
From Code to Models

Gerard J. Holzmann
Bell Laboratories, Lucent Technologies

600 Mountain Avenue, 2C-521
Murray Hill, New Jersey, USA

gerard@research.bell-labs.com

Abstract

One of the corner stones of formal methods is the notion
that abstraction enables analysis. By the construction of
an abstract model we can trade implementation detail for
analytical power. The intent of a model is to preserve
selected characteristics of real-world artifact, while
suppressing others. Unfortunately, practitioners are less
likely to use a modeling tool if it cannot handle real-
world artifacts in their native format. The requirement to
build a model to enable analysis is often seen as a verdict
to design a system twice: once in a verification language
and once in an implementation language. Because the
implementation phase cannot be skipped, verification is
often sacrificed.

In this paper we will consider a way to avoid this
problem by automating the extraction of verification
models from implementation level code. The user now
provides only model extraction rules, or abstractions,
rather than full-scale models.

1. Introduction

Models are used in most engineering disciplines. They
come in different forms. A model can be a mathematical
theory, a physical entity, or a mere guiding mental image
in the mind of a designer. The purpose of a model is to
facilitate analysis, either explicitly or implicitly.

Models are abstractions of real world artifacts. A
designer only takes the trouble to build a model when it is
easier, cheaper, or faster to analyze the model than it is to
analyze the real world artifact itself. A model that is more
complex than the artifact that it describes would be
comparable to the summary of a book that is longer than
the book.

The effective use of abstraction is the key to the
successful construction of models. The construction of an
abstract model, in turn, is the key to successful analysis.

A model should not only be simpler than the artifact
being modeled, it should also be simpler to construct than
that artifact. If the construction of a model is perceived to
be too complex, it will be all too tempting to forgo the

construction of the model, and make do with more basic
types of analysis.

In this paper our focus will be on the construction of
analytical models for software artifacts (i.e., program
source code), in particular software artifacts for
concurrent systems. In line with the above observations,
we can state two conditions that should be fulfilled for this
work to be successful. First, the model must enable a type
of analysis that cannot more easily be obtained by other
means. Second, the construction and analysis of the model
must be (at least perceived to be) a relatively minor task
compared with the construction of the actual system. The
first condition is easy to fulfill; the second, however, is
much harder to satisfy. We will consider what it entails.

2. Model Construction

Logic model checking tools can be quite powerful
when used to analyze software artifacts. Especially in the
area of distributed software systems design, a model
checker can generously outperform conventional
approaches to software testing in the detection of
concurrency related defects [4,5]. A drawback of the use
of model checkers, however, is that the construction of the
verification model for any non-trivial system is often a
non-trivial task, even for experts.

To construct a model, a verification expert typically
consults with the designers of the system being studied,
reads extensive systems documentation, and in some cases
studies the source code of the application to develop an
understanding of the intended design. This process
minimally takes days, often weeks, and sometimes
months. The software itself, meanwhile, continues to
evolve. To isolate the model as much as possible from the
continuing changes, a verification expert has to make a
choice. One can either choose a level of abstraction that
shields the model from lower level change, using ad hoc,
principles for determining a satisfactory level of
abstraction, that themselves often have to change to keep
pace with the changing software. Or one can choose to
maintain a more precise model based on unchanging
principles of abstraction, at the prize of constantly having
to be on the alert for changes in the implementation that

might affect the model. Many will choose the first option,
but this choice too has unfortunate consequences.

One consequence is that the abstraction rules are often
ill defined, poorly documented, and frequently changed.
If the rules are not changed to keep track of the evolving
systems design, the verification effort runs the risk of
outliving its usefulness: generating results for a design that
no longer exists. An application like this is therefore only
of value when applied to highly critical software
components where design work can be frozen sufficiently
long for a formal analysis to be completed, and with
sufficient visibility to entice verification experts to take
part in the effort. Most industrial software projects,
however, are not of this type and a different approach is
called for.

In what follows we will describe the essence of the
approach taken in the Bell Labs’ FeaVer project. The aim
of this project is to explore the possibilities for automated
model extraction from C programs.

