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Challenges of numerical 
computation over big data

When applying any algorithm to big data watch for 

1. Correctness 

2. Performance 

3. Trade-off between accuracy and performance
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Three Practical Examples

• Point estimation (Variance) 

• Approximate estimation (Cardinality) 

• Matrix operations (PageRank)
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We use these examples to demonstrate Spark internals, data flow, and 
challenges of implementing algorithms for Big Data.



1. Big Data Variance

> The plain variance formula requires two passes 
over data
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Fast but inaccurate solution
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Can be performed in a single pass, but 

Subtracts two very close and large numbers!
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Accumulator Pattern
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An object that incrementally tracks the variance
Class RunningVar { 
  var variance: Double = 0.0 
!
  // Compute initial variance for numbers 
  def this(numbers: Iterator[Double]) { 
    numbers.foreach(this.add(_)) 
  } 
!
  // Update variance for a single value 
  def add(value: Double) { 
    ... 
  } 
}



Parallelize for performance
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• Distribute adding values in map phase 

• Merge partial results in reduce phase

Class RunningVar { 
  ... 
  // Merge another RunningVar object  
  // and update variance 
  def merge(other: RunningVar) = { 
    ... 
  } 
}



Computing Variance in 
Spark
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doubleRDD 
  .mapPartitions(v => Iterator(new RunningVar(v))) 
  .reduce((a, b) => a.merge(b))

• Use the RunningVar in Spark

• Or simply use the Spark API

doubleRDD.variance()



2. Approximate Estimations

• Often an approximate estimate is good enough 
especially if it can be computed faster or cheaper 

1. Trade accuracy with memory 

2. Trade accuracy with running time 

• We really like the cases where there is a bound on 
error that can be controlled
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Cardinality Problem
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• Using a HashSet requires ~10GB of memory 

• This can be much worse in many real world 
applications involving large strings, such as 
counting web visitors

Example: Count number of unique words in Shakespeare’s 
work.



Linear Probabilistic 
Counting

1. Allocate a bitmap of size m and initialize to zero. 

A. Hash each value to a position in the bitmap 

B. Set corresponding bit to 1 

2. Count number of empty bit entries: v
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count ≈ −m ln v
m



The Spark API
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rdd 
 .mapPartitions(v => Iterator(new LPCounter(v))) 
 .reduce((a, b) => a.merge(b)).getCardinality

• Use the LogLinearCounter in Spark

• Or simply use the Spark API

myRDD.countApproxDistinct(0.01) 



3. Google PageRank
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Popular algorithm originally introduced by Google



PageRank Algorithm

• Start each page with a rank of 1 

• On each iteration:
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PageRank Algorithm

contrib = curRank
| neighbors |

curRank = 0.15 + 0.85 contribi
neighbors
∑

A.

B.



PageRank Example
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PageRank Example
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PageRank Example
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PageRank Example
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PageRank Example
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PageRank Example
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PageRank as Matrix 
Multiplication

• Rank of each page is the probability of landing on 
that page for a random surfer on the web 

• Probability of visiting all pages after k steps is
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Vk = A
k ×V t

V: the initial rank vector 
A: the link structure (sparse matrix)



Data Representation in 
Spark
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• Each page is identified by its unique URL rather 
than an index 

• Ranks vectors (V): RDD[(URL, Double)] 

• Links matrix (A): RDD[(URL, List(URL))]



Spark Implementation
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val links = // load RDD of (url, neighbors) pairs 
var ranks = // load RDD of (url, rank) pairs 
!
for (i <- 1 to ITERATIONS) { 
  val contribs = links.join(ranks).flatMap { 
    case (url, (links, rank)) => 
      links.map(dest => (dest, rank/links.size)) 
  }  
  ranks = contribs.reduceByKey(_ + _)                   
    .mapValues(0.15 + 0.85 * _) 
} 
ranks.saveAsTextFile(...) 



Matrix Multiplication

• Repeatedly multiply sparse matrix and vector
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Links 
(url, neighbors)

Ranks 
(url, rank)

…

iteration 1 iteration 2 iteration 3

      

Same file read 
over and over



Spark can do much better
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• Using cache(), keep neighbors in memory 

• Do not write intermediate results on disk
 

Links 
(url, neighbors)

Ranks 
(url, rank)  

join
 

join

 

join

…

Grouping same RDD 
over and over



Spark can do much better
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• Do not partition neighbors every time
 

Links 
(url, neighbors)

Ranks 
(url, rank)  

join
 

join

 

join

…

partitionBy

Same node



Spark Implementation
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val links = // load RDD of (url, neighbors) pairs 
var ranks = // load RDD of (url, rank) pairs 
!
links.partitionBy(hashFunction).cache() 
!
for (i <- 1 to ITERATIONS) { 
  val contribs = links.join(ranks).flatMap { 
    case (url, (links, rank)) => 
      links.map(dest => (dest, rank/links.size)) 
  }  
  ranks = contribs.reduceByKey(_ + _)                   
    .mapValues(0.15 + 0.85 * _) 
} 
ranks.saveAsTextFile(...) 



Conclusions

When applying any algorithm to big data watch for 

1. Correctness 

2. Performance 

• Cache RDDs to avoid I/O 

• Avoid unnecessary computation 

3. Trade-off between accuracy and performance
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