Poly-logarithmic Frege Depth Lower Bounds via an Expander Switching Lemma

Toniann Pitassi (Toronto), Benjamin Rossman (Toronto), Rocco Servedio (Columbia) and **Li-Yang Tan** (TTI-Chicago)

STOC, Boston MA 20 June 2015

Propositional Proof Complexity

Given a universally true statement (a tautology) φ , what is the length of the shortest proof of φ ?

Cook's Program

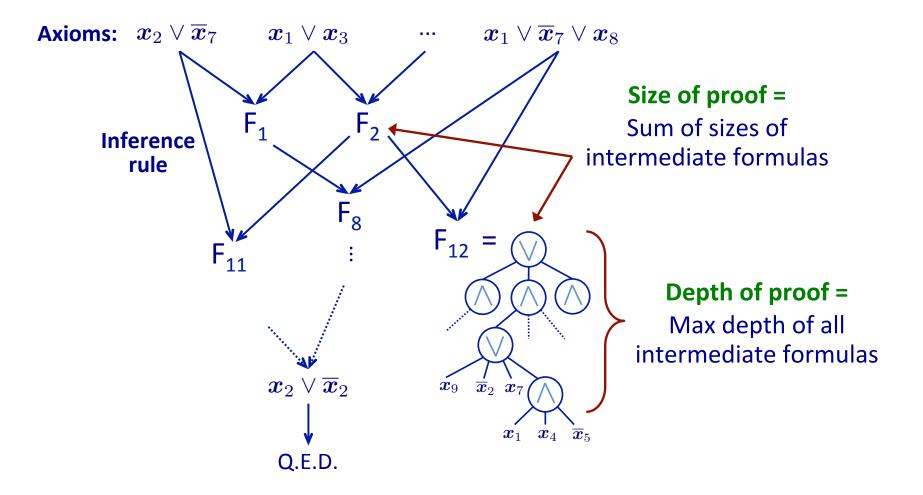
- NP = coNP iff there is a proof system such that every short tautology φ has a short proof.
- We believe NP ≠ coNP, so let's rule this out for increasingly stronger proof systems.

Cook-Reckhow 1979: Let's start with the **Frege proof system**Remains a flagship open problem of proof complexity today

The Frege Proof System

("Propositional Logic 101 proofs")

Given axioms (Boolean disjunctions), use inference rules to derive trivial tautology



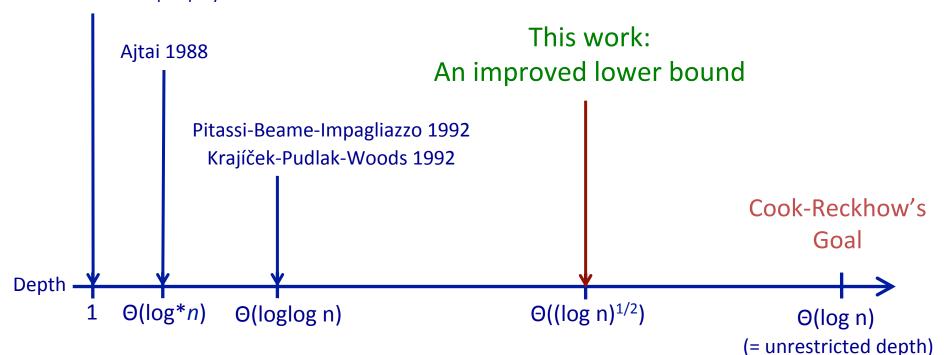
Cook and Reckhow's Challenge (1979):