There are a number of related projects that have very
similar goals. In the Slam project at Microsoft, for
instance, Tom Ball and his colleagues are building the
BeBop model checker for analyzing Boolean abstractions
of C programs [1]. In the Bandera project at Kansas State
University, Matt Dwyer and John Hatcliff target Java
programs [2], as do NASA/Ames researchers Klaus
Havelund and Willem Visser in their Pathfinder project
[3,9]. The philosophy of automated model construction to
provide model checking capabilities to programmers is
similar in all these efforts.

3. Abstraction: Control and Data

Our objective is to allow the designer of a software
artifact to specify a set rules that can be used to guide the
mechanical extraction of verification models from
implementation level code. By specifying rules rather then
the result of applying those rules, we can achieve two
things:

1. the rules are explicitly documented, and
2. the verification effort can more easily track an

evolving code base.
The rules we use should themselves be able to fulfill

two closely related roles: defining both abstractions and
syntactic conversions from program-code to verification
models (or mappings). In what follows we will mostly talk
about developing a framework for the specification and
use of general conversion rules. Abstractions can be
expressed naturally within this framework so we will not
treat them separately here.

The conversion rules that we will use for model
extraction may need maintenance when the target code
evolves. Our intent, and initial experience is, that it is
simpler to maintain a concise set of conversion rules than

it is to maintain a detailed, manually derived verification
model. The rules, in effect, define a generator for the
verification model, without detailing the structural aspects
of either the verification model or the source code.

To be specific, we limit the following discussion to
programs that are written in the C programming language.
A software program, then, consists of the definitions of a
control structure and a set of data objects. The data in a
program definition can consist of either statically or
dynamically allocated data objects, as well as implicitly
allocated data, such as the data that exists on the program
call-stack.

To apply finite state model checking techniques, we
must make sure that the model that is generated from a
program is finite, even when the original program is not.
Fortunately, in one case this will be relatively simple: in C
programs the definition of the control structure is always
finite. (Even a recursive program is defined by a finite
control structure.) This much is good news. A second
piece of good news that we will try to exploit is that the
complexity of a C program is contributed almost
exclusively by implicitly and explicitly declared data
objects, not by the control structure.

It would therefore be beneficial if we could focus our
model extraction rules on the use of data, rather than
program control structures. This means that we have to be
able to separate control and data. The control structure
from a program can in most cases be preserved in the
extracted models, with only minor exceptions (e.g., to
eliminate the possibility of unbounded recursion, which
can be handled through conversion rules).

4. Defining a Verification Context

Software testing always takes place in a specific
context, with sometimes unstated, and frequently
changing, assumptions about the conditions for success or
failure. The assumptions that are often implicitly made
concern the likelihood of specific types of failures, the
possible inputs to a system, and the range of possible
responses from connected processes and devices. To setup
reliable and reproducible test-cases for a distributed
system’s test, these choices must be made explicit,
documented, and changes tracked. We do so in a
verification context, or as we shall call it a verification test
harness.

The test harness has to be specified in some format.
For a C application, a natural choice would be to use the
language C itself. This choice would not be incompatible
with the framework that we are describing, since clearly
once we can mechanically extract Spin verification
models [5] from the C source code of an application, we
can also do so for other fragments of C. In many cases,
though, it is more convenient to express the verification

context in the language of the model checker itself. One
benefit of this is that we can exploit the model checker’s
built-in support for non-determinism to generalize
(weaken) our assumptions about the verification context.
A potential drawback is that the builder of the verification
test harness has to learn a new language to fully utilize
this potential.

The verification test harness has to be built just once
for each application. If built correctly it will be largely
immune to changes in the source code of the application,
as it evolves through its design cycle, and through normal
system maintenance.

