Trace — Performance Measurements

Gerard J. Holzmann

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Traceis a protocol validation program that can locate design errors in data commu-
nication protocols by performing a reduced symbolic execution of a finite state machine
model described in a higher level languaygos This memo documents the results of
measurements of the effect of different search methods, search depth restrictions, channel
sizes, cache sizes, and caching disciplines on the performance of the validater.

1. Introduction

An overview of the usage and the working of protocol validaare and of the validation languagegos

can be found in [1,2]. In this memo the results of performance measurements are documented and an
attempt is made to interpret them.

Traceallows for a range of techniques to restrict a search for errors in larger state spaces. The main tech-
nigues are the restriction of search depth, of effective queue sizes, and the usage of the scatter search disci-
pline.

Rather than constructing one or more special purpose test cases for the measurements, the performance of
the analyzer was tested on a single protocol of realistic size and of practical relevance. The test protocol is
an experimental data switch control protocol consisting of four communicating processes (appendix A),
independently developed, studied and subsequently abandoned by a programmer who shall remain anony-
mous. Selecting a larger practical test case has the important advantage that the tests are realistic. For one
thing, the tests had to be long enough that meaningful comparisons could be made between the different
types of analyses. There are however also disadvantages. The protocol was large enough that its state
space could not be exhaustively searched within given hardware (memory size) or human (lifetime) con-
straints. Memory available to store the state space was restricted to 7 Mbyte of RAM which for the given
protocol holds roughly 175,000 states. The runtime of the validations was restricted to an arbitrary 10 hours
of CPU-time. Since the size of the state space generated by the test protocol precluded the compilation of
an exhaustive list of errors against which the quality of the analysis techniques could be measured, the
results were only used to weigh their relative merit, not to set more absolute standards.

The results of the performance measurements are presented as graphs. All the data used to draw the graphs
are listed in tables in appendix B.

2. Effect of Search Method and Search Depth

The validater performs a modified [2] depth-first search in the state space generated by the protocol
description. The state space is maintained as a tree of system states. A subset of previously analyzed states
is kept in a state space cache that is accessed via hash table lookups. In this section we discuss the results of
measurements on full search, partial search and scatter search disciplines for varying search depth restric-
tions applied to the test protocol.

Assume the search depth is restricteMtexecution steps, corresponding to the filstevels’ of the state

space tree. The state space tree is explored level by level until either the search depth limit is encountered
or an error state is detected. New states are matched against previously analyzed states in the cache. If a
state match is detected at lekehnd the state revisited occurs within the execution path currently being

explored the analyzer has detected a loop in the behavior of the protocol and can end the search along this
path, independently df. If, however, the current state was previously visited elsewhere in the tree at level

N, a subtree of depth-N of the current state was analyzed beforel. # N we cannot expect to find any

new system states by continuing the search, since the subtree that would be explored by continuing the
search would be contained in the subtree that was analyzed before. If, haweiethe new subtree can

be up toN-L levels deeper. Especially for small values\ot, if the search is continued there will be an
overlap with previously analyzed states before any new states are encountered (a side effect of the depth-
first search discipline).

A rather crude method to avoid the overlap is to end the search along the current path when a previously
analyzed state is encountered, independentli.ofThe search will be incomplete, but relatively fast.
Below this is referred to as tipartial searchmethod.t

A more prudent, but generally more time consuming, alternative is to accept the overlaps and to complete
the search on a state match only when teLyN.
This method will be referred to as an exhaustiviilbsearchmethod.

A third search method is to use the quick searckcatter searctoption of the tracer [2] within the tree
generated by the full search method. This search method is invoked with a "-x0" flag of the tracer. The
tests show that this is the preferred default search mode for the analyzer (the partial search mode was the
default in the version as tested).

Figure 1 shows how the runtime of a validation varies with the search depth for these three different search
modes. The queue size for the test protocol was fixed at two slots per queue in all measurements that fol-
low, except those that specifically measured the effect of the queue size on validations.

100000
10000
1000

Seconds
100

scatter

10—

N N N N N
0 50 100 150 200

Search Depth

Figure 1 — Runtime

For the test protocol a full search became unfeasible beyond a search depth of 80 execution steps. To check
just how much double work is caused by the overlaps in the full searches, Figure 2 compares the number of
unique states to the total number of times that a previously analyzed state had to be analyzed again (dotted
line). At a search depth of 80 steps the number of states searched is almost four times larger than would be
required in a minimal search. For the test protocol this means that a search up to approximately 90 steps
would be feasible if the redundancy of the overlaps could be avoided completely. The redundancy therefore
has a noticeable effect, though not nearly as large as the effect of a change in the search discipline.

T The partial search method is no longer usedhice.

1e+06— _.redundant
- unique

100000

No. of States 10000
Analyzed

1000

100—

N N N N
20 40 60 80

Search Depth

Figure 2 — Redundancy in Full Search

The complexity of the crudgartial search method is rather unpredictable. Depending on the specific order

in which the state space tree is explored the effect of the shortcuts compared to the full search can be more
or less dramatic. If, for instance, a state close to the root of the tree ‘matches’ a state found close to the

depth limit before, a large fraction of the state space tree may be ignoredcafter search technique

applied to a full search tree gives a more predictable performance. The tree analyzed in a scatter search had
a maximum depth of 189 levels, and therefore the runtime flattened out at that point.

The number of deadlocks reported in the various analyses is plotted in Figure 3.

Scatter

1000—
full partial

Number of 100+

Deadlocks

10—

N N N N
50 100 150 200

Search Depth

Figure 3 — Deadlocks vs Search Depth

The number of deadlocks reported per test is not as such a reliable indication of the scope of the corre-
sponding analysis method since one error can trigger a number of equivalent deadlock reports that varies
with the search method used. Still, both the minimum search depth required for the first error report to
appear and the relation between search depth and number of error reports generated are probably good indi-
cations of the quality of the analysis. Under these two criteria, the scatter search method performs remark-
ably well. Figure 4 plots the number of deadlocks reported versus the time it took to find them. Also these
results are favorable for the scatter searching technique.

scatter
1000
partial fll
Number of 100+
Deadlocks
10
1]
I I I I
0 20000 40000 60000
Seconds

Figure 4 — Deadlocks vs Time
Figure 5 shows the size occupied by the state space for each ofvkamadlysis runs.

le+07— full partial 100000 ful partial
1e+06+ ~ 10000 ,
100000 1000+
Bytes 100 States
10000
10—+
w w w w w w w w w w
0 50 100 150 200 0 50 100 150 200
Search Depth Search Depth

Figure 5 — No. of Bytes and States in State Space Cache

As can be expected, the rate at which the state space expands closely resembles the rate at which both the
number of system states explored and the runtime (Figure 1) increases. In Figure 6, the average number of
bytes used per state in the state space cache and the average number of states analyzed per second is plot-
ted. The analyzer tries to exploit the usestafte templatedists of common subsets of information held in

states, to minimize the total amount of storage used. Figure 6 illustrates that the effort pays off for the
larger state spaces. It also shows that, beyond a certain limit the analysis will slow down as the state space
grows. Since scatter searching generates a smaller state space this effect is not quite as large. For a large
state space, however, scatter searching turns out to be the least space efficient method of the three strategies
explored.

