tiecorrect#
- scipy.stats.tiecorrect(rankvals)[source]#
Tie correction factor for Mann-Whitney U and Kruskal-Wallis H tests.
- Parameters:
- rankvalsarray_like
A 1-D sequence of ranks. Typically this will be the array returned by
rankdata
.
- Returns:
- factorfloat
Correction factor for U or H.
See also
rankdata
Assign ranks to the data
mannwhitneyu
Mann-Whitney rank test
kruskal
Kruskal-Wallis H test
Notes
Array API Standard Support
tiecorrect
has experimental support for Python Array API Standard compatible backends in addition to NumPy. Please consider testing these features by setting an environment variableSCIPY_ARRAY_API=1
and providing CuPy, PyTorch, JAX, or Dask arrays as array arguments. The following combinations of backend and device (or other capability) are supported.Library
CPU
GPU
NumPy
✅
n/a
CuPy
n/a
⛔
PyTorch
⛔
⛔
JAX
⛔
⛔
Dask
⛔
n/a
See Support for the array API standard for more information.
References
[1]Siegel, S. (1956) Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill.
Examples
>>> from scipy.stats import tiecorrect, rankdata >>> tiecorrect([1, 2.5, 2.5, 4]) 0.9 >>> ranks = rankdata([1, 3, 2, 4, 5, 7, 2, 8, 4]) >>> ranks array([ 1. , 4. , 2.5, 5.5, 7. , 8. , 2.5, 9. , 5.5]) >>> tiecorrect(ranks) 0.9833333333333333