A small example can illustrate what the main
components of a verification test harness are. We will
consider the following implementation in C of a simple
send-response handshake between two processes. The
code might look as follows:

extern const int p0;
enum msg_type { Msg, Ack, TimeOut };

void handshake(void)
{ int resp;

send(p0, Msg);
set_timer(16000); /* msec */

resp = wait_recv();
switch (resp) {
case Ack:

reset_timer();
. . .
break;

case TimeOut:
. . .
break;

default:
reset_timer();
error(“bad input”);
break;

}
}

The executing process first sends a message Msg to a
peer, which is identified here by p0. The process then sets
a timer to, say, twice the average round-trip transmission
delay, and waits for a response. A timer process, assumed
to have been defined elsewhere, starts counting down as
soon as the set_timer function is executed. If the
response arrives in time, the timer is reset. If the count in
the timer reaches zero before the response arrives, the
timer generates a TimeOut message that is now
processed by the handshake process.

First we can observe that the control structure is indeed
finite, contributing just a handful of control states, which
for the time being we can think of as the possible values
of the program counter within this procedure.

There are various types of data used. The values of p0
and Msg are declared as constants, and the return value of
the wait_recv() function is declared as a local integer.
Another data object, declared externally to this procedure,

must be used store the value of the implied count-down
timer. Clearly, the count-down timer can contribute up to
16,001 possible states to the verification model that we
might try to extract from this program fragment (the value
0 also counts). The variable that records the return value
of wait_recv could contribute even more (we can only
tell how many by inspecting that procedure).

The verification context for this piece of code clearly
includes assumptions about the behavior of the peer
process, the timer process, and the here unspecified
implementation of the wait_recv() function. Some of this
information may be available to use, but even if it is it can
be wise not to rely on it too strictly. After all, this
information can be subject to change, and it would be
better if the correctness of this piece of code did not
depend in too great detail on the particulars of other
system components.

In the definition of the verification test harness we
formalize conservative assumptions about the behavior of
the unspecified components in the form of abstract “test-
drivers.”

First, let us consider how we can formalize some
explicit assumptions about the behavior of the timer
process, in Promela [5]. We will assume here that the Set
and Reset messages can originate from only one source:
the handshake process. After the Set message is
received, the timer should enter its count-down cycle,
from which it can only exit when either a Reset message
is received or when the counter reaches zero. When the
counter reaches zero, a TimeOut message is sent. We
will also need to declare a channel structure for the
communication between the handshake process and the
timer within our test system. The following test driver
model records these decisions.

chan timer = [0] of { mtype, chan, int };

mtype = { Msg, Ack, Other,
Set, Reset, TimeOut };

active proctype timer_p()
{ chan who;

int cnt;

do
:: timer?Set(who,cnt) ->

do
:: timer?Reset(who,cnt) ->

break
:: empty(timer) ->

if
:: cnt > 0 -> cnt—
:: else ->

who!TimeOut;
break

fi
od od

}

Next, we add some conservative assumptions about the
possible behavior of the peer process that is to generate

responses to the handshake process. As far as we can tell
from the code of the handshake procedure, the peer
process either responds to an incoming Msg with an Ack
message, or with a random value within the range of the
integers. We also need to introduce as part of the
infrastructure for the test system two channels for the
communication between the handshake process and the
peer process. The channel to the peer process will send
only symbolic message types; the reverse channel should
be able to transmit arbitrary integers. We can record all
these assumptions as follows in a test driver:

chan p0 = [0] of { mtype };
chan q0 = [0] of { int };

active proctype peer()
{ int n;

do
:: p0?Msg ->

if
:: q0!Ack
:: n = 0;

do
:: n++
:: break
od;
q0!n

fi
od

}

The integer variable n is used here to generate a
random value. The increment of this variable will wrap
around its maximum eventually, and cycle through its
range. The break from the increment loop can happen
non-deterministically at any point in the range, giving the
desired generality.

Before we move our attention to the construction of a
model for the handshake procedure itself (the focus of the
effort), let us consider the test driver code in a little more
detail, to see if we can use abstraction techniques to
simplify them without loss of generality.

