scipy.special.gdtr#
- scipy.special.gdtr(a, b, x, out=None) = <ufunc 'gdtr'>#
Gamma distribution cumulative distribution function.
Returns the integral from zero to x of the gamma probability density function,
\[F = \int_0^x \frac{a^b}{\Gamma(b)} t^{b-1} e^{-at}\,dt,\]where \(\Gamma\) is the gamma function.
- Parameters:
- aarray_like
The rate parameter of the gamma distribution, sometimes denoted \(\beta\) (float). It is also the reciprocal of the scale parameter \(\theta\).
- barray_like
The shape parameter of the gamma distribution, sometimes denoted \(\alpha\) (float).
- xarray_like
The quantile (upper limit of integration; float).
- outndarray, optional
Optional output array for the function values
- Returns:
- Fscalar or ndarray
The CDF of the gamma distribution with parameters a and b evaluated at x.
See also
gdtrc
1 - CDF of the gamma distribution.
scipy.stats.gamma
Gamma distribution
Notes
The evaluation is carried out using the relation to the incomplete gamma integral (regularized gamma function).
Wrapper for the Cephes [1] routine
gdtr
. Callinggdtr
directly can improve performance compared to thecdf
method ofscipy.stats.gamma
(see last example below).Array API Standard Support
gdtr
has experimental support for Python Array API Standard compatible backends in addition to NumPy. Please consider testing these features by setting an environment variableSCIPY_ARRAY_API=1
and providing CuPy, PyTorch, JAX, or Dask arrays as array arguments. The following combinations of backend and device (or other capability) are supported.Library
CPU
GPU
NumPy
✅
n/a
CuPy
n/a
✅
PyTorch
✅
⛔
JAX
⚠️ no JIT
⛔
Dask
✅
n/a
See Support for the array API standard for more information.
References
[1]Cephes Mathematical Functions Library, http://www.netlib.org/cephes/
Examples
Compute the function for
a=1
,b=2
atx=5
.>>> import numpy as np >>> from scipy.special import gdtr >>> import matplotlib.pyplot as plt >>> gdtr(1., 2., 5.) 0.9595723180054873
Compute the function for
a=1
andb=2
at several points by providing a NumPy array for x.>>> xvalues = np.array([1., 2., 3., 4]) >>> gdtr(1., 1., xvalues) array([0.63212056, 0.86466472, 0.95021293, 0.98168436])
gdtr
can evaluate different parameter sets by providing arrays with broadcasting compatible shapes for a, b and x. Here we compute the function for three different a at four positions x andb=3
, resulting in a 3x4 array.>>> a = np.array([[0.5], [1.5], [2.5]]) >>> x = np.array([1., 2., 3., 4]) >>> a.shape, x.shape ((3, 1), (4,))
>>> gdtr(a, 3., x) array([[0.01438768, 0.0803014 , 0.19115317, 0.32332358], [0.19115317, 0.57680992, 0.82642193, 0.9380312 ], [0.45618688, 0.87534798, 0.97974328, 0.9972306 ]])
Plot the function for four different parameter sets.
>>> a_parameters = [0.3, 1, 2, 6] >>> b_parameters = [2, 10, 15, 20] >>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot'] >>> parameters_list = list(zip(a_parameters, b_parameters, linestyles)) >>> x = np.linspace(0, 30, 1000) >>> fig, ax = plt.subplots() >>> for parameter_set in parameters_list: ... a, b, style = parameter_set ... gdtr_vals = gdtr(a, b, x) ... ax.plot(x, gdtr_vals, label=fr"$a= {a},\, b={b}$", ls=style) >>> ax.legend() >>> ax.set_xlabel("$x$") >>> ax.set_title("Gamma distribution cumulative distribution function") >>> plt.show()
The gamma distribution is also available as
scipy.stats.gamma
. Usinggdtr
directly can be much faster than calling thecdf
method ofscipy.stats.gamma
, especially for small arrays or individual values. To get the same results one must use the following parametrization:stats.gamma(b, scale=1/a).cdf(x)=gdtr(a, b, x)
.>>> from scipy.stats import gamma >>> a = 2. >>> b = 3 >>> x = 1. >>> gdtr_result = gdtr(a, b, x) # this will often be faster than below >>> gamma_dist_result = gamma(b, scale=1/a).cdf(x) >>> gdtr_result == gamma_dist_result # test that results are equal True