Super-polynomial size lower bounds against unrestricted depth Frege

Standard fact: suffices to consider **O(log n)-depth** Frege

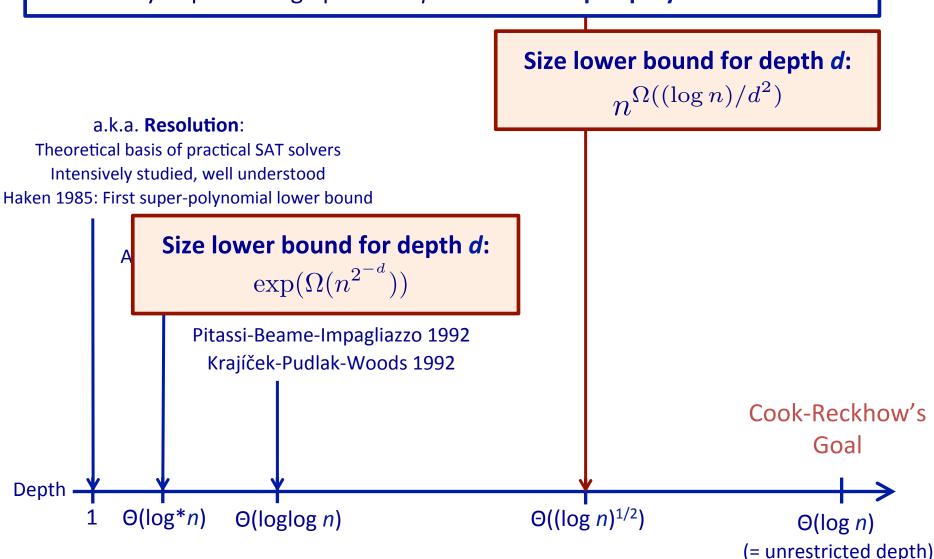
a.k.a. Resolution:

Theoretical basis of practical SAT solvers
Intensively studied, well understood
Haken 1985: First super-polynomial lower bound



This work (Pitassi-Rossman-Servedio-T 2016)

There is a **linear-size 3CNF tautology** φ such that for all $d = o((\log n)^{1/2})$, every depth-d Frege proof of φ must have **super-polynomial size**.



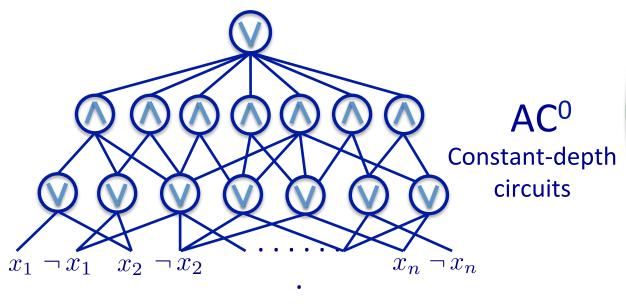
The rest of this talk

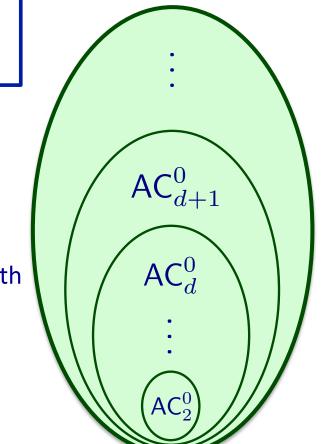
- A brief detour into circuit complexity
 - PARITY versus AC⁰, the role of random restrictions
- Random restrictions in proof complexity
- Difficulties faced by previous approaches
- Overcoming these difficulties with random projections