First we can note in the C code for the handshake
procedure that, even though the function wait_recv
may return arbitrarily integer value, only three types of
values can affect its execution. This means that we can
define an abstraction on data object n in the model of the
peer process from an integer to a constant. Any value
other than the values represented by Ack and TimeOut
will do. We introduce a symbolic constant Other for this
purpose. This reduces our assumptions for the behavior of
the peer process to the simpler:

chan p0 = [0] of { mtype };
chan q0 = [0] of { mtype };

active proctype peer()
{

do
:: p0?Msg ->

if

:: q0!Ack
:: q0!Other
fi

od
}

Next let us reconsider the assumptions we made about
the timer process. Even though the counter variable used
there can have 16,001 possible values, in many cases only
two sets of values will need to be taken into consideration:
zero and nonzero. If we include this assumption, our test
driver for the timer process can be reduced as follows.
The counter variable is changed from an integer into a
Boolean. Once the counter is set the timer may expire and
transmit the TimeOut message, but it need not do so.
When expired the timer cannot send any messages.

active proctype timer_p()
{ chan who;

bool status;

do
:: timer?Set(who,_) ->

status = true
:: timer?Reset(who,_) ->

status = false
:: status == true ->

if
:: who!TimeOut
:: skip /* do nothing */
fi

od
}

We can simplify this still further by first noting that
under Promela semantics the option sequence for a true
value of the status variable need not be executed at all,
and so the skip alternative is redundant. Secondly, the
true value of the status variable can be derived from a
non-zero value of the who variable. This leads to the
following simpler version for the timer test driver:

active proctype timer_p()
{ chan who = 0;

do
:: timer?Set(who,_)
:: timer?Reset(who,_)
:: who != 0 -> who!TimeOut
od

}

Is it worth the effort to go from the first version of the
test drivers to the more abstract versions? Most assuredly
so. The first version would for all practical purposes
render the entire verification effort intractable. Note, for
instance, that the 232 states of the integer variable n in the
model of the peer process would multiply the state space
size by roughly four billion. The integer count-down timer
would contributes another multiplication factor of at least
five orders of magnitude. The final version contributes
just 2 states for the peer process, and 2 states for the
timer: a very considerable reduction of complexity. And

we haven’t even looked at the handshake procedure itself
yet.

Now that we have defined a complete verification test
harness, we can direct our attention to the real focus of the
verification effort: the construction of a verification model
for the handshake procedure. The test drivers were setup
in such a way that they encapsulate only conservative
assumptions about the context in which we want to verify
the behavior of any process executing the handshake
procedure. The handshake procedure itself, however, must
be rendered more explicitly and more faithfully. It is this
procedure only that we would expect to change, during
normal system evolution. If the test harness description is
right, it will only rarely have to be adjusted. So unlike the
components used in the verification test harness, it will be
attractive if we can generate the model for the handshake
procedure mechanically from the source code.

We may have to perform the model extraction
repeatedly, over a long period of time, while the code for
this procedure continues to evolve. In this case, tracking
changes in the handshake procedure would be simple,
because of its modest size. In general, though, the target
software may be many thousands of lines of code, not
trivially understood in its functionality, and subject to
frequent change. In these cases a reliable way of
constructing the model and tracking the changes is
essential.

5. Model Extraction

The FeaVer model extractor [4] generates the
following Promela model from the C source text of the
handshake procedure, without any further user input:

hidden int TimeOut = 1;
hidden int Ack = 2;
hidden int Msg = 3;
int p0;

active proctype handshake()
{ int resp;

 c_code { send(now.p0,Msg); };
 c_code { set_timer(16000); };
 c_code { Phandshake->resp=wait_recv(); };

 do
 :: c_expr{ Ack == Phandshake->resp };
 c_code { reset_timer(); };
 break; goto C_0
 :: c_expr { TimeOut == Phandshake->resp };
C_0: break; goto C_1
 :: else ->
C_1: c_code { reset_timer(); };
 c_code { error("bad response"); };
 break; goto C_2
 od;
C_2: skip;
}

The output is generated in the syntax accepted by Spin
Version 4.0, which supports a few new types of statements
that were inspired by the FeaVer project. The two most
important of these statements are c_code and c_expr,
which also appear in the fragment shown above.

A c_code statement can encapsulate any fragment of
code written in ANSI-standard C. The code fragment is
treated as an externally defined state transformer by the
model checker. The execution of a c_code statement is
defined to be atomic and unconditional, just like a
Promela assignment, a printf, or a skip statement, but
other than a d_step (for which the executability is
conditional on the executability of its guard).

