scipy.special.nbdtri#
- scipy.special.nbdtri(k, n, y, out=None) = <ufunc 'nbdtri'>#
Returns the inverse with respect to the parameter p of
y = nbdtr(k, n, p)
, the negative binomial cumulative distribution function.- Parameters:
- karray_like
The maximum number of allowed failures (nonnegative int).
- narray_like
The target number of successes (positive int).
- yarray_like
The probability of k or fewer failures before n successes (float).
- outndarray, optional
Optional output array for the function results
- Returns:
- pscalar or ndarray
Probability of success in a single event (float) such that nbdtr(k, n, p) = y.
See also
nbdtr
Cumulative distribution function of the negative binomial.
nbdtrc
Negative binomial survival function.
scipy.stats.nbinom
negative binomial distribution.
nbdtrik
Inverse with respect to k of nbdtr(k, n, p).
nbdtrin
Inverse with respect to n of nbdtr(k, n, p).
scipy.stats.nbinom
Negative binomial distribution
Notes
Wrapper for the Cephes [1] routine
nbdtri
.The negative binomial distribution is also available as
scipy.stats.nbinom
. Usingnbdtri
directly can improve performance compared to theppf
method ofscipy.stats.nbinom
.nbdtri
has experimental support for Python Array API Standard compatible backends in addition to NumPy. Please consider testing these features by setting an environment variableSCIPY_ARRAY_API=1
and providing CuPy, PyTorch, JAX, or Dask arrays as array arguments. The following combinations of backend and device (or other capability) are supported.Library
CPU
GPU
NumPy
✅
n/a
CuPy
n/a
✅
PyTorch
✅
⛔
JAX
⚠️ no JIT
⛔
Dask
✅
n/a
See Support for the array API standard for more information.
References
[1]Cephes Mathematical Functions Library, http://www.netlib.org/cephes/
Examples
nbdtri
is the inverse ofnbdtr
with respect to p. Up to floating point errors the following holds:nbdtri(k, n, nbdtr(k, n, p))=p
.>>> import numpy as np >>> from scipy.special import nbdtri, nbdtr >>> k, n, y = 5, 10, 0.2 >>> cdf_val = nbdtr(k, n, y) >>> nbdtri(k, n, cdf_val) 0.20000000000000004
Compute the function for
k=10
andn=5
at several points by providing a NumPy array or list for y.>>> y = np.array([0.1, 0.4, 0.8]) >>> nbdtri(3, 5, y) array([0.34462319, 0.51653095, 0.69677416])
Plot the function for three different parameter sets.
>>> import matplotlib.pyplot as plt >>> n_parameters = [5, 20, 30, 30] >>> k_parameters = [20, 20, 60, 80] >>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot'] >>> parameters_list = list(zip(n_parameters, k_parameters, linestyles)) >>> cdf_vals = np.linspace(0, 1, 1000) >>> fig, ax = plt.subplots(figsize=(8, 8)) >>> for parameter_set in parameters_list: ... n, k, style = parameter_set ... nbdtri_vals = nbdtri(k, n, cdf_vals) ... ax.plot(cdf_vals, nbdtri_vals, label=rf"$k={k},\ n={n}$", ... ls=style) >>> ax.legend() >>> ax.set_ylabel("$p$") >>> ax.set_xlabel("$CDF$") >>> title = "nbdtri: inverse of negative binomial CDF with respect to $p$" >>> ax.set_title(title) >>> plt.show()
nbdtri
can evaluate different parameter sets by providing arrays with shapes compatible for broadcasting for k, n and p. Here we compute the function for three different k at four locations p, resulting in a 3x4 array.>>> k = np.array([[5], [10], [15]]) >>> y = np.array([0.3, 0.5, 0.7, 0.9]) >>> k.shape, y.shape ((3, 1), (4,))
>>> nbdtri(k, 5, y) array([[0.37258157, 0.45169416, 0.53249956, 0.64578407], [0.24588501, 0.30451981, 0.36778453, 0.46397088], [0.18362101, 0.22966758, 0.28054743, 0.36066188]])