Array API Standard Support: signal#

This page explains some caveats of the signal module and provides (currently incomplete) tables about the CPU, GPU and JIT support.

Caveats#

JAX and CuPy provide alternative implementations for some signal functions. When such a function is called, a decorator decides which implementation to use by inspecting the xp parameter.

Hence, there can be, especially during CI testing, discrepancies in behavior between the default NumPy-based implementation and the JAX and CuPy backends. Skipping the incompatible backends in unit tests, as described in the Adding tests section, is the currently recommended workaround.

The functions are decorated by the code in file scipy/signal/_support_alternative_backends.py:

  1import functools
  2import types
  3from scipy._lib._array_api import (
  4    is_cupy, is_jax, scipy_namespace_for, SCIPY_ARRAY_API, xp_capabilities
  5)
  6
  7from ._signal_api import *   # noqa: F403
  8from . import _signal_api
  9from . import _delegators
 10__all__ = _signal_api.__all__
 11
 12
 13MODULE_NAME = 'signal'
 14
 15# jax.scipy.signal has only partial coverage of scipy.signal, so we keep the list
 16# of functions we can delegate to JAX
 17# https://jax.readthedocs.io/en/latest/jax.scipy.html
 18JAX_SIGNAL_FUNCS = [
 19    'fftconvolve', 'convolve', 'convolve2d', 'correlate', 'correlate2d',
 20    'csd', 'detrend', 'istft', 'welch'
 21]
 22
 23# some cupyx.scipy.signal functions are incompatible with their scipy counterparts
 24CUPY_BLACKLIST = [
 25    'abcd_normalize', 'bessel', 'besselap', 'envelope', 'get_window', 'lfilter_zi',
 26    'sosfilt_zi', 'remez',
 27]
 28
 29# freqz_sos is a sosfreqz rename, and cupy does not have the new name yet (in v13.x)
 30CUPY_RENAMES = {'freqz_sos': 'sosfreqz'}
 31
 32
 33def delegate_xp(delegator, module_name):
 34    def inner(func):
 35        @functools.wraps(func)
 36        def wrapper(*args, **kwds):
 37            try:
 38                xp = delegator(*args, **kwds)
 39            except TypeError:
 40                # object arrays
 41                if func.__name__ == "tf2ss":
 42                    import numpy as np
 43                    xp = np
 44                else:
 45                    raise
 46
 47            # try delegating to a cupyx/jax namesake
 48            if is_cupy(xp) and func.__name__ not in CUPY_BLACKLIST:
 49                func_name = CUPY_RENAMES.get(func.__name__, func.__name__)
 50
 51                # https://github.com/cupy/cupy/issues/8336
 52                import importlib
 53                cupyx_module = importlib.import_module(f"cupyx.scipy.{module_name}")
 54                cupyx_func = getattr(cupyx_module, func_name)
 55                kwds.pop('xp', None)
 56                return cupyx_func(*args, **kwds)
 57            elif is_jax(xp) and func.__name__ in JAX_SIGNAL_FUNCS:
 58                spx = scipy_namespace_for(xp)
 59                jax_module = getattr(spx, module_name)
 60                jax_func = getattr(jax_module, func.__name__)
 61                kwds.pop('xp', None)
 62                return jax_func(*args, **kwds)
 63            else:
 64                # the original function
 65                return func(*args, **kwds)
 66        return wrapper
 67    return inner
 68
 69
 70# Although most of these functions currently exist in CuPy and some in JAX,
 71# there are no alternative backend tests for any of them in the current
 72# test suite. Each will be documented as np_only until tests are added.
 73untested = {
 74    "argrelextrema",
 75    "argrelmax",
 76    "argrelmin",
 77    "band_stop_obj",
 78    "check_NOLA",
 79    "chirp",
 80    "coherence",
 81    "csd",
 82    "czt_points",
 83    "dbode",
 84    "dfreqresp",
 85    "dlsim",
 86    "dstep",
 87    "find_peaks",
 88    "find_peaks_cwt",
 89    "freqresp",
 90    "gausspulse",
 91    "lombscargle",
 92    "lsim",
 93    "max_len_seq",
 94    "peak_prominences",
 95    "peak_widths",
 96    "periodogram",
