n]$

This $2^{\Omega(k)}$ depth is almost as bad as it can get:

- Every depth-k decision tree is a 2^k -junta
- Result of [BDM20] \Longrightarrow heuristics build trees of depth $\leq 2^k$

Our Results

Counterexample to the conjecture of [BDM20]:

Theorem 1. There is a depth-k decision tree f such that: any impurity-based heuristic must build a DT of depth $2^{\Omega(k)}$ given samples from any balanced product distribution \mathcal{D} .

Theorem 1 is stronger than what is needed:

- The same function f is simultaneously hard for all heuristics
- ullet f is hard over all product distributions and, in particular, over a smoothed product distribution

Our Results

Moreover, the guarantee for juntas does not extend to agnostic setting:

Theorem 2. There is a function f that is ϵ -close to k-juntas such that: **any** impurity-based heuristic must build a DT of depth $\epsilon \cdot 2^{\Omega(k)}$ given samples from **any** balanced product distribution \mathcal{D} .

Corollary: There exists function f s.t.

- f is $2^{-\Omega(k)}$ -close to a k-junta
- DT heuristics build trees of depth $2^{\Omega(k)}$ when learning f from a smoothed product distribution

Recall from [BDM20]'s positive result for juntas: f depends on N variables \Longrightarrow DT heuristics build trees of depth $\le N$

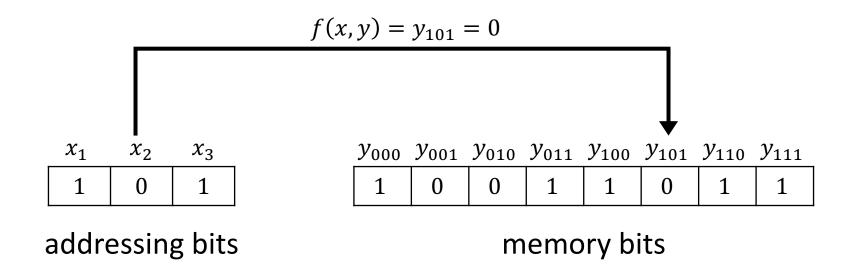
To prove the $2^{\Omega(k)}$ lower bound in Theorem 1, we need f to:

- ullet Be computable by a depth-k decision tree
- Have $2^{\Omega(k)}$ relevant variables

One such extremal example: the "addressing function"

Addressing function $f: \{0,1\}^k \times \{0,1\}^{2^k} \rightarrow \{0,1\}$

- k "addressing bits" $x_1, x_2, ..., x_k$
- 2^k "memory bits" (y_a) indexed by $a \in \{0,1\}^k$
- Define $f(x, y) := y_x$



Addressing function f is computable by a DT of depth k+1

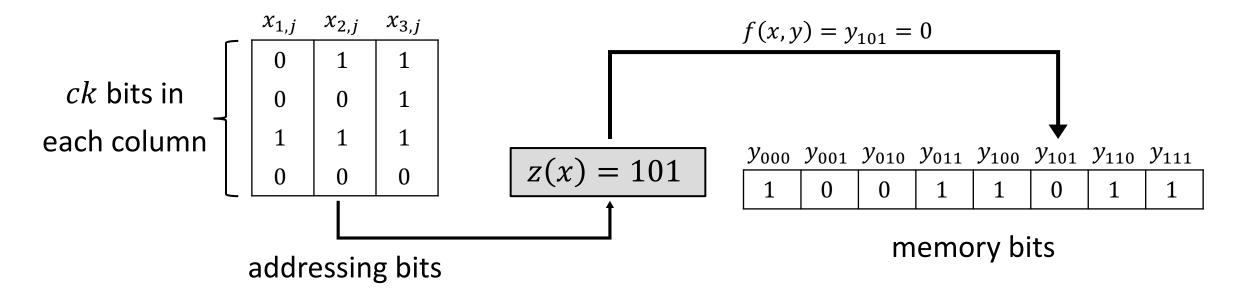
- First query the addressing bits $x_1, x_2, ..., x_k$
- Query the relevant memory bit y_x , and label the leaf accordingly

Hoped-for scenario:

- The memory bits have higher purity gains that addressing bits
- DT heuristic builds a tree that queries the variables in the wrong order, i.e., the 2^k memory bits are queried first

