scipy.special.betaln#
- scipy.special.betaln(a, b, out=None) = <ufunc 'betaln'>#
Natural logarithm of absolute value of beta function.
Computes
ln(abs(beta(a, b)))
.- Parameters:
- a, barray_like
Positive, real-valued parameters
- outndarray, optional
Optional output array for function values
- Returns:
- scalar or ndarray
Value of the betaln function
See also
Notes
betaln
has experimental support for Python Array API Standard compatible backends in addition to NumPy. Please consider testing these features by setting an environment variableSCIPY_ARRAY_API=1
and providing CuPy, PyTorch, JAX, or Dask arrays as array arguments. The following combinations of backend and device (or other capability) are supported.Library
CPU
GPU
NumPy
✅
n/a
CuPy
n/a
✅
PyTorch
✅
⛔
JAX
✅
✅
Dask
✅
n/a
See Support for the array API standard for more information.
Examples
>>> import numpy as np >>> from scipy.special import betaln, beta
Verify that, for moderate values of
a
andb
,betaln(a, b)
is the same aslog(beta(a, b))
:>>> betaln(3, 4) -4.0943445622221
>>> np.log(beta(3, 4)) -4.0943445622221
In the following
beta(a, b)
underflows to 0, so we can’t compute the logarithm of the actual value.>>> a = 400 >>> b = 900 >>> beta(a, b) 0.0
We can compute the logarithm of
beta(a, b)
by usingbetaln
:>>> betaln(a, b) -804.3069951764146