 97    "place_pols",
 98    "sawtooth",
 99    "sepfir2d",
100    "square",
101    "ss2tf",
102    "ss2zpk",
103    "step",
104    "sweep_poly",
105    "symiirorder1",
106    "symiirorder2",
107    "tf2ss",
108    "unit_impulse",
109    "welch",
110    "zoom_fft",
111    "zpk2ss",
112}
113
114
115def get_default_capabilities(func_name, delegator):
116    if delegator is None or func_name in untested:
117        return xp_capabilities(np_only=True)
118    return xp_capabilities()
119
120bilinear_extra_note = \
121    """CuPy does not accept complex inputs.
122
123    """
124
125uses_choose_conv_extra_note = \
126    """CuPy does not support inputs with ``ndim>1`` when ``method="auto"``
127    but does support higher dimensional arrays for ``method="direct"``
128    and ``method="fft"``.
129
130    """
131
132resample_poly_extra_note = \
133    """CuPy only supports ``padtype="constant"``.
134
135    """
136
137upfirdn_extra_note = \
138    """CuPy only supports ``mode="constant"`` and ``cval=0.0``.
139
140    """
141
142xord_extra_note = \
143    """The ``torch`` backend on GPU does not support the case where
144    `wp` and `ws` specify a Bandstop filter.
145
146    """
147
148convolve2d_extra_note = \
149    """The JAX backend only supports ``boundary="fill"`` and ``fillvalue=0``.
150
151    """
152
153zpk2tf_extra_note = \
154    """The CuPy and JAX backends both support only 1d input.
155
156    """
157
158capabilities_overrides = {
159    "bessel": xp_capabilities(cpu_only=True, jax_jit=False, allow_dask_compute=True),
160    "bilinear": xp_capabilities(cpu_only=True, exceptions=["cupy"],
161                                jax_jit=False, allow_dask_compute=True,
162                                reason="Uses np.polynomial.Polynomial",
163                                extra_note=bilinear_extra_note),
164    "bilinear_zpk": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
165                                    jax_jit=False, allow_dask_compute=True),
166    "butter": xp_capabilities(cpu_only=True, exceptions=["cupy"], jax_jit=False,
167                              allow_dask_compute=True),
168    "buttord": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
169                               jax_jit=False, allow_dask_compute=True,
170                               extra_note=xord_extra_note),
171    "cheb1ord": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
172                                jax_jit=False, allow_dask_compute=True,
173                                extra_note=xord_extra_note),
174    "cheb2ord": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
175                                jax_jit=False, allow_dask_compute=True,
176                                extra_note=xord_extra_note),
177    "cheby1": xp_capabilities(cpu_only=True, exceptions=["cupy"], jax_jit=False,
178                              allow_dask_compute=True),
179
180    "cheby2": xp_capabilities(cpu_only=True, exceptions=["cupy"], jax_jit=False,
181                              allow_dask_compute=True),
182    "cont2discrete": xp_capabilities(np_only=True, exceptions=["cupy"]),
183    "convolve": xp_capabilities(cpu_only=True, exceptions=["cupy", "jax.numpy"],
184                                allow_dask_compute=True,
185                                extra_note=uses_choose_conv_extra_note),
186    "convolve2d": xp_capabilities(cpu_only=True, exceptions=["cupy", "jax.numpy"],
187                                  allow_dask_compute=True,
188                                  extra_note=convolve2d_extra_note),
189    "correlate": xp_capabilities(cpu_only=True, exceptions=["cupy", "jax.numpy"],
190                                 allow_dask_compute=True,
191                                 extra_note=uses_choose_conv_extra_note),
192    "correlate2d": xp_capabilities(cpu_only=True, exceptions=["cupy", "jax.numpy"],
193                                   allow_dask_compute=True,
194                                   extra_note=convolve2d_extra_note),
