scipy.special.zetac#
- scipy.special.zetac(x, out=None) = <ufunc 'zetac'>#
Riemann zeta function minus 1.
This function is defined as
\[\zeta(x) = \sum_{k=2}^{\infty} 1 / k^x\]where
x > 1
. Forx < 1
the analytic continuation is computed. For more information on the Riemann zeta function, see [dlmf].- Parameters:
- xarray_like of float
Values at which to compute zeta(x) - 1 (must be real).
- outndarray, optional
Optional output array for the function results
- Returns:
- scalar or ndarray
Values of zeta(x) - 1.
See also
Notes
Array API Standard Support
zetac
has experimental support for Python Array API Standard compatible backends in addition to NumPy. Please consider testing these features by setting an environment variableSCIPY_ARRAY_API=1
and providing CuPy, PyTorch, JAX, or Dask arrays as array arguments. The following combinations of backend and device (or other capability) are supported.Library
CPU
GPU
NumPy
✅
n/a
CuPy
n/a
✅
PyTorch
✅
⛔
JAX
⚠️ no JIT
⛔
Dask
✅
n/a
See Support for the array API standard for more information.
References
[dlmf]NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/25
Examples
>>> import numpy as np >>> from scipy.special import zetac, zeta
Some special values:
>>> zetac(2), np.pi**2/6 - 1 (0.64493406684822641, 0.6449340668482264)
>>> zetac(-1), -1.0/12 - 1 (-1.0833333333333333, -1.0833333333333333)
Compare
zetac(x)
tozeta(x) - 1
for large x:>>> zetac(60), zeta(60) - 1 (8.673617380119933e-19, 0.0)