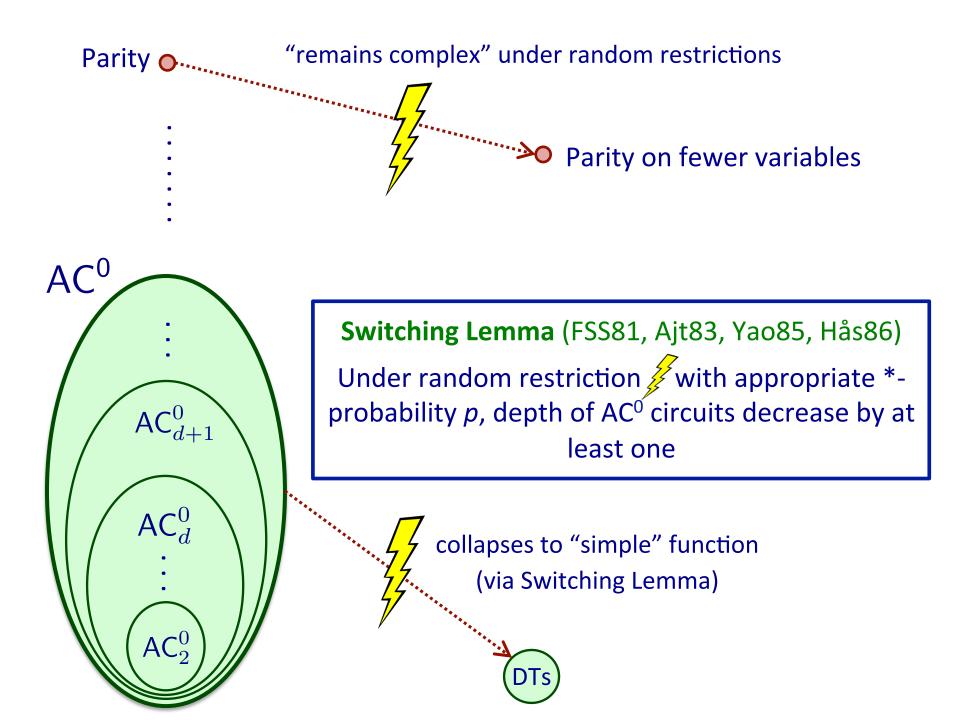
Theorem (FSS81, Ajt83, Yao85, Hås86)

The PARITY function cannot be computed by a constant-depth polynomial-size circuit.

"PARITY not in AC"





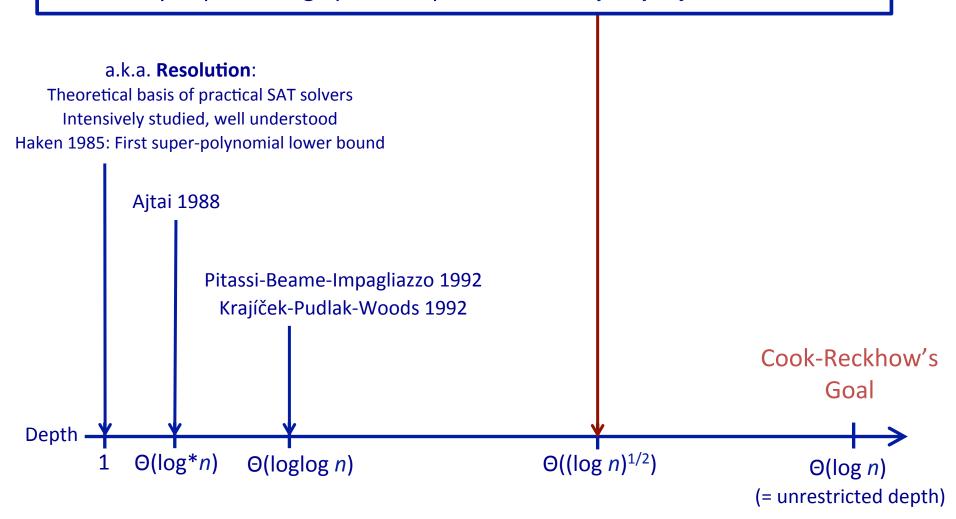


Back to proof complexity

- A brief detour into circuit complexity:
 - PARITY versus AC⁰, the role of random restrictions
 - Random restrictions in proof complexity
 - Difficulties faced by previous approaches
 - Overcoming these difficulties with random projections

