Institute for System Programming of Russian Academy of Sciences

VERIFICATION CENTER linux

OF THE OPERATING SYSTEM

OLVER Reports:
Reference Guide

Version Date Description of the changes Author
1.0 28-Dec-2006 | The first version. Alexey Khoroshilov

Introduction

This document describes test result reports generated by the OLVER test suite[1]. The goal
of the test suite is to check the requirements of the Linux Standard Base Core Specification 3.1
[2] to the functions of the application binary interface contained in the sections Il Base
Libraries and IV Utility Libraries. The sections mentioned above define the requirements to the
presence and the functionality of 1532 functions of the Linux application binary interface.

The functions having similar functionality are collected into subsystems. Distribution of the
functions among subsystems is described at the Linux Verification Center web site [1].

There are the following format conventions in this document. Names of files and
identifiers are shown in fixed-width font. Parts of file path that depends on some conditions
are marked by angle brackets (for example, <scenario name>.utt).

Test suite execution

Execution of the OLVER test suite consists in sequential running of test scenarios
enumerating in the /opt/olver/testplan file. Each test scenario is typically intended for
testing a group of functions associated by common functionality.

Details concerning a run of a test scenario are saved to a file named fest trace. The file
name is /var/opt/olver/<TIMESTAMP>/<scenario name>.utt, where <TIMESTAMP> is the
time of test scenario launching in the form of "YEAR-MONTH-DAY HOUR-MINUTE-
SECOND". A set of HTML reports is generated automatically from the test traces. There are the
following reports available:

« Summary test report
+ Detailed test report
o Failures report
o Test scenarios report
o Branches coverage report
« Requirements coverage report
Contents of these reports are described below.

Summary test report

Summary test report is generated at the /var/opt/olver/<TIMESTAMP>/summary.htm
file. The report consists of three parts: a header, a list of the problems detected, and a list of the
functions tested.

The header contains statictics of the test execution (Picture 1).

Summary Report for Test Run
Host 'kpm' on OS 'Linux 2.6.9-42.ELsmp" at Time 2006/12/25-02:04:48

Scenarios Problems Requirements
Passed 243 |Known 105 |Checked 6675
Failed 37 |New 11 | Failed 262
Unresolved 0 Internal 1 Total 6937
Total 280 |Total 117 | Checked
Details... Details... Details...

Tested Functions: 1530. Details...

Picture 1: Header of the summary test report

The first line of the header describes a host name of the system under test, an identifier of
operating system, and launching time of the test execution. The next table contains quantitative
properties of the test execution.

The first column ('Scenarios') includes the following information:

« Passed — a number of tests scenarios that does not detect a failure;

- Failed —a number of tests scenarios that does detect a failure;
« Unresolved — a number of tests scenarios with unknown status of the execution;
+ Total — a total number of test scenarios executed.

The 'Details..." hyperlink of the scenarios column leads to the detailed test report discussed
in the next section.

The second column ('Problems') describes the detected problems:

« Known — a number of the problems identified as an instance of a know bug;

« New — a number of the detected inconsistencies between the specification and the
system under test, which are not identified as an instance of a know bug;

« Internal — a number of the detected problems, which are a consequence of the bug
in the test suite rather than a consequence of the bug in the system under test;

+ Total — a total number of the detected problems.

The Details..." hyperlink of the problems column leads to the problems section of the
summary test report.

The last column ('Requirements') contains test execution statistics concerning coverage of
elementary requirements of the LSB Core 3.1 specification to the system under test. It includes
the following lines:

« Checked — a number of the elementary requirements successfully checked during
the test execution;

+ Failed — a number of the elementary requirements, violation of which was detected
during the test execution;

« Total checked - a total number of the elementary requirements checked during the
test execution.

The 'Details..." hyperlink of the requirements column leads to the requirements coverage
report.

The last line of the header contains a number of functions under test, which ware tested
during the test execution. The 'Details..." hyperlink at this line leads to the list of the tested
functions located in the corresponding section of the summary test report.

The problems section follows the header of the summary test report. It contains up to three
tables describing the detected problems of each kind (Known, New and Internal).

