Evolution of Networks

From Biological Nets to the Internet and WWW

S. N. Dorogovtsev Ioffe Institute, St Petersburg

J. F. F. Mendes University of Porto and University of Aveiro

CONTENTS

0	Mod	lern architecture of random graphs	1
1	What are networks?		
	1.1	Basic notions	6
	1.2	Adjacency matrix	10
	1.3	Degree distribution	10
	1.4	Clustering	14
	1.5	Small worlds	16
	1.6	Giant components	
	1.7	List of basic constructions	22
	1.8	List of main characteristics	23
2	Pop	ularity is attractive	25
	2.1	Attachment of edges without preference	25
	2.2	Preferential linking	28
3	Real	networks	31
	3.1	Networks of citations of scientific papers	31
	3.2	Communication networks: the WWW and the Internet	34
		3.2.1 Structure of the WWW	35
		3.2.2 Search in the WWW	45
		3.2.3 Structure of the Internet	46
	3.3	Networks of collaborations	52
	3.4	Biological networks	54
		3.4.1 Neural networks	54
		3.4.2 Networks of metabolic reactions	56
		3.4.3 Genome and protein networks	59
		3.4.4 Ecological and food webs	60
		3.4.5 Word Web of human language	63
	3.5	Telephone call graph	66
	3.6	Mail networks	66
	3.7	Power grids and industrial networks	69
	3.8	Electronic circuits	70
	3.9	Nets of software components	71
	3.10	Energy landscape networks	73
	3.11	Overview	76
4	Equilibrium networks		
	4.1	Statistical ensembles of random networks	84
	4.2	Classical random graphs	86
	4.3	How to build an equilibrium net	88

CONTENTS

	4.4	Econophysics: condensation of wealth	96
	4.5	Condensation of edges in equilibrium networks	101
	4.6	Correlations in equilibrium networks	102
	4.7	Small-world networks	104
		4.7.1 The Watts–Strogatz model and its variations	105
		4.7.2 The smallest-world network	110
5	Non-equilibrium networks		
	5.1	Growing exponential networks	112
	5.2	The Barabási–Albert model	115
	5.3	Linear preference	118
	5.4	How the preferential linking emerges	121
	5.5	Scaling	124
	5.6	Generic scale of 'scale-free' networks	126
	5.7	More realistic models	127
	5.8	Estimations for the WWW	130
	5.9	Non-linear preference	131
	5.10	Types of preference providing scale-free networks	133
	5.11	Condensation of edges in inhomogeneous nets	135
	5.12	Correlations in growing networks	140
	5.13	How to obtain a strong clustering	142
	5.14	Deterministic graphs	143
	5.15	Accelerated growth of networks	148
	5.16	Evolution of language	151
	5.17	Partial copying and duplication	156
	5.18	Non-equilibrium non-growing networks	159
6	Glo	bal topology of networks	161
	6.1	Topology of undirected equilibrium networks	161
	6.2	Topology of directed equilibrium networks	174
	6.3	Failures and attacks	179
	6.4	Resilience against random breakdowns	181
	6.5	How viruses spread within networks	187
	6.6	The Ising model on a net	190
	6.7	Mesoscopics in networks	196
	6.8	How to destroy a network	200
	6.9	How to stop an epidemic	202
	6.10	BKT percolation transition in growing networks	203
	6.11	When loops and correlations are important	210
7	Gro	wth of networks and self-organized criticality	212
	7.1	Preferential linking and the Simon model	212
	7.2	Econophysics: wealth distribution in evolving societies	214
	7.3	Multiplicative stochastic processes	217
8	Phi	losophy of a small world	219

-

	CONTENTS	ix
A	Relations for an adjacency matrix	221
в	How to measure a distribution	222
С	Statistics of cliques	224
D	Power-law preference	226
\mathbf{E}	Inhomogeneous growing net	228
F	Z-transform	230
\mathbf{G}	Critical phenomena in networks	232
н	A guide to the network literature	237
References		
Inc	263	

.

-

.