195    "correlation_lags": xp_capabilities(out_of_scope=True),
196    "cspline1d": xp_capabilities(cpu_only=True, exceptions=["cupy"],
197                                 jax_jit=False, allow_dask_compute=True),
198    "cspline1d_eval": xp_capabilities(cpu_only=True, exceptions=["cupy"],
199                                      jax_jit=False, allow_dask_compute=True),
200    "cspline2d": xp_capabilities(cpu_only=True, exceptions=["cupy"],
201                                 jax_jit=False, allow_dask_compute=True),
202    "czt": xp_capabilities(np_only=True, exceptions=["cupy"]),
203    "deconvolve": xp_capabilities(cpu_only=True, exceptions=["cupy"],
204                                  allow_dask_compute=True,
205                                  skip_backends=[("jax.numpy", "item assignment")]),
206    "decimate": xp_capabilities(np_only=True, exceptions=["cupy"]),
207    "detrend": xp_capabilities(cpu_only=True, exceptions=["cupy", "jax.numpy"],
208                               allow_dask_compute=True),
209    "dimpulse": xp_capabilities(np_only=True, exceptions=["cupy"]),
210    "dlti": xp_capabilities(np_only=True,
211                            reason="works in CuPy but delegation isn't set up yet"),
212    "ellip": xp_capabilities(cpu_only=True, exceptions=["cupy"], jax_jit=False,
213                             allow_dask_compute=True,
214                             reason="scipy.special.ellipk"),
215    "ellipord": xp_capabilities(cpu_only=True, exceptions=["cupy"],
216                                jax_jit=False, allow_dask_compute=True,
217                                reason="scipy.special.ellipk"),
218    "findfreqs": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
219                                 jax_jit=False, allow_dask_compute=True),
220    "firls": xp_capabilities(cpu_only=True, allow_dask_compute=True, jax_jit=False,
221                             reason="lstsq"),
222    "firwin": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
223                              jax_jit=False, allow_dask_compute=True),
224    "firwin2": xp_capabilities(cpu_only=True, exceptions=["cupy"],
225                               jax_jit=False, allow_dask_compute=True,
226                               reason="firwin uses np.interp"),
227    "fftconvolve": xp_capabilities(cpu_only=True, exceptions=["cupy", "jax.numpy"]),
228    "freqs": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
229                             jax_jit=False, allow_dask_compute=True),
230    "freqs_zpk": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
231                                 jax_jit=False, allow_dask_compute=True),
232    "freqz": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
233                             jax_jit=False, allow_dask_compute=True),
234    "freqz_sos": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
235                                 jax_jit=False, allow_dask_compute=True),
236    "group_delay": xp_capabilities(cpu_only=True, exceptions=["cupy"],
237                                   jax_jit=False, allow_dask_compute=True),
238    "hilbert": xp_capabilities(
239        cpu_only=True, exceptions=["cupy", "torch"],
240        skip_backends=[("jax.numpy", "item assignment")],
241    ),
242    "hilbert2": xp_capabilities(
243        cpu_only=True, exceptions=["cupy", "torch"],
244        skip_backends=[("jax.numpy", "item assignment")],
245    ),
246    "invres": xp_capabilities(np_only=True, exceptions=["cupy"]),
247    "invresz": xp_capabilities(np_only=True, exceptions=["cupy"]),
248    "iircomb": xp_capabilities(xfail_backends=[("jax.numpy", "inaccurate")]),
249    "iirfilter": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
250                                 jax_jit=False, allow_dask_compute=True),
251    "kaiser_atten": xp_capabilities(
252        out_of_scope=True, reason="scalars in, scalars out"
253    ),
254    "kaiser_beta": xp_capabilities(out_of_scope=True, reason="scalars in, scalars out"),