The 'Known Problems' table (Picture 2) has four coloumns:

+ Scenario — a name of the test scenario detected the given problem,;

Known Problems

Failure

Scenario d Bug Id Description
bug526_1 (pthread attr_ setstack)
th . failure |bug526_1 {pthread_create_cancel_scenario.utt)
attr_scenario 1 (pthread_attr_setstack) Function pthread attr setstack is not implemented.

bug329% (chgat)

({trace chgat_scenario.utt)
bug3229{chgat) If the function is invoked not right
= after addstr(), it doesn't work.

- failure
chgat_scenario

bug380 (asctime)
(conversion_scenario.utt)
If the function is unsuccessful,
it should return NULL, but returns a string,
for example "227 COct 9 05:09%:09% 1505"

failure

CONvVersion_scenario 3 bug280{asctime)

bug379 (asctime_r)
(conversion_scenario.utt)
failure . If the function is unsuccessful,
4 bug379(asctime_r) it should return NULL, but returns a string,
for example "2?27 Oct 9 05:0%:09% 1505"

conversion_scenario

bug376 (ctime)

(conversion_scenario.utt)
. . |failure . The difference between local and
conversion_scenario [= bug376{ctime) global time is equal to 2.5,

B while timezone has been set to -10800 (32 hours).

Picture 2: Known problems table of the summary test report

- Failure Id — an identifier of the problem in the detailed test report and a hyperlink to
the detailed description of the problem in that report;

« Bug Id — an identifier of the known bug, corresponding to the given problem;

+ Description — a brief description of the given problem.

The 'New Problems' table (Picture 3) contains information about detected inconsistencies
between the specification and the system under test, which are not identified as an instance of a
know bug. It includes 4 coloumns:

+ Scenario — a name of the test scenario detected the given problem,;

« Failure Id — an identifier of the problem in the detailed test report and a hyperlink to
the detailed description of the problem in that report;

+ Req Id — an identifier of the elementary requirement, violation of which is the
reason of the given problem;

« Description — a brief description of the violated requirement.

New Problems

|Scenario |Fai|ure Id |Req Id Description

Postcondition failed
Requirement failed: {logbf.04}

float_scenario failure 30 |logbf.04 It shall return the exponent of x

Postcondition failed

Requirement failed: {scalblnl.l10}

float_scenario failure 122 |scalblnl.10 || If the correct value would cause underflow, and is
representable, the correct value shall be returned

Postcondition failed
Requirement failed: {logf.04}

math_exp_scenario |failure 229 llogf.04 functions shall return the natural logarithm of x

Postcondition failed

Requirement failed: {powl.05}

math_exp_scenario |failure 257 |powl.05 finite values of x < 0, and finite non-integer wvalues of ¥y,
NaN shall be returned

Postcondition failed

h io |eai | Requirement failed: {[powl.04}
math_exp_scenario |\failure 263 ||powl.04 functions shall return the walue of x raised to the powsr vy

Picture 3: New problems table of the summary test report

The 'Internal Problems' table (Picture 4) describes the detected problems, which are a
consequence of the bug in the test suite rather than a consequence of the bug in the system under
test. The table include three coloumns:

« Scenario — a name of the test scenario detected the given problem;

« Failure Id — an identifier of the problem in the detailed test report and a hyperlink to
the detailed description of the problem in that report;

+ Req Id — an identifier of the elementary requirement, violation of which is the
reason of the given problem,;

« Failure Description — a brief description of the problem.

Internal Problems

|Scenarin |Fai|ure Id |Fai|ure Description

Mediator failed
float_scenario |failure 136 | Function not found in any library: signbit

Picture 4: Internal problems table of the summary test report

The summary test report ends with the tested functions section (Picture 5), which contains
a list of interface functions from the LSB Core Generic 3.1 specification. If a function was tested
during the test execution it is marked by the plus sign, otherwise it is marked by the minus sign.

Tested Functions (3)

|LSB Function |Testec|
|a|54-l |+
|a|:mrt |+

|abs |+
|ac::ept |—
laccess -

|acct |—

! !