50
2004 catter
Bytes/State 20+
100 States/Second
10+
catter
50 artial ial
full S full ana
w w w w w w w w w w w w
0 50 100 150 200 250 0 50 100 150 200 250
Search Depth Search Depth

Figure 6 — Time and Space Efficiency

3. Effect of Queue Sizes

In most of the tests made the queue sizes were held fixed at two slots per queue. To measure the effect of
the queue sizes on the analysis a scatter search and a full search analysis was run for different queue sizes
and various search depth restrictions. The partial search method was omitted from these tests. Results are
summarized in Figures 7 and 8.

100000 f2 100000+
3 fl s4
10000 10000
1000 1000
100_ 100
10
10—
0 Seconds) Deadlocks
14 x x x x | x x x x
0 50 100 150 200 50 100 150 200
Search Depth Search Depth

Figure 7 — Effect of Queue Sizes on Runtime and Deadlocks Found
s — scatter searchf — full search; 1,2,3,4 — queue sizes

The complete state space tree of the scatter search for a queue size of one slot per queue (s1) is only 130
levels deep. For two slots per queue (s2) the state space tree grows to 190 levels. For three slots per queue
(s3) the the state space tree is larger than 230 levels, the maximum depth explored in these tests. A scatter
search in a tree of 200 levels deep takes roughly ten times longer with the addition of each slot to the
queues.

1e+07 2 fl 2 fl
3 s4 100000 B s4
s3 s3
1e+06+ _, 10000 52
100000 « 1000 s1
100
10000 States
Bytes 10—
w w w w w w w w w w
0 50 100 150 200 0 50 100 150 200
Search Depth Search Depth

Figure 8 — Effect of Queue Sizes on State Space

A full search (f1-3) invariably takes orders of magnitude more time to complete than a scatter search.
Expanding the queue sizes enhances this effect, though not quite as dramatically as the step from a scatter
search to a full search. Although it is rather difficult to compare the value to an actual user of an analysis
that produces a listing of 15,645 deadlocks (s3 at maximum depth 230) to one that produces ‘only’ 32 (f3 at
depth 60), it is likely that the former does indeed cover more cases.

The left hand side of Figure 9 shows the increase in runtimes when the search depth is fixed at 120, 140,
160 and 200 levels in the state space tree and the queue size is varied from 1 to 10 slots per queue. Clearly,
the effect is more severe for larger state spaces.

200 50
10000 %0 0
1000 o 204
Secongs tates/Second 120
10
100+ 00
160 140
5_|
T T T T T T T T 1 T T T T T T T T 1
1 2 3 45 6 7 8 9 10 1 2 3 45 6 7 8 9 10
Queue Size Queue Size

Figure 9 — Search Depth and Queue Sizes (scatter search)

On the right hand side in Figure 9 the number of states analyzed per second of runtime is shown. The
gueue size, can be seen to have a quite dramatic effect on the number of states analyzed per second, worse
still if the size of the state space increases.

In Figure 10 the number of bytes used per state and the number of states analyzed per second is shown, for
each combination of queue size and search depth. The results of Figures 6 and 9 are confirmed. The steep
left ends of the curves can be attributed to the overhead involved in the setup of a state space, which is felt
more if the number of states explored is small. The use of state templates results in a lower number of
bytes per state as the queue size is expanded.

Figure 11 shows, separately for the scatter searches and the full searches, the number of states analyzed per
second as a function of the total number of states in the state space. The figure shows that degradation of
the performance is not solely caused by a growing state space: the queue sizes contribute to the complexity.

5004 50
sl
Bytes/State s2
200 20
States/Second
100 f1 s3
si 10+
50 s2
s3 5 3 2 s4
w w w w w w w w w w w w
0 50 100 150 200 250 0 50 100 150 200 250
Search Depth Search Depth

Figure 10 — Time and Space Efficiency and Queue Sizes

504 50|
sl
s2
20 20
States/Second States/Second
f1
10- : 10
3
54 s4 5 f2
T T T T T T T
0 50000 100000 0 100000 200000 300000
States States

Figure 11 - Time Efficiency and State Space Size
4. Effect of Caching Discipline

For a protocol of realistic size and a search of sufficient depth there will be a point where the state space
tree will no longer fit the amount of available memory. During the analysis the prdgreetholds (a
selection of) previously visited states in a cache of fixed size to prune the state space tree wherever double
work can be avoided. Initially, all system states encountered can simply be accommodated in the cache.
When the cache fills up, though, a caching discipline is needed to decide which states can be deleted and
which should be stored. Two factors will determine the efficiency of an analysis when state spaces larger
than the cache are explored: the number of states that can be stored and the replacement strategy.

4.1. Replacement Strategies

Though the size of the cache can affect the runtime or even the feasibility of an analysis, it is irrelevant to
its scope. Extending the size of the cache to the maximum that can fit in main memory can only avoid dou-
ble work.

An important question is what the selection criterion should be for determining which states can be over-
written when the cache fills up. One potentially relevant piece of information on the probability that a state
will be revisited in a different part of the state space tree is the number of times that it was visited before.

10000

1000—

Numbers of States Average Depth

100—
— 50

10

N N N N N
0 10 20 30 40

Number of Visits

Figure 12 - State Visits for a full search, depth limit 60

Figure 12 gives an example of a typical frequency distribution for the number of visits to a state. Most
states are only seen once. There are fewer and fewer states that are visited a larger number of times. Also
plotted is the average depth in the search tree at which states with a given number of visits were found. If
states near the root of the tree would be more frequently visited than states near the leaves, there would be a
clean and relatively harmless method of pruning the tree to reduce the size occupied by the cache. Unfortu-
nately, Figure 12 shows no relation between the popularity of a state and its height in the tree.