255    "kaiserord": xp_capabilities(out_of_scope=True, reason="scalars in, scalars out"),
256    "lfilter": xp_capabilities(cpu_only=True, exceptions=["cupy"],
257                               allow_dask_compute=True, jax_jit=False),
258    "lfilter_zi": xp_capabilities(cpu_only=True, allow_dask_compute=True,
259                                  jax_jit=False),
260    "lfiltic": xp_capabilities(cpu_only=True, exceptions=["cupy"],
261                               allow_dask_compute=True),
262    "lp2bp": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
263                             allow_dask_compute=True,
264                             skip_backends=[("jax.numpy", "in-place item assignment")]),
265    "lp2bp_zpk": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
266                                 allow_dask_compute=True, jax_jit=False),
267    "lp2bs": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
268                             allow_dask_compute=True,
269                             skip_backends=[("jax.numpy", "in-place item assignment")]),
270    "lp2bs_zpk": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
271                                 allow_dask_compute=True, jax_jit=False),
272    "lp2lp": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
273                             allow_dask_compute=True, jax_jit=False),
274    "lp2lp_zpk": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
275                                 allow_dask_compute=True, jax_jit=False),
276    "lp2hp": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
277                             allow_dask_compute=True,
278                             skip_backends=[("jax.numpy", "in-place item assignment")]),
279    "lp2hp_zpk": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
280                                 allow_dask_compute=True, jax_jit=False),
281    "lti": xp_capabilities(np_only=True,
282                            reason="works in CuPy but delegation isn't set up yet"),
283    "medfilt": xp_capabilities(cpu_only=True, exceptions=["cupy"],
284                               allow_dask_compute=True, jax_jit=False,
285                               reason="uses scipy.ndimage.rank_filter"),
286    "medfilt2d": xp_capabilities(cpu_only=True, exceptions=["cupy"],
287                                 allow_dask_compute=True, jax_jit=False,
288                                 reason="c extension module"),
289    "minimum_phase": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
290                                     allow_dask_compute=True, jax_jit=False),
291    "normalize": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
292                                 jax_jit=False, allow_dask_compute=True),
293    "oaconvolve": xp_capabilities(
294        cpu_only=True, exceptions=["cupy", "torch"],
295        skip_backends=[("jax.numpy", "fails all around")],
296        xfail_backends=[("dask.array", "wrong answer")],
297    ),
298    "order_filter": xp_capabilities(cpu_only=True, exceptions=["cupy"],
299                                    allow_dask_compute=True, jax_jit=False,
300                                    reason="uses scipy.ndimage.rank_filter"),
301    "qspline1d": xp_capabilities(cpu_only=True, exceptions=["cupy"],
302                                 jax_jit=False, allow_dask_compute=True),
303    "qspline1d_eval": xp_capabilities(cpu_only=True, exceptions=["cupy"],
304                                      jax_jit=False, allow_dask_compute=True),
305    "qspline2d": xp_capabilities(np_only=True, exceptions=["cupy"]),
306    "remez": xp_capabilities(cpu_only=True, allow_dask_compute=True, jax_jit=False),
307    "resample": xp_capabilities(
308        cpu_only=True, exceptions=["cupy"],
309        skip_backends=[
310            ("dask.array", "XXX something in dask"),
311            ("jax.numpy", "XXX: immutable arrays"),
312        ]
313    ),
314    "resample_poly": xp_capabilities(
315        cpu_only=True, exceptions=["cupy"],
