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These days, when you see the headline “How Safe are Airplanes?” the text more likely refers to the
spread of disease than the likelihood of a crash. With steady safety improvements over at least the last
five decades, airplane crashes have become exceedingly uncommon and they are rarely caused by flaws
in the design of the airplane itself. The most common remaining causes are the usual suspects of human
error, extreme weather events, and mechanical failure.

That perception of safety for air travel may have changed with the recent crashes of two new Boeing
airplanes. The 737 MAX was introduced as a relatively small upgrade in a long line of successful airplane
designs, which in this case was primarily meant to improve fuel efficiency.! The cause, or rather the
causes of the two crashes has been sufficiently fleshed out by now, for instance in the detailed
congressional report that was released in September 2020 titled “The design, development, and
certification of the Boeing 737 MAX.”? As the title of this report indicates, the failures cannot be
attributed to a single mistake, but were found to have been caused by a sequence of shortcuts and
errors, combined with a lack of meaningful oversight by the FAA.

Software Process

The lack of rigor in the vetting of new or revised designs has led to a series of problems, including in the
development of the CST-100 Starliner system, Boeing’s design for a reusable crewed spacecraft. A
serious test failure of the Starliner craft in December 2019% was found to have been caused by multiple
software bugs in a review by a NASA panel. The panel concluded, among many other findings, that NASA
should “go beyond merely correcting the cause of the anomalies,” but “scrutinize Boeing’s entire
software testing processes.”

In a review like this, it is always tempting to try to come up with a single remedy that should fix all
problems. The NASA study team that is investigating the problems may be leaning in that direction as
well, with a recommendation that all software from NASA contractors would need to comply with a new
restriction on the cyclomatic complexity of functions [1]. The cyclomatic complexity metric that was
popular for a while in the eighties, measures the number of independent paths through the control flow
graph of a function. Would it not be great if one could indeed demonstrate the existence of a correlation
between cyclomatic complexity and post-release fault density of functions? Quite a few researchers
have tried to look for such an effect, but alas most have found that there is no such correlation. So, is
there no hope?

! https://www.defenseone.com/ideas/2019/11/whats-wrong-boeing/161245/ [GH: optional — footnote
could be deleted]

2 https://transportation.house.gov/committee-activity/boeing-737-max-investigation [GH -- optional -- footnote
could be deleted]
3 https://www.reuters.com/article/us-space-exploration-boeing/boeings-botched-starliner-test-flirted-

with-catastrophic-failure-nasa-panel-idUSKBN20106A [GH: optional — footnote could be deleted]
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Building Reliable Systems

In most disciplines, system reliability is achieved through the judicious use of redundancy. Virtually all
spacecraft, for instance, have multiple ways of communicating with earth, using independent
transmitters and receivers. Some spacecraft, such as the Cassini spacecraft that orbited Saturn, are
designed with two separate main engines and two sets of thrusters, to avoid single points of failure that
could end a mission prematurely.

To make data transmissions over noisy transmission channels more reliable, we can add redundant
information in the form of error-correcting codes, so that small bursts of errors are recoverable. The big
guestion is of course how we could do something similar in software design. The answer is not to merely
duplicate a code base and then run it on two computers. This may protect against hardware faults, but it
cannot do the same for the software. If there is a bug in the code, the same bug will obviously affect
both executions which then provides no protection at all. This is also the scenario that led to the failure
of the maiden flight of the Ariane-5 launch system in June 1996 [2]. The same software was running on
both the main CPU and on the backup CPU, which meant that a single floating-point exception error
could crash both, and cause a costly loss of the vehicle.

Another method for using redundancy in the design of software systems, called N-version programming,
was popular for a while, but also failed to deliver the promised increase in reliability. The thought was to
have multiple independent teams write software in parallel, and compare the results of the executions
of all systems to detect inconsistencies caused by bugs. As Knight and Levison [3] pointed out in the late
eighties, all teams working on the design still work from a common set of requirements and are likely to
make similar types of mistakes. Splitting a team into N sub-teams can also lead to an increase in cost, a
loss of productivity, and create tension between them. How does one, for instance, avoid cross-
contamination of key findings during development, for instance if one team discovers significant
omissions in the design requirements all teams work from?

Self-Checking Code

Although all of this sounds discouraging, there is in fact an effective method for using redundancy to
improve system reliability, although we often do not think of it in quite that way. That method is to
increase the use of assertions throughout a code base. As many software developers will tell you, these
assertions are redundant and can safely be removed after testing. Do they help to improve reliability?
The sobering news, at least for those developers, is that it can be shown that the number of assertions
that are retained in the code after testing correlates strongly with post-release fault-density. More
assertions mean fewer faults. It is as simple as that. This was first shown in a study done by Microsoft
researchers, who studied post-release faults in the Office suite of tools and compared it with the
assertion density of the failing code [4].

For the mission code that is developed at NASA/JPL we require that the average assertion density for
each module is 2% or more. This means that 2% of the code performs self-checks at key steps in the
computations performed, to make sure that integrity is maintained, even in anomalous execution
scenarios. The use of assertions thus provides a form of software redundancy that can indeed make a
system more reliable.



What About Testing

| have not mentioned testing in the discussion of reliability so far. Some say that since the cyclomatic
complexity metric measures the number of paths in the control-flow graph of a function, this gives the
number of tests that is required to test all those paths. Fewer required tests should then make it
possible to test code more rigorously. This ignores, though, that most of the complexity in a program
execution does not originate in the structure of the control-flow graph, but in the data that is processed.
A single path in the control-flow graph can be executed in an astronomical number of different ways,
which means that a single test of each path in the control-flow graph has little chance of revealing all the
bugs that may hide on that path.

A function with a lower cyclomatic complexity does not necessarily require fewer tests to vet
thoroughly. All code is written to satisfy some set of requirements and provide a desired functionality.
We can spread that functionality across multiple modules and functions to create a large assembly of
interconnected and mutually dependent small functions, but that will rarely be the right way to
structure the code, and neither will it be able to simplify testing.

Requirements Testing

To put it most succinctly: tests should not be derived from the structure of a control-flow graph but
from the requirements that prompted the creation of the code. To check if a requirement is met, the
tester, or developer, should define a suite of tests that can evaluate the adequacy of the code to handle
a range of cases, including expected cases, boundary cases, and even cases that outright violate the
design assumptions. If after running that suite of tests for all requirements it turns out that parts of the
code base were not reached, this indicates a flaw in either the requirements or in the code. The most
common case is that the requirements are found to be incomplete and fail to cover things that the code
must be able to handle. It can, however, also be that the code itself is redundant and parts of it serve no
legitimate purpose to satisfy the requirements.

Code coverage metrics serve to check the adequacy of a test suite for a specific set of requirements.
Adding test cases to an existing test suite that serve only to improve the coverage metric, without
actually testing anything, is common practice, but yes, it cannot improve a system’s reliability.
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