1
0.8
0.6
Probability of revisit
0.4

0.2

0

N N N N N
0 5 10 15 20 25

Number of Visits

Figure 13 — Returns to States Previously Visited

Figure 13 shows the probability of a return to a previously visited state given that a state wad\visited
times before. Up to 15 visits then, this probability is largely independently of the history of a state. Above
that the behavior is somewhat erratic, until the probability drops to zero for the most frequently visited
states. Clearly, members of this class of ‘most frequently visited states could safely be deleted from the
cache, if only we could knowa priori what the largest number of visits to a state was going to be.

For the test protocol the performance of four different cache replacement strategies was measured.

In the first strategy the states were divided dynamically in classes according to the number of times they
had been visited before in the search. To replace a state the state space cache was scanned round-robin until
a state was found that belonged to the currently

(a) largest class

of states under this criterion. In the next strategy the number of previous visits to a state was ignored. The
cache was viewed as a circular buffer. To replace a state with this strategy the one was selected that hap-
pened to be pointed to by a round-robin pointer:

(b) blind, round-robin
selection. In the last two strategies the depth at which a state was last encountered in the tree was used as a
selection criterion. States near the root of the tree are also roots of the largest subtrees. To replace a state,
therefore, it should be advantageous to select a victim as deep in the tree as possible. In the third method

therefore a lookup table of states was maintained organized in tree levels. States to be deleted were selected
via the lookup table which guaranteed that at each point one of the currently

(c) lowest states
would be deleted. In the last replacement strategy tested a simpler list of only the
(d) leaf states

in the tree was maintained. Whenever a state had to be deleted the first state in that list was selected. If the
list was empty a blind round-robin selection according to strategy @veakiasused. The behavior of the

analyzer was first tested on a small cache of 6,900 states, reduced in steps of 1,000 states down to a cache
size of only 2,000 states. The results are shown in Figure 14.

600 *° °
500
400 6950 p
Seconds States
a
300-{ b
d (o4
c 6900
[[[[[[
2 4 6 2 4 6
Cache Size x 1,000 states Cache Size x 1,000 states

Figure 14 — Cache Replacement, 7k state space, scatter search

In these firsts tests strategies (c) and (d) come out best. The test was then repeated for a larger state space
that was varied between 50,000 and 65,000 states, in steps of 2,000.

50000+
C (o4
a
20000 200000
Seconds States | ,
10000+ 100000
b b
5000
ﬂ [[[20000 dN [[
50 55 60 65 50 55 60 65
Cache Size x 1,000 states Cache Size x 1,000 states

Figure 15 — Cache Replacement, 65k state space, full search, depth limit 60

In these tests strategy (d) proved superior to strategy (c). It is unclear why (d) is not consistently better than
(c) or even why the difference between (c) and (d) is so large in the second series of tests. Quite

-10 -

remarkably, in the larger state space the simple strategy (b) performs almost as well as the more subtle (d),
while consuming less memory. In Figure 16 the curves for the best two strategies (b) and (d) are compared
for further reductions than are feasible for (a) or (c).

2000004 d
12000 4 \
10000 150000
Seconds 8000 ' States
100000
6000

T T T T T T T T
30 40 50 60 30 40 50 60
Cache Size x 1,000 states Cache Size x 1,000 states

Figure 16 — Cache Replacement, 65k state space, full search, depth limit 60

Clearly, the effect of a better replacement strategy makes considerably larger state space reductions possi-
ble. In this case, the state space cache could be reduced to less than 50% of the full cache size for a runtime
penalty of only 20%. In this test, the two best strategies turn out to be almost indistinguishable with respect
to runtime. Strategy (d), however, is slightly more selective in the generation of redundant deadlock reports
(see appendix B).

The one strategy based on the previous number of visits to a state (a) (as well as two others described in
[2]) does not perform well at all.

Cache replacement strategy (d) is the default in the analyzer.

4.2. Cache Sizes

Using replacement strategy (d) the effect of a series of reductions of a large state space cache was mea-
sured. The results shown in Figure 17 are from full searches in a fixed size state space tree of 70 levels
deep. The cache size was varied from a full cache of 150,000 states to a restricted cache of 45,000 states in
steps of 1,000.

100000+
1le+06-
50000
Seconds States? 00000+
200000
20000
T T T T T T
50 100 150 50 100 150
Cache Size x 1,000 states Cache Size x 1,000 states

Figure 17 — Cache Size, 150k state space, full search, depth limit 70

The restriction of the cache has little effect on the performance of the analyzer up to a certain limit beyond
which analysis will quickly become unfeasible. As in the test of Figure 16 the limit was found at a reduc-
tion to approximately 40-50% of the full cache size.

-11-

5. Conclusion

The test results documented in this report can provide some insight into the complexity of protocol analy-
sis. We have shown that simple exhaustive analyses can hardly be expected to produce results of interest
for protocols of the size tested here. We have also obtained some quantitative results on the substantial
effect that increments in queue sizes and search depths can have on runtime and state space size for various
search disciplines. The programaceis an effort to develop a tool that can be used to probe the state space

of protocols that are normally beyond the scope of automated analyzers. The main tools for restricting a
search intrace, then, are the queue size restrictions, search depth restrictions and the use of the scatter
search discipline [2].

Tracemaintains a cache of system states that, as need dictates, can be made either larger or smaller than the
size of the state space to be searched. If the cache is smaller, a cache replacement strategy is used to decide
which states are to be deleted from the cache when it is about to overflow. The effect of this cache replace-
ment strategy was found to be decisive for the feasibility of analysis. Four different strategies were tested
and quite remarkably we found that the least sophisticated methods were superior in almost every case of
interest. With the best cache replacement strategy cache size restrictions of roughly 50% were shown to be
feasible with only minor runtime penalties.

-12 -

6. References
1."Trace - a protocol analyzer", AT&T Bell Laboraties, internal report, May 22, 1984, 27 pgs.

2. "Automated protocol validation in Argos, assertion proving and scatter searching," AT&T Bell Labo-
raties, internal report, August 8, 1984, 23 pgs.