Picture 5: Tested functions section of the summary test report

Detailed test report
Detailed test report is available by the 'Details..." hyperlink of the scenarios coloumn of the
summary test report header. This hyperlink leads to the

/var/opt/olver/<TIMESTAMP>/report/index.html file, which is an entry page of the report.
Other pages are available by hyperlinks from the navigation bar placed at the lest side of the
report. The navigation bar consists of three sections: ‘Failures’, ‘Scenarios’, and ‘Stimuli &
reactions’ (Picture 6).

|Fa|'Iure5

All failures (1045)

Grouped failures

Scenarios

All scenarios

_Exit_scenario
__cxa_atexit_scenario
__libc_start_main_scenario
wstrint_scenario
wstrreal_scenario
wtoken_scenario

Stimuli & reactions

All stimuli & reactions
fs.dir
fs.fifo
fa.fs
fs.ftw

fs.glob
fs.meta

fs.name

Picture 6: Navigation bar of the detailed test report

The 'Failures' section contains hyperlinks to different representations of detected problems.
The 'All failures' link leads to a plain table of the problems and the 'Grouped failures' link leads
to a tree of the problems grouped by the rules that are described below.

The 'Scenarios' section includes a link to a summary report of test scenarios execution
status and links to detailed reports of each scenario executed.

The 'Stimuli & reactions' section allows to analyse reports concerning functionality
branches coverage. The 'All stimuli & reactions' link leads to a summary coverage report. The
links under subsystem names lead to reports about coverage of the corresponding subsystem.

Failures report

A table available on the 'All failures' link contains a short description of each detected
problem and a hyperlink to the detailed report concerning the corresponding problem.
The 'Grouped failures' representation groups the detected problems accroding the following
rules. Firstly all problems are distributed by the three groups (Picture 7):
+ known bugs — problems identified as an instance of a known bug;
+ req failures — problems corresponding to an inconsistency between the specification
and the system under test, which is not identified as an instance of a know bug;
« other failures - problems, which are a consequence of the bug in the test suite rather
than a consequence of the bug in the system under test.

Failures grouped failures
All failures (1045)
Grouped failures known bugs (972)

req failures (72)
other failures (1)
Scenarios

All scenarios

_Exit_scenario

Picture 7: The first level of the grouped failures tree

At the next two levels problems are grouped according subsystems and functions, where
the problem occurs (Picture 8). These levels are common for all the groups of the first level.

Failures grouped failures
All failures (1045)
Grouped failures known bugs (972)

req failures (72)
math.exp (64)

Scenarios log_spec (1)
All scenarios powl0_spec (1)
- - pow_spec (62)
_Er:lt_su:ena!rm . math.real (2)
_cxa_atexit_scenarno util.float (6)

__libc_start_main_scenario

) : other failures (1)
__register_atfork_scenario

Picture 8: The second and third levels of the grouped failures tree

The fourth level is available for the 'known bugs' category only. At this level all problems
identified as an instance of the same bug are united (Picture 9).

Leaf nodes in the grouped failures tree contain a hyperlink to a detailed report of the
corresponding problem. This report provides a brief description of the problem and information
about the failed test case including input and output parameter values. If the failure is identified

6

Failures . grouped failures
All failures (1045)

Grouped failures known bugs (972)
fs.name (1)
‘ locale.messages (1)

Scenarios math.bessel (23)
all scenarios 10_spec (1)

. . j1_spec (1)
_Exlt_scene!rlcl . in_spec (7)
_n:.xa_atexlt_sclenarlo . V0. spec (4)
_Ilbc._star't_mam_scenar.lo v1_spec (4)
__register_atfork_scenario vn_spec (6)

_exit_scenario

abort_scenario

account_scenario
advanced_socket_send_scenario
alarm_scenario

bug512_1(yn) (3)
bug512_2(yn) (2)
bug513(yn) (1)
failure 167
math.cexp (18)

Picture 9: The fourth level of the 'known bugs' category

as an instance of a known bug a description of the bug is also placed at the end of the detailed
failure report (Picture 10).

