scipy.stats.

tiecorrect#

scipy.stats.tiecorrect(rankvals)[source]#

Tie correction factor for Mann-Whitney U and Kruskal-Wallis H tests.

Parameters:
rankvalsarray_like

A 1-D sequence of ranks. Typically this will be the array returned by rankdata.

Returns:
factorfloat

Correction factor for U or H.

See also

rankdata

Assign ranks to the data

mannwhitneyu

Mann-Whitney rank test

kruskal

Kruskal-Wallis H test

Notes

Array API Standard Support

tiecorrect has experimental support for Python Array API Standard compatible backends in addition to NumPy. Please consider testing these features by setting an environment variable SCIPY_ARRAY_API=1 and providing CuPy, PyTorch, JAX, or Dask arrays as array arguments. The following combinations of backend and device (or other capability) are supported.

Library

CPU

GPU

NumPy

n/a

CuPy

n/a

PyTorch

JAX

Dask

n/a

See Support for the array API standard for more information.

References

[1]

Siegel, S. (1956) Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill.

Examples

>>> from scipy.stats import tiecorrect, rankdata
>>> tiecorrect([1, 2.5, 2.5, 4])
0.9
>>> ranks = rankdata([1, 3, 2, 4, 5, 7, 2, 8, 4])
>>> ranks
array([ 1. ,  4. ,  2.5,  5.5,  7. ,  8. ,  2.5,  9. ,  5.5])
>>> tiecorrect(ranks)
0.9833333333333333