-13-

7. Appendix A: The Test Protocol

A full listing in the validation languagargos[1,2] of the protocol used for the performance tests is given
below. The protocol compilgsret translates this desciption into a lower level description consisting of 3
variables, 6 message queues and 4 finite state machines of respectively 31, 50, 7, and 5 states. The 4 pro-
cesses exchange 32 different types of messages. One incompleteness error in the description as specified is
flagged by the compiler, but ignored in the tests: the messages ‘adial,’ ‘nak,” and ‘call’ are received but not
sent.

proc host
{ gueue h_normal[10];
gqueue h_extern[10];
pvar n;
closed:
do
. h_normal?close —> c_normallaclose
:: h_normal?aclose —> skip
: h_normal?adial —> skip
- h_normal?talk —> c_normallclose; goto Iclosed
- h_normal?atalk —> skip
:: h_normal?nak(n) —>
if
i (n == 0) —> goto fail
: (n!=0) —> c_normallclose
fi
:: h_extern?opent —> c_normalltalk; goto watalk
:: h_extern?opend —> c¢_normalldial; goto wadial

od;
dialing:
do
. h_normal?close —> ¢_normal'aclose; goto rclosed
:: h_normal?adial -> skip
:» h_normal?talk —> ¢_normal'atalk; h_envirn'htalk; goto talking
:: h_normal?atalk -> skip
:: h_extern?sysclose —> c¢_normallclose; goto Iclosed
od;
talking:
do
. h_normal?close —> ¢_normal'aclose; goto rclosed
:: h_normal?adial -> skip
:: h_normal?talk -> c¢_normallatalk
:: h_normal?atalk -> skip
:: h_extern?sysclose —> c¢_normallclose; goto Iclosed
i h_extern?ioattn ~ —> c¢_normalldial; goto wattn
od;
rclosed:
do
:: h_normal?close —-> ¢_normallaclose
:: h_extern?sysclose —> c¢_normallclose; goto Iclosed
od;
watalk:
do
:: h_normal?close —-> ¢_normallaclose

:» h_normal?aclose —> skip

:: h_normal?atalk
:: h_normal?nak(n)
if

-14 -

—> goto wtalk
->

:: (n == 0) —> goto fail

2 (n'=0) —> skip

fi

:: h_extern?sysclose —> c¢_normallclose; goto Iclosed

:: h_extern?timeout
od;
wadial:
do
:: h_normal?close
:: h_normal?aclose
:: h_normal?adial
:: h_normal?atalk
:: h_normal?nak(n)
if

—> ¢_normal'talk

—> ¢_normal'aclose
—> skip

-> goto dialing

—> skip

->

:: (n == 0) —> goto fail
2 (n'=0) —> skip

fi

:: h_extern?sysclose —> c¢_normallclose; goto Iclosed

.. h_extern?timeout
od;

Iclosed:
do
:: h_normal?close
:: h_normal?aclose
:: h_normal?adial
:: h_normal?talk
:: h_normal?atalk
:: h_normal?nak(n)

—> ¢_normal'dial

—> ¢_normal'aclose

—> goto closed

—> skip

-> c¢_normallatalk; c_normallclose
—> skip

—> skip

:: h_extern?sysclose —> skip

:: h_extern?timeout

od;
wtalk:

do

:: h_normal?close

:: h_normal?talk

:: h_normal?atalk

:: h_normal?nak(n)

-> c¢_normallclose

—> ¢_normal'aclose; goto rclosed
-> c_normallatalk; goto talking
—> skip

—> goto closed

:: h_extern?sysclose —> ¢_normallclose

od;
wattn:
do
:: h_normal?close
:: h_normal?adial
:: h_normal?talk
:: h_normal?atalk

—> ¢_normal'aclose; goto rclosed
-> goto dialing

—> ¢_normal'atalk

—> skip

:: h_extern?sysclose —> c¢_normallaclose; goto Iclosed

:: h_extern?timeout

od;
fail:

do

:: h_normal?nak(n)

—> ¢_normal'dial

—> skip

-15-

:: h_extern?sysclose —> skip

od
}
proc cont
{
gueue c_normal[10];
gueue c_extern[10];
pvar n;
pvar pvc;
idle:
do
:: ¢_normal?close —>h_normallaclose
:: c_normal?aclose —> skip
:: ¢_normal?dial —> h_normalladial; c_envirn!trans; goto dialing
:: c_normal?adial —> skip
c_normal?talk >
if
:: (pve == 0) —> goto wproc
:: (pvc = 0) —> goto wcall
fi
i c_normal?atalk —> skip
:: ¢_normal?nak(n) —>
if
:: (n == 0) —> goto fail
:;:(n!'=0) —> h_normallclose
fi
:: c_extern?call —> ¢_envirnlchak
od;
dialing:
do
:: ¢_normal?close —>h_normallaclose; goto idle
:: ¢_normal?dial —> h_normalladial
:: c_extern?call —> ¢_envirnlchak
:: c_extern?cnak —-> h_normallnak(1); goto wclose
:: c_extern?transok —> c_envirn!call; goto wproc
od;
talking:
do
. ¢_normal?close —> h_normallaclose; c_envirn'lhangup; goto idle
::c_normal?dial —> h_normalladial; goto dialing
»c_normal?talk ->h_normallatalk
i c_normal?atalk —> skip
:: c_extern?call —> ¢_envirnlchak
.. c_extern?hangup —> h_normallclose; goto Iclosed
od;
wecall:
do
. c_normal?close —>h_normallaclose; goto idle
»c_normal?talk ->h_normallatalk
:: c_extern?call —> ¢_envirnlnumb; goto wnumb
od;

wnumb:

-16 -

do
. ¢_normal?close —> h_normallaclose; c_envirn'lhangup; goto idle
»c_normal?talk ->h_normallatalk
:: c_extern?call —> ¢_envirnlchak
. c_extern?cnak —> h_normallnak(1); goto wclose
:: c_extern?numbis —> h_normal'talk; c_envirnlanswer; goto watalk
od;
watalk:
do
. ¢_normal?close —> h_normallaclose; c_envirn'lhangup; goto idle
:: ¢_normal?dial —> h_normalladial
»c_normal?talk —->h_normallatalk
:: c_normal?atalk —> goto talking
:: c_extern?call —> ¢_envirnlchak

:: c_extern?hangup —> h_normallclose; goto Iclosed
:: c_extern?timeout —> h_normalltalk

od;

wclose:
do
. c_normal?close —>h_normallaclose; goto idle
:: ¢_normal?dial —> h_normalladial
:: c_normal?adial —> skip
»c_normal?talk —->h_normallatalk
i c_normal?atalk —> skip
:: c_extern?call —> ¢_envirnlchak
od;

Iclosed:
do

. c_normal?close —>h_normallaclose; goto idle
:: ¢_normal?aclose —> goto idle

:»c_normal?dial —>h_normalladial; h_normallclose
:: c_normal?adial —> skip
mc_normal?talk —>h_normallatalk; h_normallclose

i c_normal?atalk —> skip

:: ¢_normal?nak(n) —>
if
:: (n == 0) —> goto fail
:;:(n!'=0) —> h_normallclose
fi