Sl . failure 775:
All failures (1045)

Grouped failures Postcondition failed
Bequirement failed: [basename.01.01} basenams() shall return final component of path

Scenarios

location
All scenarios trace fvarfoptfolver/2006-12-25_00-30-30/name_scenario.utt, line 2010
_Exit_scenario
occurence

__cxa_atexit_scenario
__libc_start_main_scenario scenario name_scenario
__register_atfork_scenario
_exit_scenario
abort_scenario
account_scenario specification function | basename_spec()
advanced_socket_send_scenario
alarm_scenario

state MNULL

transition basename_scen(inti=0)

parameter value struct Threadld context = struct { 0, 2984, 2505552032 }

asprintf_scenario parameter value CString = @path = err//

attr_scenario parameter value CString = path = err//

bit_scenario " | (Cstring =)

bkagd_simple_scenario return value ring *) empty

border_scenario coverage C

break_scenario & branch Trailing slashies) occured in the path
Cf—sce”a”? prime formula invariant type CString = (@path) = true
ch_scenario - - - -

char add scenario prime formula invariant type CString * (path) = true
char_scenario prime formula invariant type CString =(returned value) = true

chgat_scenario
chstr_add_scenario
clear_scenario
collate_simple_scenario
color_scenario
compress_scenario
cond_errors_scenario
cond_init_destroy_scenario
cond_single_cond_scenario
condattr_scenario
conversion_scenario
created_timers_scenario

similar known bug(s)

bug207 (basenams)
(trace name scenaric.utt)
The basename () function shall take the pathname pointed to by path
and return & pointer to the final component of the pathname,
deleting any trailing '/' characters.
But the input "err////" causes szegmentation fault.

Picture 10: Detailed failure report

Test scenarios report

Summary test scenarios report is available by the 'All scenarios' hyperlink at the navigation
bar. The first line (Picture 11) demonstrates a number of executed test scenarios and a number of
failed test scenarios. The second element of the report is a table, which contains a total number

of the problems detected by the given scenario and a hyperlink to the first problem.

‘Failuras

All failures (1045)

Grouped failures

all scenarios

Total: 280 scenarios; 37 with failure(s).

. scenarios failures fails
Scenarios
_Exit_scenario
All scenarios
__cxa_atexit_scenario
_Bxit_scenario
cxa atexit scenario __libc_start_main_scenario
__libc_start_main_scenario __register_atfork_scenario
__register_atfork_scenario
) _exit_scenario
_exit_scenario
abort_scenario abort_scenario
account_scenario X account_scenario
advanced_socket_send_scenario
alarm_scenario advanced_socket_send_scenario
asprintf_scenario alarm_scenario
attr_scenario
asprintf_scenario
bit_scenaria
failure 1: Mediator failed
bkad_simple_scenario attr_scenario 1
border_scenario Function not found in any library: pthread_attr_setstack
break_scenario bit_scenario
cf_scenario
¢h_scenario bkad_simple_scenario
char_add_scenario border_scenario
char_scenario .
break_scenario
chgat_scenario
chstr_add_scenario of_scenario
clear_scenario ch_scenario
collate_simple_scenario h 1 N
color_scenario char_add_scenario
compress_scenario char_scenario
con:_er;o:js_stcenanu chgat_scenario failure 2: Postcondition failed ;
con _\r?\ —cestroy_scenario - Requirement failed: {refresh.01;wrefresh.01} Refresh the current or specified window
cond_single_cond_scenario
condattr scenario chstr_add_scenario
CONVErsion_scenario dear_scenario
created_timers_scenario . .
collate_simple_scenario
crypt_scenario
cterm_scenario color_scenario
ctrans_swmp\e_acena.nu compress_scenario
ctype_simple_scenario
daemon._scenario cond_errors_scenario
dir_scenario cond_init_destroy_scenario
dl_scenaria N
cond_single_cond_scenario
ent_netdb_scenario
environ_scenario condattr_scenario

Picture 11: Summary test scenario report

Other hyperlinks at the 'Scenario' section of the navigation bar lead to detailed reports
concerning the corresponding test scenario (Picture 12). These reports provide information about

Failures

All failures (1045)

