scipy.special.k1e#
- scipy.special.k1e(x, out=None) = <ufunc 'k1e'>#
Exponentially scaled modified Bessel function K of order 1
Defined as:
k1e(x) = exp(x) * k1(x)
- Parameters:
- xarray_like
Argument (float)
- outndarray, optional
Optional output array for the function values
- Returns:
- Kscalar or ndarray
Value of the exponentially scaled modified Bessel function K of order 1 at x.
See also
Notes
The range is partitioned into the two intervals [0, 2] and (2, infinity). Chebyshev polynomial expansions are employed in each interval.
This function is a wrapper for the Cephes [1] routine
k1e
.Array API Standard Support
k1e
has experimental support for Python Array API Standard compatible backends in addition to NumPy. Please consider testing these features by setting an environment variableSCIPY_ARRAY_API=1
and providing CuPy, PyTorch, JAX, or Dask arrays as array arguments. The following combinations of backend and device (or other capability) are supported.Library
CPU
GPU
NumPy
✅
n/a
CuPy
n/a
✅
PyTorch
✅
✅
JAX
⚠️ no JIT
⛔
Dask
✅
n/a
See Support for the array API standard for more information.
References
[1]Cephes Mathematical Functions Library, http://www.netlib.org/cephes/
Examples
In the following example
k1
returns 0 whereask1e
still returns a useful floating point number.>>> from scipy.special import k1, k1e >>> k1(1000.), k1e(1000.) (0., 0.03964813081296021)
Calculate the function at several points by providing a NumPy array or list for x:
>>> import numpy as np >>> k1e(np.array([0.5, 2., 3.])) array([2.73100971, 1.03347685, 0.80656348])
Plot the function from 0 to 10.
>>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(0., 10., 1000) >>> y = k1e(x) >>> ax.plot(x, y) >>> plt.show()