316        jax_jit=False, skip_backends=[("dask.array", "XXX something in dask")],
317        extra_note=resample_poly_extra_note,
318    ),
319    "residue": xp_capabilities(np_only=True, exceptions=["cupy"]),
320    "residuez": xp_capabilities(np_only=True, exceptions=["cupy"]),
321    "savgol_filter": xp_capabilities(cpu_only=True, exceptions=["cupy"],
322                                     jax_jit=False,
323                                     reason="convolve1d is cpu-only"),
324    "sepfir2d": xp_capabilities(np_only=True),
325    "sos2zpk": xp_capabilities(cpu_only=True, exceptions=["cupy"], jax_jit=False,
326                               allow_dask_compute=True),
327    "sos2tf": xp_capabilities(cpu_only=True, exceptions=["cupy"], jax_jit=False,
328                              allow_dask_compute=True),
329    "sosfilt": xp_capabilities(cpu_only=True, exceptions=["cupy"],
330                               allow_dask_compute=True),
331    "sosfiltfilt": xp_capabilities(
332        cpu_only=True, exceptions=["cupy"],
333        skip_backends=[
334            (
335                "dask.array",
336                "sosfiltfilt directly sets shape attributes on arrays"
337                " which dask doesn't like"
338            ),
339            ("torch", "negative strides"),
340            ("jax.numpy", "sosfilt works in-place"),
341        ],
342    ),
343    "sosfreqz": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
344                                jax_jit=False, allow_dask_compute=True),
345    "spline_filter": xp_capabilities(cpu_only=True, exceptions=["cupy"],
346                                     jax_jit=False, allow_dask_compute=True),
347    "tf2sos": xp_capabilities(cpu_only=True, exceptions=["cupy"], jax_jit=False,
348                              allow_dask_compute=True),
349    "tf2zpk": xp_capabilities(cpu_only=True, exceptions=["cupy"], jax_jit=False,
350                              allow_dask_compute=True),
351    "unique_roots": xp_capabilities(np_only=True, exceptions=["cupy"]),
352    "upfirdn": xp_capabilities(cpu_only=True, exceptions=["cupy"], jax_jit=False,
353                               allow_dask_compute=True,
354                               reason="Cython implementation",
355                               extra_note=upfirdn_extra_note),
356    "vectorstrength": xp_capabilities(cpu_only=True, exceptions=["cupy", "torch"],
357                                      allow_dask_compute=True, jax_jit=False),
358    "wiener": xp_capabilities(cpu_only=True, exceptions=["cupy", "jax.numpy"],
359                              allow_dask_compute=True, jax_jit=False,
360                              reason="uses scipy.signal.correlate"),
361    "zpk2sos": xp_capabilities(cpu_only=True, exceptions=["cupy"], jax_jit=False,
362                               allow_dask_compute=True),
363    "zpk2tf": xp_capabilities(cpu_only=True, exceptions=["cupy"], jax_jit=False,
364                              allow_dask_compute=True,
365                              extra_note=zpk2tf_extra_note),
366    "spectrogram": xp_capabilities(out_of_scope=True),  # legacy
367    "stft": xp_capabilities(out_of_scope=True),  # legacy
368    "istft": xp_capabilities(out_of_scope=True),  # legacy
369    "check_COLA": xp_capabilities(out_of_scope=True),  # legacy
370}
371
372
373# ### decorate ###
374for obj_name in _signal_api.__all__:
375    bare_obj = getattr(_signal_api, obj_name)
376    delegator = getattr(_delegators, obj_name + "_signature", None)
377
378    if SCIPY_ARRAY_API and delegator is not None:
379        f = delegate_xp(delegator, MODULE_NAME)(bare_obj)
380    else:
381        f = bare_obj
382
383    if not isinstance(f, types.ModuleType):
384        capabilities = capabilities_overrides.get(
385            obj_name, get_default_capabilities(obj_name, delegator)
386        )
387        f = capabilities(f)
388
389    # add the decorated function to the namespace, to be imported in __init__.py
390    vars()[obj_name] = f