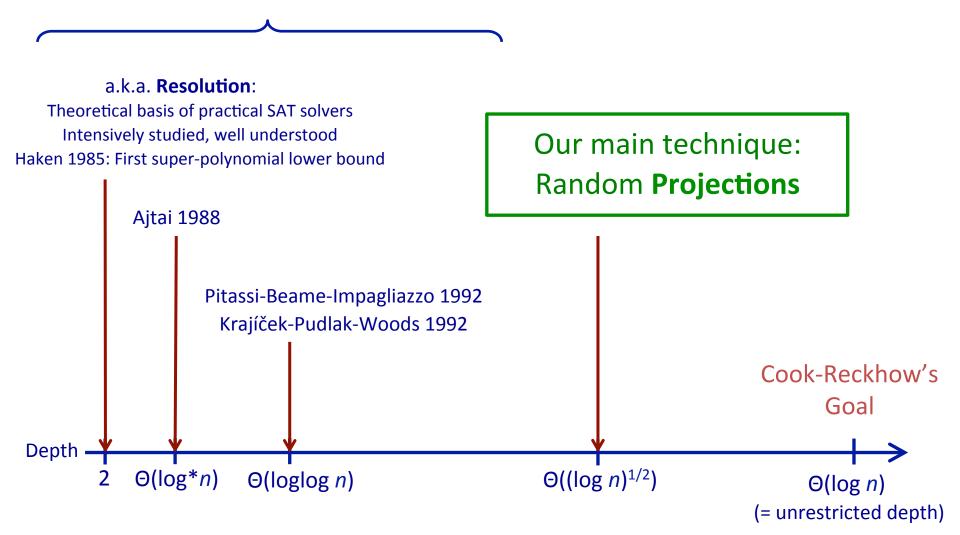
Recall our main result:

There is a **linear-size 3CNF tautology** φ such that for all $d = o((\log n)^{1/2})$, every depth-d Frege proof of φ must have **super-polynomial size**.

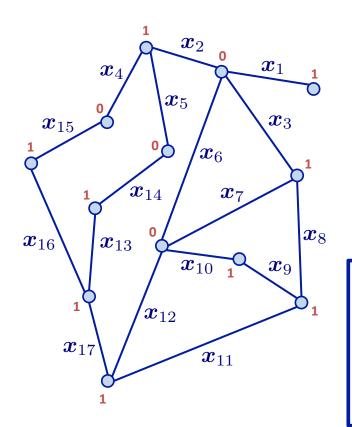


Key difference between our work and previous work

Main technique of previous work: Random Restrictions



Our hard tautologies φ : Tseitin Tautologies



- Underlying graph G = (V,E)
- Distinct Boolean variable on each edge
- "Charge" $\alpha:V\to \mathbb{F}_2$ where $\bigoplus_{v\in V}\alpha(v)=1$

(i.e. sum of charges of all vertices is odd)

Tseitin Tautology ("Handshake lemma")

There is no assignment to edge variables s.t.

$$\bigoplus_{e \sim v} x_e = \alpha(v) \quad \text{for all } v \in V$$

Our hard instances: *G* = **random 3-regular expander**

Well studied in proof complexity: [..., Urquhart 87, Ben-Sasson 02]

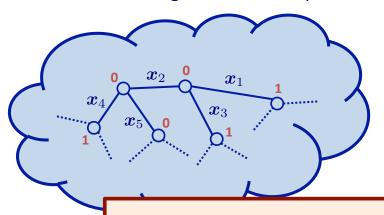
The approach at a high level

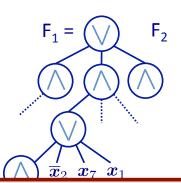
(inspired by proof of PARITY not in AC⁰)

Tseitin on 3-regular *n*-node expander

VS.

Purported depth-d Frege proof





Recall: Every line is a depth-d Boolean formula

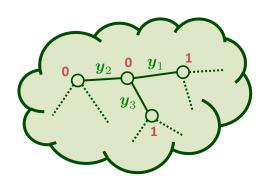
Main challenge:

