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1. Procrustes Formula for Computing Pelvis Rotation

In our 3D character model, the pelvis is a rigid T-structure,

uniquely identified by the 3D positions of 3 virtual markers

pelvis root, left femur, and lowerback, denoted X1,X2,X3
(Figure 1). Then, the vectors describing the orientation of

the pelvis at a given time t are p1, p2 and p3.

p1 =
X1−X2

‖X1−X2‖
(1)

p
∗

2 = (X1−X3)− (
X1−X3

‖X1−X3‖
·p1) (2)

p2 =
p∗2

‖p∗2‖
(3)

p3 = p1×p2 (4)

Let the corresponding vectors at the pelvis ‘home’ posi-

tion (all rotations zero) be denoted by h1, h2 and h3. Then,

RH = P (5)




r1 r2 r3
r4 r5 r6
r7 r8 r9



 [h1,h2,h3] = [p1,p2,p3] (6)

Equation 5 can be rearranged as follows:
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We can solve for the elements of R by solving Equation 7

for the least squares solution. However, the computed matrix

R may not be orthogonal. The procrustes formula [JCG04]

Figure 1: The pelvis is a T-structure.

can be used to find the closest orthogonal matrix.

R = UΣVT (9)

R
∗ = UVT (10)

where R∗ is the desired rotation matrix. We then use the

standard rotation formulae [Cra89] to compute the pelvis

orientation from the rotation matrix.

2. Converting Marker Positions to Joint Angles

Every limb is described by the three joint angles (roll, pitch

and yaw) relative to its parent limb. Because the root joint

for our character model is the pelvis, we start by recovering

the rotation of the pelvis with respect to the world coordinate

frame via procrustes analysis (as described in Section 1) and

work our way down each hierarchical chain to generate the

full pose X ja.

The marker positions X3D give us two out of the three

joint angles for a limb segment. We infer yaw rotation from

motion capture data by observing that joint angles describe

the rotation of the limb segment in the xyz ordering—it is

possible to convert this description to the zyx ordering, in

which case, θx and θy are functions of 3D marker positions,

and θz is the ‘yaw’ angle, which can not be computed from

marker positions. We look up the rotation for the correspond-

ing limb segment in the best match motion capture pose, and

simply use that θz to complete the generated 3D pose.

We will work out the method for a two limb kinematic
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Figure 2: Diagram of various coordinate systems.

chain in detail. Doing the same for the full hierarchical

model is an extension of these equations.

The rotation convention followed in all subsequent equa-

tions is

B
x=B RA ·

A
x (11)

rotates a vector expressed in the coordinate frame A to a vec-

tor expressed in the coordinate frame B. In addition,

BRA = (ARB)
T

(12)

Let the 3D world positions of the virtual markers A and

B be denoted by wxA and
wxB.The vector that lies along the

limb segment is given as

w
xAB =

wxB−
w xA

||wxB−w xA||
(13)

The rotations that describe the coordinate frame attached to

the parent limb (with respect to the world coordinate frame)

are known, and therefore,

p
xAB = pRw ·

w
xAB (14)

= (wRp)
T ·w xAB (15)

There are three rotation matrices associated with each

limb—the first describes the parent limb with respect to the

world (wRp), the second defines the zero offset of the cur-

rent limb, that is, the orientation of the limb segment when

the corresponding joint angles are zero (Rzo), and the third

represents the joint angles(R ja).

It follows that:

p
xAB = R ja ·Rzo · [0,0,1]

T
(16)

p
xAB = R1 · [0,0,1]

T
(17)

When R1 is represented in the zyx ordering, the rotation

about the z-axis γ is the yaw rotation for the limb, while

β and α are the roll and pitch respectively. From Equa-

tion 17 it is possible to determine β and α, but not γ. The

equations give us two sets, (β1,α1) and (β2,α2), both of

which satisfy the constraints. We choose (β1,α1) so that

−90◦ < β1 < 90◦.

For ease of notation,

c=p xAB = [c1,c2,c3]
T

(18)

β1 = Atan2(c1,
√

c22+ c
2
3), (19)

α1 = Atan2(
−c2
cosβ1

,
c3

cosβ1
) (20)

At this point, only the yaw rotation γ remains to be com-

puted.

The matrix R1 can be determined completely for a motion

capture pose because the joint angles (and therefore, R ja)

are known. Let us call this matrix R1known. Using the ro-

tation matrix formulae for the zyx ordering, we obtain two

possible angles γ1known and γ2known, both of which satisfy

the transcendental equations. We pick the yaw rotation that

does not lead to wrapping in the mesh and call it γ.

Combining the two angles that were obtained from the

3D virtual marker positions with the angle inferred from the

motion capture pose,

R1new = R(γ,β1,α1) (21)

R janew = R1new ·R
T
zo (22)

(23)

Finally, the joint angles are computed from R janew using the

standard rotation matrix equations [Cra89].
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