Note that a function will only be decorated if the environment variable SCIPY_ARRAY_API is set and its signature is listed in the file scipy/signal/_delegators.py. E.g., for firwin, the signature function looks like this:

339def firwin_signature(numtaps, cutoff, *args, **kwds):
340    if isinstance(cutoff, int | float):
341        xp = np_compat
342    else:
343        xp = array_namespace(cutoff)
344    return xp

Support on CPU#

Legend

✔️ = supported

✖ = unsupported

N/A = out-of-scope

function

torch

jax

dask

abcd_normalize

✔️

✔️

✔️

argrelextrema

argrelmax

argrelmin

band_stop_obj

bessel

✔️

✔️

✔️

besselap

✔️

✔️

✔️

bilinear

✔️

✔️

✔️

bilinear_zpk

✔️

✔️

✔️

bode

✔️

✔️

✔️

buttap

✔️

✔️

✔️

butter

✔️

✔️

✔️

buttord

✔️

✔️

✔️

cheb1ap

✔️

✔️

✔️

cheb1ord

✔️

✔️

✔️

cheb2ap

✔️

✔️

✔️

cheb2ord

✔️

✔️

✔️

cheby1

✔️

✔️

✔️

cheby2

✔️

✔️

✔️

check_COLA

N/A

N/A

N/A

check_NOLA

chirp

choose_conv_method

✔️

✔️

✔️

closest_STFT_dual_window

coherence

cont2discrete

convolve

✔️

✔️

✔️

convolve2d

✔️

✔️

✔️

correlate

✔️

✔️

✔️

correlate2d

✔️

✔️

✔️

correlation_lags

N/A

N/A

N/A

csd

cspline1d

✔️

✔️

✔️

cspline1d_eval

✔️

✔️

✔️

cspline2d

✔️

✔️

✔️

czt

czt_points

dbode

decimate

deconvolve

✔️

✔️

detrend

✔️

✔️

✔️

dfreqresp

dimpulse

dlsim

dstep

ellip

✔️

✔️

✔️

ellipap

✔️

✔️

✔️

ellipord

✔️

✔️

✔️

envelope

✔️

✔️

✔️

fftconvolve

✔️

✔️

✔️

filtfilt

✔️

✔️

✔️

find_peaks

find_peaks_cwt

findfreqs

✔️

✔️

✔️

firls

✔️

✔️

✔️

firwin

✔️

✔️

✔️

firwin2

✔️

✔️

✔️

firwin_2d

freqresp

freqs

✔️

✔️

✔️

freqs_zpk

✔️

✔️

✔️

freqz

✔️

✔️

✔️

freqz_sos

✔️

✔️

✔️

freqz_zpk

✔️

✔️

✔️

gammatone

✔️

✔️

✔️

gauss_spline

✔️

✔️

✔️

gausspulse

get_window

✔️

✔️

✔️

group_delay

✔️

✔️

✔️

hilbert

✔️

✔️

hilbert2

✔️

✔️

iircomb

✔️

✔️

iirdesign

✔️

✔️

✔️

iirfilter

✔️

✔️

✔️

iirnotch

✔️

✔️

✔️

iirpeak

✔️

✔️

✔️

impulse

✔️

✔️

✔️

invres

invresz

istft

N/A

N/A

N/A

kaiser_atten

N/A

N/A

N/A

kaiser_beta

N/A

N/A

N/A

kaiserord

N/A

N/A

N/A

lfilter

✔️

✔️

✔️

lfilter_zi

✔️

✔️

✔️

lfiltic

✔️

✔️

✔️

lombscargle

lp2bp

✔️

✔️

lp2bp_zpk

✔️

✔️

✔️

lp2bs

✔️

✔️

lp2bs_zpk

✔️

✔️

✔️

lp2hp

✔️

✔️

lp2hp_zpk

✔️

✔️

✔️

lp2lp

✔️

✔️

✔️

lp2lp_zpk

✔️

✔️

✔️

lsim

max_len_seq

medfilt

✔️

✔️

✔️

medfilt2d

✔️

✔️

✔️

minimum_phase

✔️

✔️

✔️

normalize

✔️

✔️

✔️

oaconvolve

✔️

order_filter

✔️

✔️

✔️

peak_prominences

peak_widths

