Theory of Fluid Flows Through Natural Rocks

by

G. I. Barenblatt

Institute of Oceanology, Academy of Sciences of the U.S.S.R., Moscow, U.S.S.R.

V. M. Entov

Institute for Mechanical Problems, Academy of Sciences of the U.S.S.R., Moscow, U.S.S.R.

and

V. M. Ryzhik

Institute for Geology and Development of Combustibles, Academy of Sciences of the U.S.S.R., Moscow, U.S.S.R.

Kluwer Academic Publishers

Dordrecht / Boston / London

Table of Contents

ないないであるというないないでもないというないです。

日本をたけたたちをついていたちのでも

Send - Andersyndianis Stationary - Stationary -

Forev	vord	vii	
Chap	ter 1. THE BASIC PHYSICAL CONCEPTS AND MODELS OF SUBTERRANEAN FLUID MECHANICS	1	
1.1.	Natural Reservoirs. Porous Medium	1	
1.2.	The Seepage Flow Velocity. Continuity Equation	7	
1.3.	The Seepage Flow Law for a Homogeneous Newtonian Fluid	9	
1.4.	The Constitutive Equations	15	
1.5.	Incompressible Fluid Flow Through Nondeformable Porous Media	21	
1.6.	Flows of Slightly Compressible Fluid in an Elastic Porous Medium. The	•	
	Elastic Seepage Drive	28	
1./.	Gas Flow Inrough an Incompressible Porous Medium	31	
1.0.	Madia	34	
10	The Flows of Non-Newtonian Fluids Through Nondeformable Porous	54	
. 1.7.	Media	44	
1.10.	Flow of a Slightly Compressible Fluid Through an Elasto-Plastic Porous	••	
	Medium. The Elasto-Plastic Drive	52	
Chapter 2. CLASSICAL LINEAR MODELS OF THE FLOW OF A HOMOGENEOUS FLUID THROUGH POROUS MEDIA			
2.1.	Simplest Steady Flows	57	
2.2.	Qualitative Methods in the Theory of Confined Flows of an		
	Incompressible Fluid Through a Nondeformable Porous Medium	66	
2.3.	Rectilinear Parallel Flow for the Elastic Drive	76	
2.4.	Axisymmetric Flow and Well Interference for the Elastic Drive	82	
2.5.	Some Special Problems of the Elastic Drive	89	
2.6.	Inverse Problems of the Elastic Drive Theory	100	
2.7.	The Approximate Analytical Solutions of Elastic Drive Problems	110	
Char	oter 3. CLASSICAL NONLINEAR MODELS OF HOMOGENEOUS FLUID FLOW THROUGH POROUS MEDIA	126	
3.1.	General Properties of Nonlinear Models, Invariant Solutions, Self-		
	Similar Gently Sloping Unconfined Flows at Zero Initial Fluid Level	126	
3.2.	Gently Sloping Unconfined Flows with Zero Initial Fluid Levels:		
•	Limiting Self-Similar Solutions. Axisymmetric Self-Similar Solutions	141	

TABLE	OF	CON	TEN	VTS
-------	----	-----	-----	------------

Pressure	149	
3.4. Some Special Self-Similar Flows	163	
3.5. Groundwater Mound Spreading Over an Impervious Bed	176	
Chapter 4. NONCLASSICAL MODELS OF THE FLOW OF HOMOGENEOUS FLUIDS	187	
4.1. Basic Problems of Unsteady Homogeneous Fluid Flow in Fractured Porous or Layered Reservoirs	187	
4.2 Steady Flow of Non-Newtonian Fluids Through Porous Media	197	
4.3 Unsteady Flow of Non-Newtonian Fluids Through Porous Media	212	
4.4. Basic Problems of Fluid Flow Through Elasto-Plastic Porous Media	223	
Chapter 5. TWO-PHASE FLOW AND WATER-OIL DISPLACEMENT	230	
5.1. The Basic Concepts of the Theory of Two-Phase Flow Through Porous Media	230	
5.2. Large-Scale Structure of Two-Phase Flow. The Buckley-Leverett	247	
5.3. Small-Scale Structure of Two-Phase Flow. Stabilized Zone. Capillary Phenomena in Porous Media	262	
5.4. Two-Phase Unsteady-State Flow and Immiscible Displacement in Double-Porosity Media	286	
5.5. Stability of the Displacement of Immiscible Fluids	296	
 5.6. The Displacement of Non-Newtonian Fluids by Water. The Effect of the Viscoplastic Properties of Oil on Recovery 	306	
Chapter 6. PHYSICO-CHEMICAL HYDRODYNAMICS OF		
ENHANCED OIL RECOVERY	320	
6.1. Heat and Mass Transfer in Porous Media	321	
6.2. The Displacement of Oil by Solutions of Active Additives (Mathematical Theory of Physico-Chemical Flooding)	338	
6.3. Effects of Diffusion and Nonequilibrium on Oil Recovery by Solutions of Active Additives	361	
References		
Index	391	

vi