The second new primitive, c_expr, can encapsulate
an arbitrary expression written in the syntax of ANSI-
standard C. The evaluation of the expression is required to
be free of side-effects on variable values. A c_expr
statement is executable (in the sense of Promela
semantics) if and only if an evaluation of the expression
returns a non-zero value, otherwise the statement blocks.

If the syntax looks forbidding, it is probably good to
keep in mind that the c_code and c_expr statements
are not intended to be written by humans, only by model
extraction tools such as FeaVer.

A few things are worth noting about the FeaVer
generated model. First, the model does indeed reproduce
the control structure of the original faithfully, in Promela
syntax. It further encapsulates all basic statements and
expressions in, respectively, c_code and c_expr
statements, depending on context. To accomplish this, the
FeaVer tool makes use of a specially instrumented
compiler front-end to parse the C code and to determine
its structure.

A second observation is that no abstractions are
defined or applied by default here. All abstractions will
have to come from user-supplied conversion and
abstraction rules that we will consider shortly. Thirdly,
and finally, the model is defined at the level of a single
procedure, it does not automatically descend into the
procedure call hierarchy. Any function or procedure calls
that appear inside our target procedure are by default
preserved in a c_code or c_expr wrapper. This gives
us the freedom to define special-purpose implementations
of these procedures for testing purposes, or to preserve the
calls as they are written. It also allows us, to support
bounded recursion within the verification models, in
native C code, provided that the procedure call stack
contains no hidden state information that the model
checker would have to be aware of.

All data references that appear inside c_code and
c_expr fragments are of course also stated in C, rather
than in Promela. The reference to the local variable resp
in the FeaVer generated model, for instance, is generated

with a structure prefix that locates the variable in the state
vector. The model extractor automatically modifies data
references for all local and global data objects
encountered in this way.

To fit the generated model into the verification test
harness we should now define some explicit conversion
rules. We will record these rules in a simple table, with
source code fragments to be matched and target
conversions. A conversion table can record not just
syntactic conversions but also a broad range of general
abstraction rules. An abstraction generator could, for
instance, be used to generate carefully justified entries for
such a table.

Here we will restrict our attention to the minimal
syntactic conversions that are be needed to obtain a
verifiable system description.

The conversion rules used by the model extractor
always apply only to the basic statements and expressions
that appear in the C source code, not to control flow
constructs. There are just a few such basic statements and
expressions in the C source from our example: we can
count three separate function calls, one assignment
statement, and two stand-alone expressions that are
implicitly used in the switch statement. They are:

set_timer(16000)
reset_timer()
send(p0,Msg)
resp = wait_recv()
error("bad response")
Ack == Phandshake->resp
TimeOut == Phandshake->resp

We can now define optional conversion rules for any
subset of these statements, overriding the built-in defaults.
The precise interpretation of the interactions with the
timer and the peer processes, for instance, are modeling
choices that would be difficult to derive purely
mechanically. We record these choices it as follows, with
four conversion rules:

set_timer(16000) timer!Set(q0,16000)
reset_timer() timer!Reset(q0,0)
send(p0,Msg) p0!Msg
resp=wait_recv() q0?resp

We have specified these rules in a tabular format. The
table has two columns, the left-hand side giving a source
text statement and the right hand side the replacement text
that we would like to use instead of the default mappings.

A similar choice can be made to interpret the call on
the error routine in the original source as an execution
error that we would like to catch. We can do so by
defining the following conversion rule.

error(. . . assert(false)

We have used a more general pattern here to specify
the source code statement to be matched. The usage of the
three dots implies that the rule matches all source
statements that begin with the prefix “error(“.

The two conditional expressions, testing the value of
the variable resp need no special treatment, so the above
rules form a complete description, and a firm record, of
our modeling choices. With these rules in place, the
FeaVer model extractor generates the following model:

active proctype handshake()
{ int resp;

p0!Msg;
timer!Set(q0,16000);
q0?resp;

do
:: c_expr {Ack == Phandshake->resp};

timer!Reset(q0,0);
break; goto C_0

:: c_expr {TimeOut == Phandshake->resp};
C_0: break; goto C_1

:: else ->
C_1: timer!Reset(q0,0);

assert(false);
break; goto C_2

od;
C_2: skip;
}

The complete test harness definition for this example
includes the test drivers, the channel declarations, and the
five conversion rules. For large applications the test
harness description is typically an order of magnitude or
more smaller than the source text to which it is applied.
Most important is, however, that it forms a complete and
precise record of the test that is performed and the explicit
assumptions that were made in setting it up.

