Gamma

EXPLORING EULER'S CONSTANT

Julian Havil

PRINCETON UNIVERSITY PRESS

PRINCETON AND OXFORD

Contents

Foreword		xv
Acknowle	dgements	xvii
Introducti	Introduction	
Chapter	One	
The Logarithmic Cradle		1
1.1	A Mathematical Nightmare—and an Awakening	1
1.2	The Baron's Wonderful Canon	4
1.3	A Touch of Kepler	11
1.4	A Touch of Euler	13
1.5	Napier's Other Ideas	16
CHAPTER	Two	
The H	armonic Series	21
2.1	The Principle	21
2.2	Generating Function for H_n	21
2.3	Three Surprising Results	22
Chapter	Three	
Sub-H	Iarmonic Series	27
3.1	A Gentle Start	27
3.2	Harmonic Series of Primes	28
3.3	The Kempner Series	31
3.4	Madelung's Constants	33
Chapter	Four	
Zeta I	Functions	37
4.1	Where <i>n</i> Is a Positive Integer	37
4.2	Where x Is a Real Number	42
4.3	Two Results to End With	44

CONTENTS

CHAPTER	FIVE	
Gam	na's Birthplace	47
5.1	Advent	47
5.2	Birth	49
CHAPTER	Six	
The Gamma Function		53
6.1	Exotic Definitions	53
6.2	Yet Reasonable Definitions	56
6.3	Gamma Meets Gamma	57
6.4	Complement and Beauty	58
CHAPTER	Seven	
Euler	's Wonderful Identity	61
7.1	The All-Important Formula	61
7.2	And a Hint of Its Usefulness	62
CHAPTER	ЕІGHT	
A Pro	mise Fulfilled	65
Chapter	NINE	
What	Is Gamma Exactly?	69
9.1	Gamma Exists	69
9.2	Gamma Is What Number?	73
9.3	A Surprisingly Good Improvement	75
9.4	The Germ of a Great Idea	78
CHAPTER	Ten	
Gamr	na as a Decimal	81
10.1	Bernoulli Numbers	81
10.2	Euler–Maclaurin Summation	85
10.3	Two Examples	86
10.4	The Implications for Gamma	88
CHAPTER	Eleven	
Gamr	na as a Fraction	91
11.1	A Mystery	91
11.2	A Challenge	91
11.3	An Answer	93
11.4	Three Results	95
11.5	Irrationals	95
11.6	Pell's Equation Solved	97

х

11.7	Filling the Gaps	98
11.8	The Harmonic Alternative	98
CHAPTER	Twelve	
Where	101	
12.1	The Alternating Harmonic Series Revisited	101
12.2	In Analysis	105
12.3	In Number Theory	112
12.4	In Conjecture	116
12.5	In Generalization	116
Chapter	Thirteen	
It's a H	Iarmonic World	119
13.1	Ways of Means	119
13.2	Geometric Harmony	121
13.3	Musical Harmony	123
13.4	Setting Records	125
13.5	Testing to Destruction	126
13.6	Crossing the Desert	127
13.7	Shuffling Cards	127
13.8	Quicksort	128
13.9	Collecting a Complete Set	130
13.10	A Putnam Prize Question	131
13.11	Maximum Possible Overhang	132
13.12	Worm on a Band	133
13.13	Optimal Choice	134
CHAPTER	Fourteen	
It's a I	ogarithmic World	139
14.1	A Measure of Uncertainty	139
14.2	Benford's Law	145
14.3	Continued-Fraction Behaviour	155
Chapter	Fifteen	
Proble	ms with Primes	163
15.1	Some Hard Ouestions about Primes	163
15.2	A Modest Start	164
15.3	A Sort of Answer	167
15.4	Picture the Problem	169
15.5	The Sieve of Eratosthenes	171
15.6	Heuristics	172
15.7	A Letter	174

Ē

CONTENTS

15.8	The Harmonic Approximation	179
15.9	Different—and Yet the Same	180
15.10	There are Really Two Questions, Not Three	182
15.11	Enter Chebychev with Some Good Ideas	183
15.12	Enter Riemann, Followed by Proof(s)	186
CHAPTER	Sixteen	
The R	iemann Initiative	189
16.1	Counting Primes the Riemann Way	189
16.2	A New Mathematical Tool	191
16.3	Analytic Continuation	191
16.4	Riemann's Extension of the Zeta Function	193
16.5	Zeta's Functional Equation	193
16.6	The Zeros of Zeta	193
16.7	The Evaluation of $\Pi(x)$ and $\pi(x)$	196
16.8	Misleading Evidence	197
16.9	The Von Mangoldt Explicit Formula—and How It Is	
	Used to Prove the Prime Number Theorem	200
16.10	The Riemann Hypothesis	202
16.11	Why Is the Riemann Hypothesis Important?	204
16.12	Real Alternatives	206
16.13	A Back Route to Immortality—Partly Closed	207
16.14	Incentives, Old and New	210
16.15	Progress	213
APPENDIX	A	
The G	The Greek Alphabet	
Appendix	В	
Big O	h Notation	219
APPENDIX	C	
Tavlor	Expansions	221
C 1		221
C_{2}	Degree 2	221
C.2	Framples	221
C.3	Convergence	223
0.4	Convergence	223
APPENDIX		205
Comp	lex Function Theory	225
D.1	Complex Differentiation	225
D.2	Weierstrass Function	230

D.3	Complex Logarithms	231
D.4	Complex Integration	232
D.5	A Useful Inequality	235
D.6	The Indefinite Integral	235
D.7	The Seminal Result	237
D.8	An Astonishing Consequence	238
D.9	Taylor Expansions—and an Important Consequence	239
D.10	Laurent Expansions—and Another Important Consequence	242
D .11	The Calculus of Residues	245
D.12	Analytic Continuation	247
Appendix	Έ	
Application to the Zeta Function		249
E.1	Zeta Analytically Continued	249
E.2	Zeta's Functional Relationship	253
References		255
Name Index		259
Subject In	dex	263

(Calendaria)

and and and and the