
 Common Patterns and Pitfalls for
Implementing Algorithms in Spark

Hossein Falaki
@mhfalaki

hossein@databricks.com

mailto:hossein@databricks.com

Challenges of numerical
computation over big data

When applying any algorithm to big data watch for

1. Correctness

2. Performance

3. Trade-off between accuracy and performance

2

Three Practical Examples

• Point estimation (Variance)

• Approximate estimation (Cardinality)

• Matrix operations (PageRank)

3

We use these examples to demonstrate Spark internals, data flow, and
challenges of implementing algorithms for Big Data.

1. Big Data Variance

> The plain variance formula requires two passes
over data

4

Var(X) = 1
N

(xi − µ)2
i=1

N

∑
First pass

Second pass

Fast but inaccurate solution

Var(X) = E[X 2]− E[X]2

=
x2∑
N

−
x∑

N
⎛

⎝⎜
⎞

⎠⎟

2

Can be performed in a single pass, but

Subtracts two very close and large numbers!

5

Accumulator Pattern

6

An object that incrementally tracks the variance
Class RunningVar {
 var variance: Double = 0.0
!
 // Compute initial variance for numbers
 def this(numbers: Iterator[Double]) {
 numbers.foreach(this.add(_))
 }
!
 // Update variance for a single value
 def add(value: Double) {
 ...
 }
}

Parallelize for performance

7

• Distribute adding values in map phase

• Merge partial results in reduce phase

Class RunningVar {
 ...
 // Merge another RunningVar object
 // and update variance
 def merge(other: RunningVar) = {
 ...
 }
}

Computing Variance in
Spark

8

doubleRDD
 .mapPartitions(v => Iterator(new RunningVar(v)))
 .reduce((a, b) => a.merge(b))

• Use the RunningVar in Spark

• Or simply use the Spark API

doubleRDD.variance()

2. Approximate Estimations

• Often an approximate estimate is good enough
especially if it can be computed faster or cheaper

1. Trade accuracy with memory

2. Trade accuracy with running time

• We really like the cases where there is a bound on
error that can be controlled

9

Cardinality Problem

10

• Using a HashSet requires ~10GB of memory

• This can be much worse in many real world
applications involving large strings, such as
counting web visitors

Example: Count number of unique words in Shakespeare’s
work.

Linear Probabilistic
Counting

1. Allocate a bitmap of size m and initialize to zero.

A. Hash each value to a position in the bitmap

B. Set corresponding bit to 1

2. Count number of empty bit entries: v

11

count ≈ −m ln v
m

The Spark API

12

rdd
 .mapPartitions(v => Iterator(new LPCounter(v)))
 .reduce((a, b) => a.merge(b)).getCardinality

• Use the LogLinearCounter in Spark

• Or simply use the Spark API

myRDD.countApproxDistinct(0.01)

3. Google PageRank

13

Popular algorithm originally introduced by Google

PageRank Algorithm

• Start each page with a rank of 1

• On each iteration:

14

PageRank Algorithm

contrib = curRank
| neighbors |

curRank = 0.15 + 0.85 contribi
neighbors
∑

A.

B.

PageRank Example

15

1.0

1.0

1.0

1.0

PageRank Example

16

1.0

1.0

1.0

1.0

1.0

0.5 0.5

0.5

1.0

PageRank Example

17

0.58

0.58

1.85

1.0

PageRank Example

18

0.58

0.58

1.85

1.0

0.58

0.29 0.5

0.5

1.85

PageRank Example

19

0.58

0.39

1.31

1.72

PageRank Example

20

0.73

0.46

1.44

1.37Eventually

PageRank as Matrix
Multiplication

• Rank of each page is the probability of landing on
that page for a random surfer on the web

• Probability of visiting all pages after k steps is

21

Vk = A
k ×V t

V: the initial rank vector
A: the link structure (sparse matrix)

Data Representation in
Spark

22

• Each page is identified by its unique URL rather
than an index

• Ranks vectors (V): RDD[(URL, Double)]

• Links matrix (A): RDD[(URL, List(URL))]

Spark Implementation

23

val links = // load RDD of (url, neighbors) pairs
var ranks = // load RDD of (url, rank) pairs
!
for (i <- 1 to ITERATIONS) {
 val contribs = links.join(ranks).flatMap {
 case (url, (links, rank)) =>
 links.map(dest => (dest, rank/links.size))
 }
 ranks = contribs.reduceByKey(_ + _)
 .mapValues(0.15 + 0.85 * _)
}
ranks.saveAsTextFile(...)

Matrix Multiplication

• Repeatedly multiply sparse matrix and vector

24

Links
(url, neighbors)

Ranks
(url, rank)

…

iteration 1 iteration 2 iteration 3

Same file read
over and over

Spark can do much better

25

• Using cache(), keep neighbors in memory

• Do not write intermediate results on disk

Links
(url, neighbors)

Ranks
(url, rank)

join

join

join

…

Grouping same RDD
over and over

Spark can do much better

26

• Do not partition neighbors every time

Links
(url, neighbors)

Ranks
(url, rank)

join

join

join

…

partitionBy

Same node

Spark Implementation

27

val links = // load RDD of (url, neighbors) pairs
var ranks = // load RDD of (url, rank) pairs
!
links.partitionBy(hashFunction).cache()
!
for (i <- 1 to ITERATIONS) {
 val contribs = links.join(ranks).flatMap {
 case (url, (links, rank)) =>
 links.map(dest => (dest, rank/links.size))
 }
 ranks = contribs.reduceByKey(_ + _)
 .mapValues(0.15 + 0.85 * _)
}
ranks.saveAsTextFile(...)

Conclusions

When applying any algorithm to big data watch for

1. Correctness

2. Performance

• Cache RDDs to avoid I/O

• Avoid unnecessary computation

3. Trade-off between accuracy and performance

28