The test harness provides a convenient point of control
in the model checking process, providing a concise
declaration and documentation of modeling and
abstraction related choices. Once a test harness has been
defined, it can be kept up to date with relatively little
effort. Rather than, for instance, track differences between
successive versions of the source text directly, FeaVer can
track differences between completely populated
conversion tables for each version (i.e., the user defined
conversion tables to which the tool adds the implicit
default conversion rules for each specific version of the
source).

If code is merely is moved around within the source
code, or if only the control flow changes,, there will be no
differences in the conversion tables, and no action is
required to repeat a verification. If code is added, it will
show up in the difference as new default entries that may
require new conversion rules. If code changes, some
entries will disappear and others will appear. We have

developed a graphical user-interface for the model
extractor that presents this difference information in an
easily understandable format, so that a user can decide
quickly what changes, if any, are needed before a system
test is repeated.

6. Defining Logic Properties

The main purpose of constructing the framework for
automated model extraction, based on highly condensed
information specified in a verification test harness, is to
simplify the model checking process for large software
applications. The ultimate goal is to make it possible for
any programmer to make effective use of model checking
tools, without requiring detailed expertise in verification
techniques or the use of logic. This immediately leads to
the question how correctness requirements should be
specified. So far, all logic model checkers work with
specifications that are expressed in some flavor of logic: a
temporal logic, such as LTL (Linear Temporal Logic) or
CTL (Computations Tree Logic), or the mu-calculus, etc.
These formalisms can sometimes be counter-intuitive,
even for experienced users.

If we want the programming community at large to
adopt model checking tools, it is important that there is a
natural and intuitive way to specify correctness properties.
To solve this problem, we can begin by looking at the way
in which a limited form of program correctness properties
are specified today, in the absence of model checking
tools. Perhaps the best example is the use of the
assert(expr) statement in C, which also appears in
many other languages. Among programmers it is standard
good programming practice to use assertions liberally in
program source text [6,7,8]. Many programmers already
follow this practice carefully in the development of their
code, without prompting from program verifiers.

It is not too hard to instrument a model extractor to
recognize these special statements, and to make sure that
they are preserved in the generated models. The FeaVer
tool goes a step further by also inserting additional
assertions into a generated model, for instance to check
that array indices are always within their declared bounds,
and to check that pointers are always non-zero when
referenced. But we can learn much more from the use of
basic inline assertions.

FeaVer supports a small additional set of inline
assertions that allows for slightly more sophisticated
properties to be checked within a program source text.
Two examples of such assertions are the assert_p
precedence assertion and the assert_r response
assertion. They are defined as follows:

assert_p(expr)

expresses the requirement that within a finite number of
steps after the execution of this statement, the expression
that is given as an argument must evaluate to true.

assert_r(expr1, expr)

expresses the same requirement, but additionally requires
that expr1 is currently true and remains true at least until
expr becomes true.

These examples express simple temporal properties in
a form that is readily understandable to any user, without
prior exposure to model checking or temporal logics. Note
that the first property is equivalent to the LTL formula:

[] (WhenAtL1 -> <> expr)

where the condition WhenAtL1 is true whenever the
executing process reaches the program location where the
assert_p statement appears. Similarly, the second property
would equate to the LTL formula:

[] (WhenAtL2 -> (expr1 U expr))

where the condition WhenAtL2 is true whenever the
executing process reaches the program location where the
assert_r statement appears.

These two simple types of assertions can to some
extent also be checked with automatically generated
monitors that can be included in a conventional system
execution, so their use is not purely limited to model
checking applications. To make this possible for the
assert_p primitive, for instance, the user may specify
an upper-bound on the maximum duration of the interval
within which the expression is required to become true. If
the bound is exceeded without the target expression
evaluating to true, a runtime error can be flagged.