Grouped failures

Scenarios

All scenarios

_Exit_scenario
__cxa_atewxit_scenario
__libc_start_main_scenario
__register_atfork_scenario
_exit_scenario
abort_scenario

account_scenario failures fails
advanced_so.cket_send_scenarlu failure 1040: Postcondition failed

alarm_scenario Requirement failed: {__wecstod_internal.westod. 17} If the correct value would cause underflow, the smallest normalized positive number
asprintf_scenario shall be returned

attr_acena.rlo failure 1041: Postcondition failed

b\t_sceﬁarlo X Reguirement failed: {wcstod.17} If the correct value would cause underflow, the smallest normalized positive number shall be returned
bkgd_simple_scenario failure 1042: Postcondition failed

border_scenario Requirement failed: {__ wcstof_internal.westof. 17} If the correct value would cause underflow, the smallest normalized positive number shall
break_sce.mano be returned 6
cf_scenang failure 1043: Postcondition failed

ch_scenario Requirement failed: {wecstof.177} If the correct value would cause underflow, the smallest normalized positive number shall be returned
char_add_scenario failure 1044: Postcondition failed

char_sceﬂam:! Requirement failed: {__wcstold_internal.westold. 17} If the correct value would cause underflow, the smallest normalized positive number
chgat_scenario i shall be returned

chstr_add_scenario failure 1045: Postcondition failed

clear_scenario Requirement failed: {wcstold.177} If the correct value would cause underflow, the smallest normalized positive number shall be returned
collate_simple_scenario

color_scenario

scenario wstrreal_scenario

execution

trace: fvarfopt/olver/2006-12-25_00-30-30/wstrreal_scenario.utt
start: Mon Dec 25 02:04:47 MSK 2006

end: Mon Dec 25 02:04:47 MSK 2008

Product Name: CTesK

Product Build: 20061127

Host: kpm

Product Version: 2.2.5

Operating System: Linux 2.6.9-42.ELsmp

Picture 12: Detailed test scenario report

execution time and environment of the given scenario. If the scenario detects any problem the
report enumerates all these problems.

Branches coverage report

The UniTesK [3] testing technology, which is a basis of the OLVER test suite, supports the
testing quality measurement technique based on branches of functionality. According this
technique a test developer defines branches of functionality for each function under test and
coverage of these branches is measured during test execution. More than one set of branches of
functionality can be defined for a function. A set of branches is called a coverage. More details
on this testing quality measurement technique is presented in the document «Formal
Specification-Based Testing: Getting Started» [4] and at the web-site [3].

The 'All stimuli & reactions' link leads to a summary branches coverage report (Picture
13). The report provides a table describing quality of testing in terms of branches of
functionality. For each subsystem enumerated in the first column there is a list of the defined
coverages in the second column. Numbers in brackets from the third column mean a number of
covered and a total number of branches defined in the given subsystem and in the given
coverage. A percentage illustrates a proportion of the numbers. The last optional column
contains a number of problems detected in the corresponding subsystem.

Failures specification functions coverage
All failures (1045)
Grouped failures subsystems coverages branches fails
Cancelpoint 33% (6/18)
Scenarios DIR_C 45% (16/35)
All scenarios EACCES_C 33% (3/9)
_Exit_scenario EEXIST_C 100% (6/6)

_cxa_atexit_scenario

__libc_start_main_scenario ELOOP_C 33% (2/6)
__reqgister_atfork_scenario fs5.dir EMFILE_C 33% (1/3) —
—exit_scenario ENAMETOOLONG_C |33% (2/6)
abort_scenario

account_scenario ENOENT_C 55% (5/9)
advanced_socket_send_scenario ENOTDIR C 66% (4/6)
alarm_scenario . .
asprintf_scenario Exist_C 86% (13/15)
attr_scenario Path_C 91% (11/12)
bit_scenario]

g o, —
bkgd_simple_scenario fs fifo c 100% (6/6)
border_scenario fs.fs C 100% (5/5) —
break i

resk_stenano fa.ftw c 50% (4/8) -
cf_scenario
ch_scenario te alob C 34% (16/46)
- 5.glo —
char_add_scenario C_errfunc 75% (6/8)

char_scenario

chgat_scenario fs.meta C 100% (18/18) —
chstr_add_scenario fs.name c 61% (8/13) 1
clear_scenario

callate_simple_scenario C_Bufsize 100% (3/3)
color_scenario . . C_Path 100% (6/6)
compress_scenario fs.symlink - —
cond_errors_scenario C_Symlink 83% (5/6)
cond_init_destroy_scenario Cancelpoint 100% (3/3)

Picture 13: Summary branches coverage report

The hyperlinks under subsystem names lead to branches coverage report concerning the
given subsystem (Picture 14). It has the same structure as the previous one except for substitution
of subsystems with functions belonging the given subsystem.