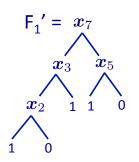
Balancing tension between two sides

Random projections give us careful control over this tension

ple" proof

Tseitin on 3-regular *n'*-node expander



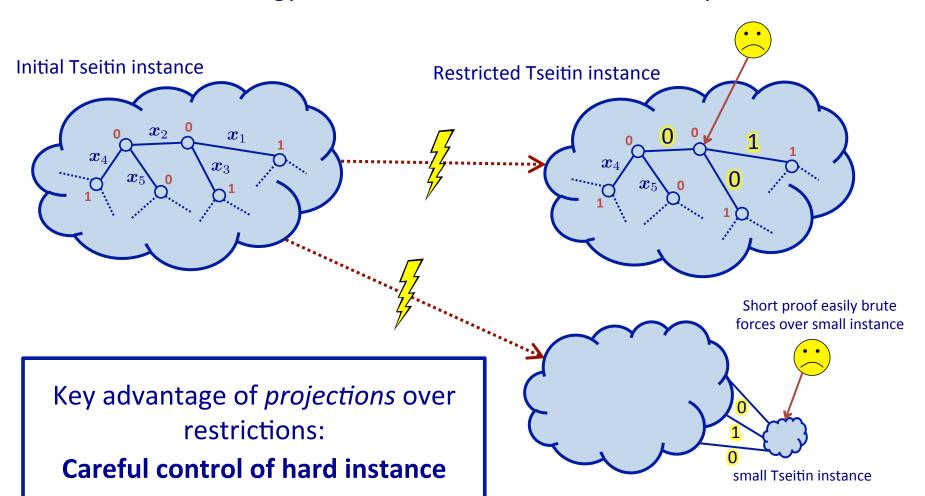


$$F_2$$
' F_3 ' ... F_m

Every line becomes a small-depth DT

Main difficulty of previous approaches: Keeping hard instances complex under restrictions

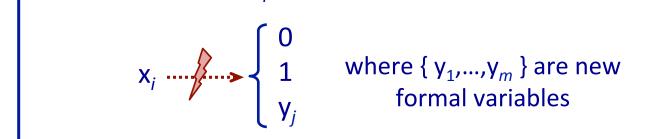
Tseitin tautology should not become "too obviously true"



Random Projections

Restriction: Each x_i set to constant or "survives": $x_i \longrightarrow \begin{cases} 0 \\ 1 \\ x_i \end{cases}$ (denoted *)

Projection: Each x_i set to constant or **new formal variable**



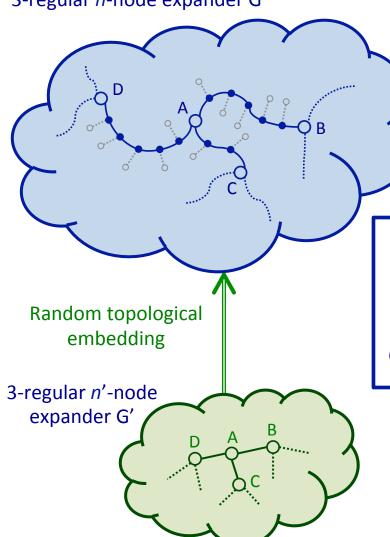
Our proof: { y-variables } much smaller than { x-variables }.

Distinct x-variables collide to same y-variable

Our random projection

Step 1: Randomly embed *n'*-node expander in *n*-node expander

3-regular *n*-node expander G



Q: Is this even possible?

What if G does not contain G' as a topological minor?

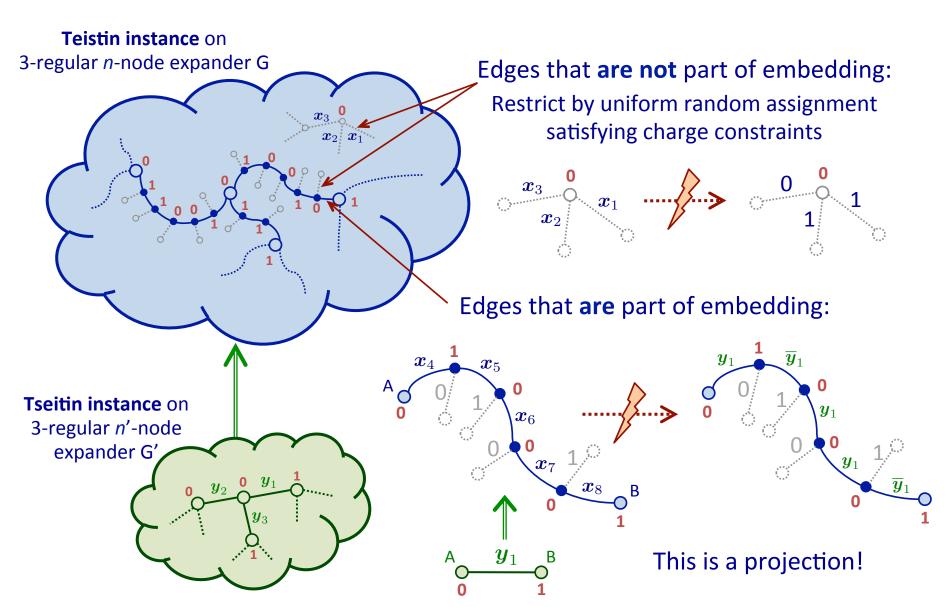
Theorem (Kleinberg-Rubinfeld 1996)