8. In Conclusion

Possibly of greater importance to the success of a
model checking effort than the selection of the right tool
is the use of the right model. The model defines our main
point of control in every verification effort, and must be
chosen with care. Either too much or too little detail can
cause either us, or our model checking tool, to lose track.

In this paper we have proposed that it can be
advantageous to use automated model generation tools for
model construction, driven by sets of rules. The rules can
be defined and refined directly by a user, or by
intermediate tools (e.g., predicate abstraction tools [9],
program slicing tools, or theorem provers). In this way we
can abstract almost completely from concerns about the
representation of the control structure of an application: it
can be automated. Instead, a model extractor allows us to

focus on the definition and maintenance of conversion or
abstraction rules, which we propose is a simpler task.

We are beginning to gain some experience with this
approach to software verification. We started in 1998 with
the verification of the call processing code for a
commercial telephone switch developed at Bell Labs [4].
Based on that experience, we generalized the approach
from the use of a specialized format that had been adopted
by the programmers of the call processing software for
that switch, to unrestricted ANSI C-code. We named the
resulting tool FeaVer in reference to its capabilities for
software feature verification. This tool has been applied to
a range of commercial software products, ranging in size
from a few hundred to 160,000 lines of C source text. In
all cases concurrency related errors were found in the
source code that had escaped routine conventional system
testing. The larger applications are of a size and a
complexity that preclude the application of model
checking based on manual model construction techniques.

The ideal, first advanced in the late sixties, of a
formally justified, provably sound and complete
methodology for software verification still stands, and is
unchallenged by the methodology that is described here.
There are many parameters in the construction of a
verification test harness that remain subject to human
judgment and are therefore also subject to human error. It
would therefore be mistaken to compare this approach to a
mathematical proof technique. In truth, the bar need not
be raised quite this high for this approach to be considered
successful. Software checking techniques of the type we
have described compete more realistically with
conventional software testing techniques. For concurrency
related software defects, this methodology can
significantly outperform that competition. In our
application to the call processing software of a telephone
switch at Lucent, for instance, we documented that the

model extraction technique revealed ten times as many
serious software defects in the target code than
conventional system testing did. In a very real sense this
allows us to produce more reliable systems software than
before, which is after all one of the goals of software
verification.

9. References

[1] T. Ball, and S.K. Rajamani. “Bebop: A Symbolic Model
Checker for Boolean Programs,” Proc. SPIN 2000
Workshop on Model Checking of Software, Lecture Notes in
Computer Science, Vol. 1885, Springer Verlag,
August/September 2000, pp. 113-130.

[2] J. Corbett, M. Dwyer, John Hatcliff et al. Bandera:
Extracting Finite-state Models from Java Source Code.
Proc. Int. Conf. On Software Engineering, ICSE, 2000,
Limerick, Ireland, pp. 439-448.

[3] K. Havelund, and T. Pressburger. Model Checking Java
Programs Using Java PathFinder. Int. Journal on Software
Tools for Technology Transfer, Vol. 2, No. 4, pp. 366-381.

[4] G.J. Holzmann, and M.H. Smith, “Automating software
feature verification”, Bell Labs Technical Journal, Vol. 5,
No. 2, Murray Hill, NJ, April-June 2000, pp. 72-87.

[5] G.J. Holzmann, “The model checker Spin”, IEEE Trans. on
Software Engineering, Vol. 23, No. 5, May 1997, pp. 279-
295.

[6] S.C. McConnell, “Code Complete,” Microsoft Press, May
1993, 857 pgs.

[7] S. Maguire, “Writing Solid Code,” Microsoft Press, May
1993, 256 pgs.

[8] D.S. Rosenblum, “A practical approach to programming
with assertions,” IEEE Trans. on Software Engineering,
Vol. 21, No. 1, January 1995, pp. 19-31.

[9] W. Visser, S. Park, and J. Penix. Applying predicate
abstraction to model checking object-oriented programs.
Proc. 3rd ACM SOGSOFT Workshop on Formal Methods in
Software Practice, August 2000, pp. 3-12.