Actual hard instance $f: \{0,1\}^{ck^2} \times \{0,1\}^{2^k} \to \{0,1\}$

- ck^2 "addressing bits" $(x_{i,j})$ where $i \in [k], j \in [ck]$
- $f(x,y) := y_{z(x)}$ where each $z_i(x)$ is the XOR of $x_{i,j}$ over $j \in [ck]$



Address z(x) is Almost Uniform

Benefit of XOR: when input (x, y) is drawn randomly, the address z(x) is almost uniformly distributed over $\{0,1\}^k$:

Lemma 1. For sufficiently large c and balanced product distribution \mathcal{D} ,

$$\Pr_{(x,y)\sim\mathcal{D}}[z(x)=a] \in [2^{-k}-5^{-k},2^{-k}+5^{-k}], \forall a \in \{0,1\}^k.$$

Furthermore, this holds after conditioning on a single bit $x_{i,j}$.

Proof Idea: Each $z_i(x)$ is the XOR of ck independent random bits, each with an expectation in [0.01,0.99]

For each $i \in [k]$, $\Pr[z_i(x) = 1]$ is $2^{-\Omega(k)}$ -close to 1/2

Proof Overview

Need to argue:

PurityGain
$$(f, x_{i,j}) \ll \text{PurityGain}(f, y_a)$$

 \implies Memory bits (y_a) are queried first by impurity-based heuristics

Easy fact: purity gain \approx gap between means

Under mild assumptions on impurity function \$\mathbb{G}\$,

PurityGain
$$(f, x_i) = \Theta(1) \cdot (\mathbb{E}[f_{x_i=0}] - \mathbb{E}[f_{x_i=1}])^2$$

Purity Gain of Memory Bits

Claim: For each memory bit y_a :

$$\left| \mathbb{E}[f_{y_a=0}] - \mathbb{E}[f_{y_a=1}] \right| = \Pr[z(x) = a]$$

Intuition: Flipping y_a changes f(x,y) iff the relevant address z(x) is a By Lemma 1,

$$\Pr[z(x) = a] \ge 2^{-k} - 5^{-k} = \Omega(2^{-k})$$

Thus,

PurityGain
$$(f, y_a) \gtrsim (\mathbb{E}[f_{y_a=0}] - \mathbb{E}[f_{y_a=1}])^2 \gtrsim (1/2)^{2k}$$

Purity Gain of Addressing Bits

Claim: For each addressing bit $x_{i,j}$, let \mathcal{P}_b be the distribution of z(x) conditioning on $x_{i,j} = b$. Then,

$$\left| \mathbb{E} \left[f_{x_{i,j}=0} \right] - \mathbb{E} \left[f_{x_{i,j}=1} \right] \right| \le \mathsf{TV}(\mathcal{P}_0, \mathcal{P}_1)$$

Intuition: $\mathbb{E}\left[f_{x_{i,j}=b}\right]$ is the expectation of a bounded function over \mathcal{P}_b Lemma 1 \Longrightarrow both \mathcal{P}_0 and \mathcal{P}_1 are $(2/5)^k$ -close to uniform distribution PurityGain $\left(f,x_{i,j}\right)\lesssim \left(\mathbb{E}\left[f_{x_{i,j}=0}\right]-\mathbb{E}\left[f_{x_{i,j}=1}\right]\right)^2\lesssim (2/5)^{2k}$

Putting Things Together

For any memory bit y_a and addressing bit $x_{i,j}$,

PurityGain
$$(f, y_a) \gtrsim (1/2)^{2k} \gg (2/5)^{2k} \gtrsim \text{PurityGain}(f, x_{i,j})$$

Thus, an impurity-based heuristic always builds a tree that queries an addressing bit at the root

Repeating this argument \Longrightarrow all the 2^k memory bits need to be queried before any addressing bit is queried

Recap & Open Problem

Prior work: Smoothed analysis was conjectured to be a promising route towards theoretical guarantees of DT heuristics

Our negative results: These heuristics may still fail badly in the smoothed setting

Recap & Open Problem

Open question: Stronger guarantees for restricted classes of functions via smoothed analysis?

- E.g., [Blanc-Lange-Tan'20] focused on monotone functions
- The hard instances in this work are highly non-monotone