The most detailed branches coverage report is a report concerning a concrete function
(Picture 15). It is available by the hyperlink under a name of the corresponding function in the
first column of subsystem branches coverage report. The report describes all coverages defined

Failures 'fs.dir' subsystem coverage
All failures (1045)

Grouped failures

stimuli coverages branches
| i DIR_C 40% (2/5)
Sc : closedir_spec -
enarios Cancelpoint 33% (1/3)
All scenarios -
Exist_C 80% (4/5)
_Exit_scenario .
__cxa_atexit_scenario Path_C 100% (4/4)
__libc_start_main_scenario EACCES_C 33% (1/3)
_r§g|5ter_aﬁ0rk_scenar|0 . EEXIST_C 100% (3/3)
_exit_scenario mkdir_spec
abort_scenario ENOENT_C 33% (1/3)
account_scenario ENAMETOOLONG_C|33% (1/3)
advanced_socket_send_scenario
. ELOOP_C 33% (1/3)
alarm_scenario
asprintf_scenario ENOTDIR_C 66% (2/3)
attr_scenario Exist_C 100% (5/5)
bit_scenario
bkad_simple_scenario Path_C 100% (4/4)
border_scenario Cancelpoint 33% (1/3)
break_scenario .
of_scenario EACCES_C 33% (1/3)
ch_scenario opendir_spec |ELOOP_C 33% (1/3)
char_add_scenario ENAMETOOLONG_C|33% (1/3)
char_scenario
chgat_scenario ENOENT_C 66% (2/3)
chstr_add_scenario ENOTDIR_C 66% (2/3)
clear_scenario
EMFILE_C 33% (1/3)

collate_simple_scenario

Picture 14: Subsystem branches coverage report

in the given function. There are names of the coverages in the first column. For each coverage all
the branches are enumerated in the second column. There is a coverage statistics at the bottom of
the list. The raws corresponding to covered branches are marked by green background, the raws
corresponding to uncovered branches are marked by red background.

The last column of the table contains a number of calls corresponding to the given branch
of functionality. If there are problems detected in the function the additional 'failures' column
describes a distribution of the problems between the branches.

[ELIES basename_spec() coverage
All failures (1045)
Grouped failures specification CString *basename_spec(struct Threadld context, CString “path)
Scenarios coverages | branches failures hits/fails
All scenarios Null pointer received 1]
_Exit_scenario Empty path received a
7(.raiate}\t75[enana . Two slashes received 1]
__libc_start_main_scenario
__register_atfark_scenario The path consists only of slashes 0
_exit_scenario c Trailing slash(es) occured in the failure 775: Postcondition failed
abort_scenario h 9 Requirement failed: {basename.01.01} basename() shall return final component of 1/1
account_scenario pat path
advanced_socket_send_scenario "
- Ordinary path received 0
alarm_scenario
asprintf_scenario 16% (1/6) 1/1

attr_scenario

Picture 15: Function branches coverage report

10

Requirements coverage report

Requirements coverage report is available by the 'Details..." hyperlink of the requirements
coloumn of the summary test report header and it is placed at the
/var/opt/olver/<TIMESTAMP>/result.htm file.

The first line of the report contains summary coverage statictics (Picture 16). The first
number (Total) is a total number of elementary requirements of the LSB Core 3.1 specification
to the system under test. The second number (Covered) is a numbed of tested requirements and
the last one (Failed) is a number of the elementary requirements, violation of which was detected
during the test execution.

Summary:(Total:16651 / Covered:6675 / Failed:262)

o [Flfs.dir (37 /107 /0)
o [Flmkdir (11/22/0)

= mkdir.01
The mkdir() function shall create a new directory with name path

s mkdir.02
The file permission bits of the new directory shall be initialized from mode.

