
Code Vault
Gerard J. Holzmann

I didn’t write my first program until about five years after that famous first NATO conference on

Software Engineering in 1968, and it took me a couple of years after that to realize that there was

something very special about this field. What is special about it is the apparent inevitability of bugs, and

the unreasonable difficulty of intercepting them. The same feeling that this is not how things ought to

be in a proper engineering discipline has inspired many others. For instance, Maurice Wilkes expressed

it as follows in his memoirs [1]:

“By June 1949 people had begun to realize that it was not so easy to get programs right as at

one time appeared. I well remember when this realization first came on me with full force. […] It

was on one of my journeys between the EDSAC room and the punching equipment that […] the

realization came over me with full force that a good part of the remainder of my life was going

to be spent in finding errors in my own programs.”

The effectiveness with which I could hide subtle bugs in my programs was not hampered by the fact that

I had oceans of time to reflect on the quality of my code in between runs, forced by the inefficiency of

the then standard batch processing of jobs on large mainframes. After each failed run I was tempted to

conclude that this time surely the machine was at fault. But it never was.

So what changed since then? Depending on your point of view everything has changed, or nothing

much has changed at all. The part that didn’t change much is that we still struggle with writing code

that is robust enough to trust. The part that did change dramatically is the performance of the hardware

that runs our code.

The Trash-80
I bought my first PC, a TRS80 Model II, sometimes lovingly referred to as the Trash-80, in 1981. I paid

about $3,800 for it at the time, which is the equivalent of about $12,000 today. The Trash-80 ran at 4

MHz and came with just 64 KB of RAM. It had no hard disk. All data was stored on 8” floppy disks that

could hold about 500 KB each. For the same price today you can buy not one but four quad-core PCs,

running at 4 GHz and with 32 GB of RAM each, or together about 16,000 times the processing capability

and 500,000 times the amount of RAM of that old Trash-80, and with a hard-disk about a million times

larger than those old floppy disks. The difference is staggering.

Of course we’ve found great ways to use up all that extra power, to make sure you don’t notice it too

much when you use your PC today, but the power is truly there. To see this more clearly I revived an old

image processing program called Pico that I wrote in 1984 [2]. The program defines new images by

evaluating a user-defined expression once for every pixel in the new image. Pico expressions can for

instance refer to values, Cartesian or polar coordinates, trigonometric functions, and to parts of other

images. That processing can be compute-intensive, so it makes a nice test case. The original code used

an on-the-fly compiler written by Ken Thompson to turn the Pico expressions into executable code for a

VAX-750 computer. I separately also wrote an interpreter for the language that was more portable, but

that was of course much slower. Even though the VAX-750 ran at only 6 MHz, the on-the-fly compiler

made it possible to see the result of most image transformations in a few seconds, though still only for

relatively small images. It was impressive enough that in 1989 this early digital darkroom tool landed me

a spot on CNN for a few fleeting minutes of fame. (You can find the video on my homepage.)

With a few small tweaks I ported the original code to work on my current desktop and, predictably, the

interpreted version of the code is now magnificently faster than even the compiled code had been in the

1980s. The main tweak I had to make was to switch out old code for displaying images on large and

costly framebuffer hardware and replace it with a simple X11 display routine.

Table I lists the speed of transformations for which I recorded the performance in those long past days

on the VAX-750 [2], and compares them with the speed of those same transformations on my desktop

today. In the 23 seconds it took to evaluate the simplest possible expression, assigning the value middle

gray to every pixel in a 512x512 grayscale image, the same code can now process over 23,000 of those

same images. Or, it can process a 4096x4096 full color image with an alpha channel (256x more

information per image) over 40 times faster than the small grayscale image. Compared to the on-the-fly

compiler the difference is still very impressive, even for the more complex types of expressions.

For good measure, I’ve illustrated the result of the last transformation from Table I when it is applied to

the color portrait you see in the masthead for this column in Figure 1. Figure 2 gives the more intriguing

result of generating an image from scratch using Cartesian and polar coordinates, using a modulo and an

exclusive-or operator. It can be endlessly fascinating to play with these types image operations, as I

rediscovered with this newly ported version of this tool that predated Adobe Photoshop® by a good

stretch.