:: c_extern?call —> ¢_envirnlchak
:: c_extern?timeout —> h_normallclose
od;
wproc:
do
. ¢_normal?close —> h_normallaclose; c_envirn'lhangup; goto idle
:: ¢_normal?dial —> h_normalladial
::c_normal?talk —->h_normallatalk
:: c_extern?call —> ¢_envirnlchak
:: c_extern?answer —> h_normal'talk; goto watalk
. c_extern?cnak —> h_normallnak(1); goto wclose
i1 c_extern?numb —> ¢_envirnlnumbis
od;
fail:

do

:: ¢_normal?nak(n) —> skip

:: c_extern?call —> ¢_envirnlchak
od
}
proc cenvir
{
gueue c_envirn[10];
/*
* c_extern!call;
*/
do
:: c_envirn?numbis —>
if
.. c_externlanswer
:: c_externlhangup
fi
:: c_envirn?trans —>
if
:: c_extern!transok
:: c_externlcnak
fi
:: c_envirn?answer —> c_extern'hangup
c_envirn?cnak —> skip
:: c_envirn?hangup —> skip
:: c_envirn?numb -
if
i1 c_extern!numbis
:: c_externlhangup
fi
:: c_envirn?call -
if
:: c_externlnumb
:: c_externlcnak
fi
od
}
proc henvir
{
gueue h_envirn[10];
idle:
if
:: h_externlopent; goto open
. h_externlopend; goto open
fi;
open:

if
:: h_extern!sysclose; goto idle
:: h_envirn?htalk; goto talking

-17 -

fi;
talking:
if
:: h_extern!sysclose
:: h_externlioattn; goto open
fi

-18 -

-19-

8. Appendix B: Data

The tables below give the data used to plot the graphs in the body of the [paptrgives the number of

levels in the state space tree analyzlddesare state templates used to minimize the amount of memory
used to store a stat&keturnscounts the number of times that a previously visited state was encountered
during an analysisZappedcounts the number of states that were deleted from the state space cache. It is
zero in most of the tests, except in those in which cache replacement strategies or the effect of restricted
cache sizes were testedoopsis the number of execution loops detected in the protocol tekteaksis

the number of deadlocks reporteBlytesmeasures the size of the state space cdetigescounts the num-
ber of edges traversed in the state space tree during an analysis run.

8.1. Figures 1, 3,4,5,and 6

Scatter Search
depth seconds nodes states returns zapped loops locks bytes edges
10 2.18 10 11 0 0 0 0 4096 16
20 2.50 18 27 1 0 1 0 8192 44
30 3.15 35 62 1 0 1 0 13312 102
40 412 49 119 7 0 4 1 17408 202
50 5.62 61 196 10 0 7 4 25600 383
60 7.90 75 308 19 0 10 g 30720 519
70 10.50 88 449 27 0 13 15 38912 761
80 14.62 97 646 38 0 19 31 47104 1099
90 20.92 113 950 49 0 22 56 77824 1588
100 29.28 130 1352 57 0 24 100 95282 2241
110 42.90 143 1849 69 0 29 176 115712 3029
120 58.67 162 2497 78 0 31 289 161792 4004
130 77.05 169 3143 82 0 32 474 204800 5014
140 100.50 173 3786 90 0 32 683 23144 6021
150 129.20 181 4538 93 0 34 919 276480 7201
160 161.67 181 5296 95 0 34 1294 296960 8853
170 183.28 181 5818 95 0 34 1506 309248 9135
180 219.97 181 6408 95 0 34 1742 362406 10057
190 239.77 181 6900 95 0 34 2048 391168 10731
230 239.05 181 6900 95 0 34 2048 395264 10731

-20 -

Partial Search
depth seconds nodes states returns zapped loops locks bytes edges
10 2.57 20 28 3 0 0 0 8192 43
20 3.55 35 77 58 0 5 0 1331p 107
30 59.27 313 1684 3591 0 14 0 97280 2889
40 7.92 72 245 309 0 14 0 26624 404
50 25.80 166 811 1609 0 22 @ 59392 1373
60 4.85 40 139 121 0 28 0 21504 207
70 13.68 110 434 725 0 28 a 40960 731
80 45.30 243 1322 2996 0 28 0 86016 2256
90 197.15 520 4709 10395 0 42 L 2283b2 8086
100 463.00 593 9354 2007y 0 79 B3 387072 15879
110 63.62 334 1931 3185 0 92 4 120832 3400
120 165.65 534 4282 9505 0 75 v 222208 7776
130 319.37 792 8115 1743p 0 125 7 465920 13755
140 623.40 663 11924 29694 0 127 4 666624 20812
150 1295.48 754 19849 46229 0 149 4 976896 34112
160 3032.83| 1060 35082 83403 0 264 8 1722368 61119
170 6799.00/ 1390 60946 150594 0 328 20 2979840 109404
180 15628.05| 1713| 11195F 271805 0 466 103 4938752 198915
190 4814.12| 1332 58225 133247 0 432 136 2923520 10p288
200 7034.52| 1770 75979 180584 0 540 208 3315F12 13p872
210 8813.38| 1461 84512 204791 0 479 176 3834880 15Dp411
220 10423.12| 1537 91958 215343 0 547 208 4194304 162712
230 31813.87| 2241| 172402 434648 0 792 252 7725056 3113755
Full Search
depth seconds nodes states returns zapped loops locks bytes edges
10 2.73 20 28 3 0 0 0 8192 43
20 15.18 118 481 808 0 5 Q 32768 7188
30 70.57 336 2155 4347 0 16 0 113664 3697
40 343.22 597 8372 18728 0 20 3 3317[76 14168
50 1306.60 927 24499 58224 0 29 6 868352 42798
60 5181.37| 1298 63051 155517 0 41 20 2118656 111249
70 1944458 1769| 151739 384394 0 48 64 5008384 270865
80 71073.11| 2374| 332527 869060 0 64 179 10953728 603102

-21-

8.2. Figure 2
Full Search
depth unique redundant
10 28 0
20 481 45
30 2155 1090
40 8372 8917

50 24499 40889
60 63051 148997
70 151739 4578564
80 332527 | 1264470

8.3. Figures 7, 8,10 and 11

Scatter Search, Queue Size: 1
depth seconds nodes states returns zapped loops locks bytes edges
10 1.95 10 11 0 0 0 0 4096 16
20 2.38 18 27 1 0 1 0 8192 44
30 2.83 35 62 1 0 1 0 13312 102
40 3.90 51 117 7 0 4 1 17408 199
50 5.23 72 182 10 0 7 4 26624 313
60 7.13 89 284 17 0 9 10 30720 483
70 9.65 112 393 25 0 11 22 34816 675
80 12.05 124 508 31 0 14 39 44032 861
90 14.83 138 635 36 0 15 63 56320 1074
100 17.12 144 732 38 0 15 92 60416 1229
110 19.17 149 812 38 0 15 11% 64512 1355
120 21.53 154 902 38 0 15 140 68608 1505
130 23.37 155 955 38 0 15 171 72704 1582
230 23.37 155 955 38 0 15 171 72704 1582

-22.

