pandas.core.groupby.SeriesGroupBy.idxmin#
- SeriesGroupBy.idxmin(skipna=True)[source]#
Return the row label of the minimum value.
If multiple values equal the minimum, the first row label with that value is returned.
- Parameters:
- skipnabool, default True
Exclude NA values.
- Returns:
- Series
Indexes of minima in each group.
- Raises:
- ValueError
When there are no valid values for a group. Then can happen if:
There is an unobserved group and
observed=False
.All values for a group are NA.
Some values for a group are NA and
skipna=False
.
Changed in version 3.0.0: Previously if all values for a group are NA or some values for a group are NA and
skipna=False
, this method would return NA. Now it raises instead.
See also
numpy.argmin
Return indices of the minimum values along the given axis.
DataFrame.idxmin
Return index of first occurrence of minimum over requested axis.
Series.idxmax
Return index label of the first occurrence of maximum of values.
Examples
>>> ser = pd.Series( ... [1, 2, 3, 4], ... index=pd.DatetimeIndex( ... ["2023-01-01", "2023-01-15", "2023-02-01", "2023-02-15"] ... ), ... ) >>> ser 2023-01-01 1 2023-01-15 2 2023-02-01 3 2023-02-15 4 dtype: int64
>>> ser.groupby(["a", "a", "b", "b"]).idxmin() a 2023-01-01 b 2023-02-01 dtype: datetime64[s]