The possibility remains to reintroduce an on-the-fly compiler, or more to boost performance further by

using multiple cores or GPUs, both things that were not on the horizon when I first wrote this editor.

Figure 1, The result of transforming
the photo at the top of this column
with the last transformation from

Table I.

Figure 2, The result of evaluating Pico
expression (x%y)^r, where x and y are

the usual Cartesian coordinates and r is
the radius in Polar coordinates.

Table 1, Relative Performance of image processing code, 1984 vs 2018

Transformation

1984 2018

Interpreter On-the-fly
Compiler

Interpreter

512x512 bw 512x512 bw 512x512 bw 4096x4096 rgba

new=128 23.6 s 5.3 s 0.00102 s 0.58 s

new=$1 43.3 s 5.9 s 0.00113 s 0.59 s

new=Z-old 59.9 s 6.5 s 0.00177 s 0.74 s

new=($1+$2)/2 105.9 s 9.3 s 0.00468 s 1.48 s

new=(x<X/2)?$1:$2 107.7 s 7.2 s 0.00531 s 0.98 s

new=($1<128)?Z-$1:$1[X-x,y] 304.5 s 10.8 s 0.00593 s 2.04 s

A more dangerous temptation however is to start packing more and features into this still very simple

code, until it all becomes so bulky that it is unbearably slow again. If you wonder why your desktop

system still feels so sluggish today, despite a few decades worth of massive speedups, it is precisely for

that reason. Getting fast code sometimes requires us to step back and reconsider what is really the

essential part of the problem we are trying to solve, and to push the rest aside.

Foundations
So other than the impressive gains in processor speed and memory sizes, did anything else change

fundamentally in our field? A recent blog post [3] concluded that the traditional requirements for a

career in software engineering, a solid foundation in algorithms and data structures and a proper

understanding of computational complexity and logic, have slowly been replaced with a new focus on

more social skills.

The blog’s author reasons that the software engineer today is part of a much larger community of

developers that share code on popular sites like GitHub. A developer must be able to collaborate within

that larger community, which means an increasing emphasis on the ability to communicate effectively.

In the view of the author, the ability to design and write new code from scratch is now less important

than the ability to navigate existing code repositories and stitch together parts of solutions found there.

What I find curious about this view is that my experience is quite the opposite. Given that software

dominates just about every aspect of our world today, and that even the tiniest glitch can have

significant consequences, it is more important than ever that software engineers are well trained not

just in the traditional topics of algorithm design, data structures, complexity, and logic, but also in newer

issues like privacy and security. They should also have a good understanding of the new capabilities of

formal methods for software design and verification. The types of code analysis that were infeasible on

the machines from a few decades ago can now be performed efficiently and accurately. Rolling the dice

on safety critical code is no longer an option for any professional software engineer.

There is indeed a large amount of open source code available today, but like everything else, not all of it

is equally well written. This means that it is that much more important today to be able to evaluate the

quality and security of code that you did not develop yourself, to check the choice of algorithms, and

evaluate the code for any unnecessary execution bottlenecks.

Communication
Social skills are useful in any discipline, although the members of our community are generally not

considered to be among the standard bearers here. I actually believe that the ability to interact and

communicate effectively was considerably more important in those dark days before there was an

internet to browse for answers to whatever type of problem you run into. In those early days you had to

be able to find the actual person who likely knew the answers you needed, and talk to that guru face to

face. The community of software developers is now large enough that there is always someone else

who had exactly the same problem as you do now, and who put the answer on a website. We can now

safely stay in our caves and type away, without needing to interact face to face with any other human

beings, unless we want to of course. The good thing is that when we want to now, we can talk about

other things than just code. Now that’s progress!

References
[1] Memoirs of a Computer Pioneer, Maurice Wilkes, MIT Press, 1985, p. 145.

[2] Pico - a picture editor, G.J. Holzmann, AT&T Technical Journal, Vol. 66, No. 2, pp. 2-13, Apr. 1987. See

also: http://spinroot.com/pico/

[3] The Era of Hackers is Over, Yegor Bugayenko, blog post April 23, 2018,

https://cacm.acm.org/blogs/blog-cacm/227154-the-era-of-hackers-is-over/fulltext