Scatter Search, Queue Size: 2
depth seconds nodes states returns zapped loops locks bytes edges
10 2.18 10 11 0 0 0 0 4096 16
20 2.50 18 27 1 0 1 0 8192 44
30 3.15 35 62 1 0 1 0 13312 102
40 4.12 49 119 7 0 4 1 17408 202
50 5.62 61 196 10 0 7 4 25600 383
60 7.90 75 308 19 0 10 g 30720 519
70 10.50 88 449 27 0 13 15 38912 761
80 14.62 97 646 38 0 19 31 47104 1099
90 20.92 113 950 49 0 22 56 77824 1588
100 29.28 130 1352 57 0 24 100 95282 2241
110 42.90 143 1849 69 0 29 176 115712 3029
120 58.67 162 2497 78 0 31 280 161792 4004
130 77.05 169 3143 82 0 32 474 204800 5014
140 100.50 173 3786 90 0 32 683 2314p4 6021
150 129.20 181 4538 93 0 34 919 276480 7201
160 161.67 181 5296 95 0 34 1294 296960 8853
170 183.28 181 5818 95 0 34 1506 309248 9135
180 219.97 181 6408 95 0 34 1742 362496 10057
190 239.77 181 6900 95 0 34 2048 391168 10731
230 239.05 181 6900 95 0 34 2048 395264 10731
Scatter Search, Queue Size: 3
depth seconds nodes states returns zapped loops locks bytes edges
10 1.98 10 11 0 0 0 q 4096 16
20 2.30 18 27 1 0 1 q 8192 44
30 3.13 35 62 1 0 1 q 13312 102
40 4.10 49 119 7 0 4 1 17408 202
50 5.90 61 200 10 0 7 g 25600 387
60 8.00 70 332 19 0 10 12 29696 543
70 11.88 77 499 27 0 13 24 34816 835
80 17.22 88 741 42 0 23 46 47104 1220
90 25.63 95 1104 57 0 26 79 63488 1810
100 36.68 105 156 69 0 32 124 79872 2561
110 54.57 110 230 86 0 42 209 100352 3711
120 89.10 120 343 97 0 44 311 137216 5567
130 160.30 134 542 117 0 51 693 207872 8835
140 245.33 147 749 131 0 57 1125 273408 11487
150 398.35 162 1065 141 0 62 1862 384000 15906
160 602.35 171 1446 159 0 67 2988 519168 21101
170 841.18 178 1795 171 0 71 4072 648192 26157
180 1200.37 186 2329 174 0 73 5662 840704 33579
190 1710.98 187 2863 188 0 77 7701 1033216 40774
200 2019.87 187 3260 188 0 77 9197 1176576 46318
210 2728.22 187 3837 188 0 77 11193 1389%68 54198
220 3464.32 187 4442 188 0 77 14069 1618944 62366
230 4004.00 187 4816 188 0 77 15645 1762304 67434

-23-

Scatter Search, Queue Size: 4
depth seconds nodes states returns zapped loops locks bytes edges
10 2.17 10 11 0 0 0 g 4096 16
20 2.40 18 27 1 0 1 q 8192 44
30 3.07 35 62 1 0 1 q 13312 102
40 4.18 49 119 7 0 4 1 17408 202
50 5.82 61 202 10 0 7 4 25600 389
60 8.77 70 340 19 0 10 12 29696 551
70 12.70 75 525 27 0 13 24 34816 865
80 19.98 77 825 42 0 23 51 47104 1330
90 31.38 84 1254 65 0 34 99 67584 2012
100 44.70 92 1813 77 0 40 153 83968 2893
110 69.53 99 2699 110 0 58 287 108544 4296
120 110.93 109 4014 129 0 68 445 149504 6803
130 171.02 111 5791 149 0 79 637 206848 9179
140 327.92 116 8964 188 0 9(1036 305152 14082
150 662.72 126 14311 208 0 103 1658 477184 22110
160 1723.93 134 23532 227 0 108 3646 789504 34528
170 2714.60 157 33360 260 0 116 536 1115136 48797
180 4953.25 174 50237 283 0 135 9032 1701888 70628
190 9152.80 196 71694 307 0 142 17006 2459648 99348
200 13793.53 208 90418 337 0 146 24115 3098624 126019
210 23831.82 216 12324y 354 0 156 37349 4274176 170282
Full Search, Queue Size: 1
depth seconds nodes states returns zapped loops locks bytes edges
10 2.35 17 18 1 0 0 a 8192 29
20 8.75 100 263 335 0 5 0 23552 432
30 32.28 287 1108 1740 0 10 0 74752 1881
40 98.18 492 3504 6062 0 12 3 173056 5947
50 243.65 769 83645 14658 0 12 10 349184 14357
60 540.08| 1034 16983 30396 0 19 56 642048 29464
70 1130.22| 1373 31567 57094 0 4p 193 1132544 55328
80 2152.70| 1660 52723 96686 0 79 440 1827840 93755
90 4032.97| 1960 84070 155747 0 101 1065 2860032 1501407
100 6836.48| 2201| 126600 236700 0 122 2008 4268032 230174
110 11030.32| 2393 17813p 334823 0 162 3709 5976064 328465
120 16975.52| 2606 238073 447680 0 221 6Q77 7983104 443540
130 25519.52| 2793| 306030 580905 0 292 9111 10273792 576527
Full Search, Queue Size: 2
depth seconds nodes states returns zapped loops locks bytes edges
10 2.73 20 28 3 0 0 0 8192 43
20 15.18 118 481 808 0 5 0 32768 788
30 70.57 336 2155 4347 0 16 0 113664 3697
40 343.22 597 8372 18728 0 20 3 331776 14168
50 1306.60 927 24499 58224 0 29 6 868352 42798
60 5181.37| 1298 63051 155517 0 41 20 2118656 111249
70 19444.58| 1769 151739 384394 0 48 64 5008384 270p865