A bounded-degree *n*-node expander G contains **every graph** G' with O(n/polylog(n)) nodes and edges as a minor.

We build on and extend the algorithmic proof of this theorem.

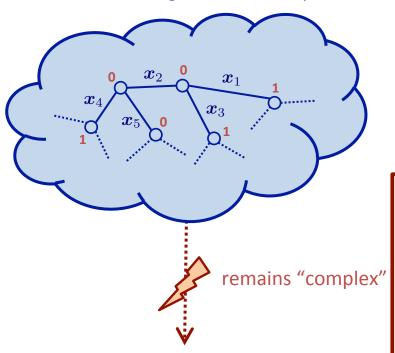
Our random projection

Step 2: Embedding the Tseitin instance

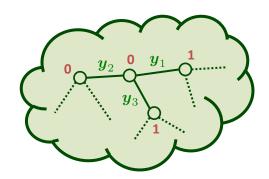


Recap of our approach

Tseitin on 3-regular *n*-node expander

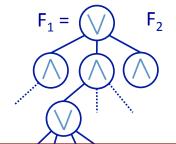


Tseitin on 3-regular *n*′-node expander



VS.

Purported depth-d Frege proof



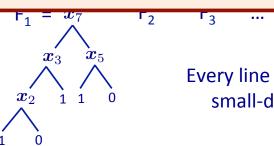
F₃ ... F_n

Recall: Every line is a depth-d Boolean formula

Main ingredient for this side:

Projection switching lemma for the random projections we just described.

Significant technical challenges

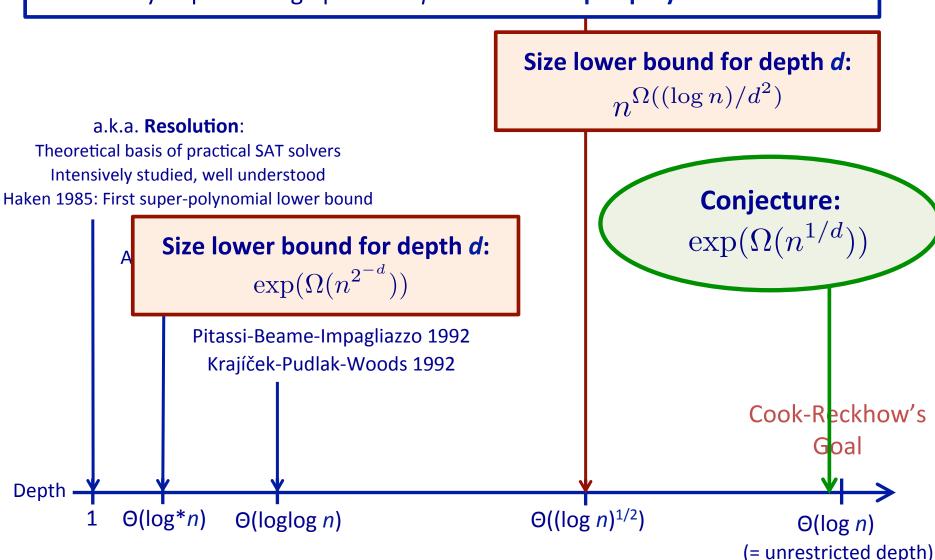


Every line becomes a small-depth DT

Conclusion and open problem

This work (Pitassi-Rossman-Servedio-T 2016)

There is a **linear-size 3CNF tautology** φ such that for all $d = o((\log n)^{1/2})$, every depth-d Frege proof of φ must have **super-polynomial size**.



Thank you!