periodogram

place_poles

✔️

✔️

✔️

qspline1d

✔️

✔️

✔️

qspline1d_eval

✔️

✔️

✔️

qspline2d

remez

✔️

✔️

✔️

resample

✔️

resample_poly

✔️

✔️

residue

residuez

savgol_coeffs

✔️

✔️

✔️

savgol_filter

✔️

✔️

✔️

sawtooth

sepfir2d

sos2tf

✔️

✔️

✔️

sos2zpk

✔️

✔️

✔️

sosfilt

✔️

✔️

✔️

sosfilt_zi

✔️

✔️

✔️

sosfiltfilt

sosfreqz

✔️

✔️

✔️

spectrogram

N/A

N/A

N/A

spline_filter

✔️

✔️

✔️

square

ss2tf

ss2zpk

step

stft

N/A

N/A

N/A

sweep_poly

symiirorder1

symiirorder2

tf2sos

✔️

✔️

✔️

tf2ss

tf2zpk

✔️

✔️

✔️

unique_roots

unit_impulse

upfirdn

✔️

✔️

✔️

vectorstrength

✔️

✔️

✔️

welch

wiener

✔️

✔️

✔️

zoom_fft

zpk2sos

✔️

✔️

✔️

zpk2ss

zpk2tf

✔️

✔️

✔️

Support on GPU#

Legend

✔️ = supported

✖ = unsupported

N/A = out-of-scope

function

cupy

torch

jax

abcd_normalize

✔️

✔️

✔️

argrelextrema

argrelmax

argrelmin

band_stop_obj

bessel

besselap

✔️

✔️

✔️

bilinear

✔️

bilinear_zpk

✔️

✔️

bode

✔️

✔️

✔️

buttap

✔️

✔️

✔️

butter

✔️

buttord

✔️

✔️

cheb1ap

✔️

✔️

✔️

cheb1ord

✔️

✔️

cheb2ap

✔️

✔️

✔️

cheb2ord

✔️

✔️

cheby1

✔️

cheby2

✔️

check_COLA

N/A

N/A

N/A

check_NOLA

chirp

choose_conv_method

✔️

✔️

✔️

closest_STFT_dual_window

coherence

cont2discrete

✔️

convolve

✔️

✔️

convolve2d

✔️

✔️

correlate

✔️

✔️

correlate2d

✔️

✔️

correlation_lags

N/A

N/A

N/A

csd

cspline1d

✔️

cspline1d_eval

✔️

cspline2d

✔️

czt

✔️

czt_points

dbode

decimate

✔️

deconvolve

✔️

detrend

✔️

✔️

dfreqresp

dimpulse

✔️

dlsim

dstep

ellip

✔️

ellipap

✔️

✔️

✔️

ellipord

✔️

envelope

✔️

✔️

✔️

fftconvolve

✔️

✔️

filtfilt

✔️

✔️

✔️

find_peaks

find_peaks_cwt

findfreqs

✔️

✔️

firls

firwin

✔️

✔️

firwin2

✔️

firwin_2d

freqresp

freqs

✔️

✔️

freqs_zpk

✔️

✔️

freqz

✔️

✔️

freqz_sos

✔️

✔️

freqz_zpk

✔️

✔️

✔️

gammatone

✔️

✔️

✔️

gauss_spline

✔️

✔️

✔️

gausspulse

get_window

✔️

✔️

✔️

group_delay

✔️

hilbert

✔️

✔️

hilbert2

✔️

✔️

iircomb

✔️

✔️

iirdesign

✔️

✔️

✔️

iirfilter

✔️

✔️

iirnotch

✔️

✔️

✔️

iirpeak

✔️

✔️

✔️

impulse

✔️

✔️

✔️

invres

✔️

invresz

✔️

istft

N/A

N/A

N/A

kaiser_atten

N/A

N/A

N/A

kaiser_beta

N/A

N/A

N/A

kaiserord

N/A

N/A

N/A

lfilter

✔️

lfilter_zi

lfiltic

✔️

lombscargle

lp2bp

✔️

✔️

lp2bp_zpk

✔️

✔️

lp2bs

✔️

✔️

lp2bs_zpk

✔️

✔️

lp2hp

✔️

✔️

lp2hp_zpk

✔️

✔️

lp2lp

✔️

✔️

lp2lp_zpk

✔️

✔️

lsim

max_len_seq

medfilt

✔️

medfilt2d

✔️

minimum_phase

✔️

✔️

normalize

