sigmaclip#
- scipy.stats.sigmaclip(a, low=4.0, high=4.0)[source]#
Perform iterative sigma-clipping of array elements.
Starting from the full sample, all elements outside the critical range are removed, i.e. all elements of the input array c that satisfy either of the following conditions:
c < mean(c) - std(c)*low c > mean(c) + std(c)*high
The iteration continues with the updated sample until no elements are outside the (updated) range.
- Parameters:
- aarray_like
Data array, will be raveled if not 1-D.
- lowfloat, optional
Lower bound factor of sigma clipping. Default is 4.
- highfloat, optional
Upper bound factor of sigma clipping. Default is 4.
- Returns:
- clippedndarray
Input array with clipped elements removed.
- lowerfloat
Lower threshold value use for clipping.
- upperfloat
Upper threshold value use for clipping.
Notes
Array API Standard Support
sigmaclip
has experimental support for Python Array API Standard compatible backends in addition to NumPy. Please consider testing these features by setting an environment variableSCIPY_ARRAY_API=1
and providing CuPy, PyTorch, JAX, or Dask arrays as array arguments. The following combinations of backend and device (or other capability) are supported.Library
CPU
GPU
NumPy
✅
n/a
CuPy
n/a
⛔
PyTorch
⛔
⛔
JAX
⛔
⛔
Dask
⛔
n/a
See Support for the array API standard for more information.
Examples
>>> import numpy as np >>> from scipy.stats import sigmaclip >>> a = np.concatenate((np.linspace(9.5, 10.5, 31), ... np.linspace(0, 20, 5))) >>> fact = 1.5 >>> c, low, upp = sigmaclip(a, fact, fact) >>> c array([ 9.96666667, 10. , 10.03333333, 10. ]) >>> c.var(), c.std() (0.00055555555555555165, 0.023570226039551501) >>> low, c.mean() - fact*c.std(), c.min() (9.9646446609406727, 9.9646446609406727, 9.9666666666666668) >>> upp, c.mean() + fact*c.std(), c.max() (10.035355339059327, 10.035355339059327, 10.033333333333333)
>>> a = np.concatenate((np.linspace(9.5, 10.5, 11), ... np.linspace(-100, -50, 3))) >>> c, low, upp = sigmaclip(a, 1.8, 1.8) >>> (c == np.linspace(9.5, 10.5, 11)).all() True