=24 -

Full Search, Queue Size: 3
depth seconds nodes states returns zapped loops locks bytes edges
10 2.83 20 36 3 0 0 0 8192 51
20 23.77 118 744 1407 0 5 0 40960 1209
30 124.45 336 3383 7456 0 16 a 150528 5755
40 727.12 597 13686 32460 0 20Q 5 491520 23p11
50 3493.28 927 41317 103725 0 30 10 1388544 71509
60 20440.35| 1300/ 117808 313754 0 44 32 3843072 205336
8.4. Figure 9
Scatter Search, Depth 120
gqueue seconds nodes states returns zapped loops locks bytes edges
1 21.53 154 902 38 0 15 140 68608 1505
2 58.67 162 2497 78 0 31 289 161792 4004
3 89.10 120 3436 97 0 44 311 137216 5567
4 110.93 109 4014 129 0 68 445 149504 6303
5 167.15 95 4992 161 0 84 660 174080 7573
6 237.30 84 5928 193 0 114 818 198656 8765
7 337.75 79 7260 193 0 114 1178 240640 10121
8 453.15 79 8556 193 0 114 1630 2826p4 11p53
9 668.43 79 10780 193 0 116 2414 349184 13841
10 1023.48 79 13420 193 0 116 3214 436224 14753
Scatter Search, Depth 140
queue seconds nodes states returns zapped loops locks bytes edges
1 23.37 155 955 38 0 15 171 72704 1582
2 100.50 173 3786 90 0 32 683 231424 6021
3 245.33 147 7492 131 0 57 1125 273408 11487
4 327.92 116 8965 188 0 90 1036 305152 14082
5 462.38 110 10919 252 0 138 1686 354304 16272
6 784.20 99 13695 348 0 202 2392 428082 19896
7 1401.25 90 17891 412 0 266 3592 543744 24628
8 2285.03 79 22555 412 0 266 4804 680960 30100
9 3832.75 79 28747 412 0 266 6860 866304 36580
10 6495.95 79 36763 412 0 266 9484 1097728 45268
Scatter Search, Depth 160
gqueue seconds nodes states returns zapped loops locks bytes edges
1 23.37 155 955 38 0 15 171 72704 1582
2 161.67 181 5296 95 0 34 1294 296960 83853
3 602.35 171 144685 159 0 67 2988 519168 21101
4 1723.93 134 23532 227 0 108 3646 789504 34528
5 1568.82 117 24809 339 0 172 3634 780288 37316
6 2350.85 111 29941 467 0 268 5369 915456 43532
7 5303.58 105 39569 659 0 396 8373 1183744 54524
8 10200.13 92 51785 787 0 524 12057 1530880 69044

-25-

Scatter Search, Depth 200
queue seconds nodes states returns zapped loops locks bytes edges
1 23.37 155 955 38 0 15 17 72704 1582
2 239.77 181 6900 95 0 34 2048 391168 10731
3 2019.87 187 32606 188 0 77 9197 1176576 46318
4 13793.53 208 90418 337 0 146 24115 3098624 126019

8.5. Figures 12 and 13

Full Search, Depth 60
visits ~ states average depth
1 14534 49
2 13798 49
3 10766 49
4 8452 49
5 4903 49
6 3635 49
7 2003 50
8 1712 49
9 1002 49
10 844 50
11 467 50
12 347 51
13 173 50
14 117 49
15 17 45
16 74 51
17 8 47
18 43 52
19 96 51
20 4 50
21 32 50
22 6 54
23 6 55
26 4 46
38 8 58

-26-

8.6. Figure 14
Scatter Search — 7k state space
size seconds nodes states returns zapped loops locks bytes edges | noleaf
2/a 636.97 181 6929 98 4774 42 2052 223232 10782 0.0
2/b 304.82 181 6989 87 4834 56 2069 223232 10860 0.0
2lc 235.03 181 6911 91 4754 39 20%5 223232 10746 0.0
2/d 275.23 181 6946 82 4791 49 2065 239616 10791 69.8
3/a 438.95 181 6903 96 3650 36 2048 301056 10736 0.0
3/b 286.50 181 6932 93 3679 49 20%3 268288 10777 0.0
3/c 246.95 181 6901 94 3648 35 2049 268288 10732 0.0
3/d 260.20 181 6917 86 3664 40 20%7 305152 10752 60.7
4/a 324.75 181 6902 96 2625 35 2048 346112 10733 0.0
4/b 273.53 181 6908 95 2631 41 2048 329728 10743 0.0
4fc 241.38 181 6900 95 2623 34 2048 333824 10731 0.0
4/d 258.82 181 6904 91 2627 36 2052 358400 10735 453
5/a 259.33 181 6900 95 1599 34 2048 3665392 10731 0.0
5/b 254.63 181 6901 95 1600 37 2048 366592 10732 0.0
5/c 240.38 181 6900 95 1599 34 2048 366592 10731 0.0
5/d 247.47 181 6900 95 1599 35 2048 399360 10731 10.4
6/a 251.42 181 6900 95 575 34 2048 428032 10731 0.0
6/b 246.98 181 6900 95 575 36 2048 428032 10731 0.0
6/c 242.18 181 6900 95 575 34 2048 428032 10731 0.0
6/d 248.63 181 6900 95 575 34 2048 464896 10731 0.0
7la 239.77 181 6900 95 0 34 2048 477184 10731 0.0
7/b 239.77 181 6900 95 0 34 2048 477184 10731 0.0
7lc 239.77 181 6900 95 0 34 2048 477184 10731 0.0
7/d 239.77 181 6900 95 0 34 2048 477184 10731 0.0

The first column in this and in the next three tables gives the cache sizes in multiples of 1,000 states. Where
relevant the cache replacement strategy a, b, c, or d used is added as a suffix to the cache size. The last col-
umn gives the percentage of cache replacements that could not be made with strategy (d) (see paper)
because the list of ‘leaf’ states was depleted.

-27-

8.7. Figure 15
Full Search — 65k state space — Depth Limit 60

size seconds nodes states returns zapped loops locks bytes edges
65/a 5181.37| 1298 63051 155517 0 41 20 2118656 111249

60/a 5073.98| 1298 63068 155539 325 a1 20 280560 111261

58/a 5662.48| 1298 6411y 159144 34p7 a0 20 2764800 113250

56/a 7181.42| 1298 66775 168026 81383 a0 20 2723840 117658

55/a 8523.68| 1298 69106 173156 11488 il 20 2703360 121152
54/a | 10125.00] 1298 72439 182316 15845 41 20 2682880 126191
50/a | 35348.28| 1298 127143 334072 74645 41 20 2600960 218289
65/b 5181.37| 1298 63051 155517 0 41 20 2118656 111249