✔️

✔️

oaconvolve

✔️

✔️

order_filter

✔️

peak_prominences

peak_widths

periodogram

place_poles

✔️

✔️

✔️

qspline1d

✔️

qspline1d_eval

✔️

qspline2d

✔️

remez

resample

✔️

resample_poly

✔️

residue

✔️

residuez

✔️

savgol_coeffs

✔️

✔️

✔️

savgol_filter

✔️

sawtooth

sepfir2d

sos2tf

✔️

sos2zpk

✔️

sosfilt

✔️

sosfilt_zi

✔️

✔️

✔️

sosfiltfilt

✔️

sosfreqz

✔️

✔️

spectrogram

N/A

N/A

N/A

spline_filter

✔️

square

ss2tf

ss2zpk

step

stft

N/A

N/A

N/A

sweep_poly

symiirorder1

symiirorder2

tf2sos

✔️

tf2ss

tf2zpk

✔️

unique_roots

✔️

unit_impulse

upfirdn

✔️

vectorstrength

✔️

✔️

welch

wiener

✔️

✔️

zoom_fft

zpk2sos

✔️

zpk2ss

zpk2tf

✔️

Support with JIT#

Legend

✔️ = supported

✖ = unsupported

N/A = out-of-scope

function

jax

abcd_normalize

✔️

argrelextrema

argrelmax

argrelmin

band_stop_obj

bessel

besselap

✔️

bilinear

bilinear_zpk

bode

✔️

buttap

✔️

butter

buttord

cheb1ap

✔️

cheb1ord

cheb2ap

✔️

cheb2ord

cheby1

cheby2

check_COLA

N/A

check_NOLA

chirp

choose_conv_method

✔️

closest_STFT_dual_window

coherence

cont2discrete

convolve

✔️

convolve2d

✔️

correlate

✔️

correlate2d

✔️

correlation_lags

N/A

csd

cspline1d

cspline1d_eval

cspline2d

czt

czt_points

dbode

decimate

deconvolve

detrend

✔️

dfreqresp

dimpulse

dlsim

dstep

ellip

ellipap

✔️

ellipord

envelope

✔️

fftconvolve

✔️

filtfilt

✔️

find_peaks

find_peaks_cwt

findfreqs

firls

firwin

firwin2

firwin_2d

freqresp

freqs

freqs_zpk

freqz

freqz_sos

freqz_zpk

✔️

gammatone

✔️

gauss_spline

✔️

gausspulse

get_window

✔️

group_delay

hilbert

hilbert2

iircomb

iirdesign

✔️

iirfilter

iirnotch

✔️

iirpeak

✔️

impulse

✔️

invres

invresz

istft

N/A

kaiser_atten

N/A

kaiser_beta

N/A

kaiserord

N/A

lfilter

lfilter_zi

lfiltic

✔️

lombscargle

lp2bp

lp2bp_zpk

lp2bs

lp2bs_zpk

lp2hp

lp2hp_zpk

lp2lp

lp2lp_zpk

lsim

max_len_seq

medfilt

medfilt2d

minimum_phase

normalize

oaconvolve

order_filter

peak_prominences

peak_widths

periodogram

place_poles

✔️

qspline1d

qspline1d_eval

qspline2d

remez

resample

resample_poly

residue

residuez

savgol_coeffs

✔️

savgol_filter

sawtooth

sepfir2d

sos2tf

sos2zpk

sosfilt

✔️

sosfilt_zi

✔️

sosfiltfilt

sosfreqz

spectrogram

N/A

spline_filter

square

ss2tf

ss2zpk

step

stft

N/A

sweep_poly

symiirorder1

symiirorder2

tf2sos

tf2ss

tf2zpk

unique_roots

unit_impulse

upfirdn

vectorstrength

welch

wiener

zoom_fft

zpk2sos

zpk2ss

zpk2tf