= mkdir.03
These file permission bits of the mode argument shall be modified by the process' file creation mask

s mkdir.04
The directory's user ID shall be set to the process' effective user ID

s mkdir.05
The directory's group 1D shall be set to the group ID of the parent directory or to the effective group ID of
the process. Implementations shall provide a way to initialize the directory's group ID to the group ID of the
parent directory. Implementations may, but need not, provide an implementation-defined way to initialize the
directory's group ID to the effective group ID of the calling process.

» micdir 06
The newly created directory shall be an empty directory.

» micdir 07
If path names a symbolic link, mbkdir() shall fail and set errno to [EEXIST].

» micdir 08
Upon successful completion, mkdir() shall mark for update the st_atime, st_ctime, and st_mtime fields of the
directory.

= mkdir.09
Also, the st_ctime and st_mtime fields of the directory that contains the new entry shall be marked for
update.

w micdir 10
Upon successful completion, mkdir() shall return 0.

» micdir 11
Otherwise, -1 shall be returned, no directory shall be created. and errno shall be set to indicate the error

Picture 16: Requirements coverage report

The main part of the report is a tree of elementary requirements, where:
« mnodes of the first level correspond to subsystems and contain requirements
coverage statistics in the form (Total / Covered / Failed);
- nodes of the second level correspond to functions and contain requirements
coverage statistics in the form (Total / Covered / Failed);
- nodes of the third level contain elementary requirements including an
identifier and a text of the requirement.

The tree view allows to hide and unhide all the nodes placed under any nonleaf node. To
do that someone shall click at the [+]/[—] sign near the node.

Identifiers of requirements, which were not checked during the test execution, have black
colour. Identifiers of requirements, which were successfully checked during the test execution,
have green colour. Identifiers of requirements, violation of which was detected during the test
execution, have red colour and are marked by (FAILED) sign. Grey identifiers correspond to
uncheckable requirements such as requirements to application using the system under test.

11

OLVER reports usage guide

Depending on goals of using the OLVER test suite we recommend to pay attention to
different kinds of the OLVER reports. The given section provides several recomendations on
usage of the OLVER reports.

If you use the test suite for obtaining information about conformance a system under
test to the LSB Core 3.1 specification, first of all you should analyse a summary test report. The
header of the report provides the following statistics:

- numbers of detected problems of different kinds (the 'Problems' column);

« anumber of failed test scenarios (the 'Scenarios' column, the 'Failed' line);

- a number of the elementary requirements, violation of which was detected during
the test execution (the 'Requirements' column, the 'Failed' line).

More detailed information about detected problems is available in the 'Problems' section of
the same report. In addition, we recommend to pay attention to a distribution of the problems
between subsystems and functions, which is described in the 'Grouped failures' section of the
detailed test report.

If you use the OLVER test suite for detailed analysis of inconsistencies between a system
under test and the LSB Core 3.1 specification, the most important report is a detailed test report
and the 'Failures' section. This section describes both a distribution of the problems between
subsystems and functions and details of each problems in particularly. In addition to static
HTML reports we recommend to use the dynamic trace player tool available as a part of the
CTesK toolkit [3].

If the information about quality of testing is important to you, the following two reports
shall be investigated:

-+ requirements coverage report;
- branches coverage section of detailed test report.

The first report allows to estimate quality of testing in terms of coverage of elementary
requirements of the standard. The second one allows to estimate quality of testing in terms of
branches of functionality. These reports contain both statistical information about coverage in
general and detailed information about coverage each function in particularly.

References

[1] Linux Verification Center (http://www.linuxtesting.org)

[2] Linux Standard Base Core Specification 3.1
(http://refspecs.freestandards.org/[L.SB_3.1.0/LSB-Core-generic/LLSB-Core-generic.html)
[3] The UniTesK technology web site (http://www.unitesk.com)

[4] Formal Specification-Based Testing: Getting Started

(http:/linuxtesting.org/downloads/getting-started-math-integer.pdf)

12

http://www.linuxtesting.org/
http://linuxtesting.org/downloads/getting-started-math-integer.pdf
http://www.unitesk.com/
http://refspecs.freestandards.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic.html