60/b 5322.98| 1298 63051 155517 313 41 20 2805760 111249

58/b 5259.45| 1298 63051 155517 2361 a1 20 2764800 111249

56/b 5087.75| 1298 63061 155546 4419 a1 20 2723840 111268

55/b 5280.52| 1298 63072 155598 5454 a1 20 2703860 111302

54/b 5068.93| 1298 63091 155633 6497 a1 20 2682880 111343

50/b 5236.63| 1298 63527 157040 110P9 an 23 1600960 112120

65/c 5181.37| 1298 63051 155517 0 41 20 2118656 111249

60/c 5263.50| 1298 65298 160188 2560 a1 20 2805760 11%164

58/c | 21465.32| 1298 176120 406037 115430 41 20 2764800 284905
56/c | 20104.55| 1298 17420p 448742 115560 41 20 2723840 29p557
55/c | 16241.10| 1298 165669 338500 108051 41 20 2703360 27p010
54/c | 28614.43] 1298 298918 773116 242324 41 20 2682880 485026
50/c | 45097.08| 1298 33380 817328 281309 41 20 2600960 56[7058
65/d 5181.37| 1298 63051 155517 0 41 20 2118656 111249

60/d 5066.20| 1298 63051 155517 313 41 20 3059712 111249

58/d 5072.57| 1298 63051 155517 2361 a1 20 3014p56 111249

56/d 5026.02| 1298 63051 155517 4409 a1 20 2969600 111249

55/d 5027.83| 1298 63051 155517 5433 a1 20 2945024 111249

54/d 5122.38| 1298 63051 155517 6457 a1 20 2924644 111249

52/d 4990.13| 1298 63079 1555Q9 8533 a1 20 2875892 111283

50/d 5057.37| 1298 63079 1555Q9 10581 an 20 2822144 111283

noleaf
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

-28-

noleaf

8.8. Figure 16
Full Search — 65k state space — Depth Limit 60

size seconds nodes states returns zapped loops locks bytes edges
65/b 5181.37| 1298 63051 155517 0 M 20 2118656 111249
65/d 5181.37| 1298 63051 155517 0 M 20 2118656 111249
60/b 5322.98| 1298 63051 155517 313 41 20 2805760 111249
60/d 5066.20| 1298 63051 155517 313 41 20 3059712 111249
58/b 5259.45| 1298 63051 155517 2361 41 20 2764800 111249
58/d 5072.57| 1298 63051 155517 2361 41 20 3014p56 111249
56/b 5087.75| 1298 63061 155546 4419 41 20 2723840 111268
56/d 5026.02| 1298 63051 155517 4409 41 20 2969600 111249
55/b 5280.52| 1298 63072 155598 5454 41 20 2703860 111302
55/d 5027.83| 1298 63051 155517 5433 41 20 2945024 111249
54/b 5068.93| 1298 63091 155633 6497 41 20 2682880 111343
54/d 5122.38| 1298 63051 155517 6457 41 20 2924644 111249
52/b 5116.88| 1298 63306 156040 8760 41 21 264120 111741
52/d 4990.13| 1298 63079 1555Q9 8533 41 20 2875892 111283
50/b 5236.63| 1298 63527 157040 110P9 41 23 1600960 112120
50/d 5057.37| 1298 63079 1555Q9 10581 41 20 2822144 111283
48/d 5155.27| 1298 63114 155519 12664 41 20 2781184 111342
48/b 5151.40| 1298 63902 158533 13452 41 28 2564096 112903
46/d 5317.03| 1298 63129 155515 14732 41 20 2736[128 111365
46/b 5255.58| 1298 64053 159230 15656 41 28 2523136 113230
44/d 5120.33| 1298 63921 155289 17592 41 20 2482176 112389
44/b 5369.30| 1298 64575 161380 18246 41 29 2281472 114114
42/d 5481.22| 1298 67093 154712 228112 41 20 2269184 116263
42/b 5202.35| 1298 65364 163691 21083 41 31 2240512 115534
40/d 5443.92| 1298 70592 154079 28361 41 22 2215936 120660
40/b 5348.97| 1298 66154 166772 23923 41 33 2199552 116942
38/d 5732.05| 1298 73720 1538Q9 33587 41 26 1904640 124637
38/b 5423.27| 1298 68126 173840 27943 41 31 2154496 120843
36/d 5726.82| 1298 77019 154386 38892 41 29 1859584 128839
36/b 5724.00f 1298 71438 186549 33311 41 32 184796 126929
34/d 5960.40| 1298 79613 156643 43534 41 30 1810432 132341
34/b 6264.07| 1298 78800 210762 427P1 44 42 1773668 139511
32/d 6244.13 1298 92194 156205 58185 41 44 1728512 147724
32/b 6473.85| 1298 82725 223801 487116 46 46 1732608 146367
30/d 6669.62| 1298/ 105161 161137 73200 41 52 1683456 165779
30/b 7523.05| 1298 94832 261324 62871 80 56 1527808 168620
28/d 7928.97| 1298 124138 174149 94247 41 56 1634304 192047
28/b 8103.65| 1298| 102808 287956 72912 83 55 1486848 183091
26/d 9130.97| 1298| 147030 187362 119235 42 69 1585152 22p154
26/b | 12941.87| 1298 161895 477192 134100 105 34 1445888 290018
24/d | 11664.42| 1298 20102f 221368 175359 32 87 1531904 295791

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9.0
0.0
15.9
0.0
20.5
0.0
24.2
0.0
27.1
0.0
30.3
0.0
27.3
0.0
26.8
0.0
26.7
0.0
26.3
0.0
24.8

-29.

8.9. Figure 17
Full Search, Depth 70
size seconds nodes states returns zapped loops locks bytes edges
150 | 19444.58| 1769 15173P 384394 0 48 64 5008384 270865
145 | 20699.45| 1769 15173P 384394 14P0 48 64 6699008 270865
135 | 19936.80| 1769 15173P 384394 11730 48 64 6150144 270865
125 | 19683.10 1769 151796 384378 22031 48 64 5912576 270948
115 | 18962.57| 1769 15183P 384359 32318 48 64 5404672 270992
105 | 19660.72| 1769 159304 382436 50023 48 64 5158912 280163
95 | 20061.35| 1769 175000 379452 759179 48 66 4663296 298406
85 | 2242488 1769 200051 377164 111204 54 106 4429824 329100
75 | 23377.33| 1769 244843 396476 166434 60 266 3917824 388995
65 | 29033.48) 1769 307444 455467 239428 80 264 36671968 474246
55 | 39390.25| 1769 476543 563933 418935 101 673 3028992 702352
45 | 94457.23] 1769 1263740 1295694 1216456 519 1090 2582528 1814740

noleaf
0.0
0.0
0.0
0.0
0.0
18.2
25.8
27.8
28.7
314
28.5
27.7

