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Abstract

The skills required to create compelling three-dimensional animation using computer software are quite different

from those required to create compelling hand animation with pencil and paper. The three-dimensional medium

has several advantages over the traditional medium—it is easy to relight the scene, render it from different view-

points, and add physical simulations. In this work, we propose a method to leverage the talent of traditionally

trained hand animators to create three-dimensional animation of human motion, while allowing them to work in

the medium that is familiar to them. The input to our algorithm is a set of hand-animated frames. Our key insight

is to use motion capture data as a source of domain knowledge and ‘lift’ the two-dimensional animation to three

dimensions, while maintaining the unique style of the input animation. A motion capture clip is projected to two

dimensions. First, time alignment is done to match the timing of the hand-drawn frames and then, the limbs are

aligned to better match the pose in the hand-drawn frames. Finally the motion is reconstructed in three dimen-

sions. We demonstrate our algorithm on a variety of hand animated motion sequences on different characters,

including ballet, a stylized sneaky walk, and a sequence of jumping jacks.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Animation fromMotion/Video Data, Animation

of Articulated Figures, Believable Motion, Computer Vision for Animation]:

1. Introduction

Character animation is the art of making an inanimate char-

acter move as if it possesses a unique personality [JT95].

This art has its origins in the traditional hand-drawn style

[McC14], though there is rich variety in the tools and tech-

niques used today—sketching figures, manipulating pup-

pets, and posing computer-generated characters. Each style

of animation requires that the artist develop a different set

of skills to create a visually compelling endproduct [Las94].

Animators who create traditionally animated movies such as

Snow White and the Seven Dwarfs and Princess Mononoke

are trained in the medium of pencil and paper. The magic

of their art is intimately connected to the two-dimensional

(2D) medium; there is little automatic transference of their

skill to computer graphics software, with its sliders and in-

verse kinematics.

Although not intuitive to traditionally trained artists,

the three-dimensional(3D) computer-generated medium has

Figure 1: A frame from a hand-drawn animation and the

corresponding three-dimensional frame.

several advantages—it is easier to move the camera around,

vary lighting, create shadows, and add physical simulations.

Many of the animated movies released in the past decade

have been fully computer-generated features [Wik09]. In this

paper, we propose a method to leverage the unique talent of
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Figure 2: Input: Hand animation. Output: 3D animation.

Our key insight is to use motion capture data as domain in-

formation. We generate 3D animation that matches the style

elements (pose and timing) of the hand animation.

traditional animators to create 3D animation while allowing

them to continue to work with pencil and paper.

The 2D animation workflow starts with an animator who

sketches the character’s movement at 6-12 frames per sec-

ond. A cleanup/inbetweening artist cleans up the anima-

tor’s lines and draws in the remaining frames to generate 24

frames for every second of animation. Our goal is to lift the

2D animation to three dimensions on a computer generated

character (Figure 1) at this stage in the pipeline. This work-

flow is quite different from the typical 3D computer gener-

ated animation pipeline, which starts with modeling a char-

acter, rigging it for intuitive control, and finally animating

it— all within a 3D computer graphics software package.

The problem of lifting 2D animation to 3D can be framed

as a 3D reconstruction problem [Kan81, LC85] because in-

formation about the third dimension exists as a mental model

in the artist’s head, but is not directly represented in the

drawing. Reconstruction is made more challenging because

the parameters underlying the artist’s drawings can change

from frame to frame. The size and shape of the character’s

limbs may change intentionally to convey information about

movement (e.g. tension), or unintentionally, as a result of

imprecision or noise in the drawings. The camera exists in

the artist’s head, and parameters such as field of view may

vary throughout a sequence. In addition, hand animation and

computer-generated animation may be perceived differently

by viewers—for example, John Lasseter hypothesizes that

holding a pose for several frames is acceptable for a hand

animated sequence, but makes the motion look lifeless in

3D [Las94].

Most importantly, in our experience, creating compelling

three-dimensional animation is more than minimizing an im-

age distance metric [BSB∗07], [SB03]. We want to capture

the style of the artist’s hand animation, and by style we mean

the nuances of pose and timing that give a character its per-

sonality. There are many components that go into an artist’s

unique style: squash and stretch, anticipation, follow through

and exaggeration [JT95]. We observe that some of these

style elements are contained in the poses of the animated

character. In this paper, we focus on creating 3D animation

which captures (1) the pose of the character in each frame,

and (2) the timing of the series of frames. We do not capture

significant model changes such as squash and stretch.

The input to our algorithm is a sequence of hand animated

frames (Figure 2). Our key insight is to leverage motion cap-

ture data as a source of domain knowledge to aid in resolving

ambiguities and noise in the 2D drawings. We show that 3D

animation can be created by modifying motion capture ani-

mation with style elements from the hand-drawn frames. We

modify the timing of the motion capture poses to match the

hand-drawn poses via dynamic time warping. We introduce

a translation and scale invariant pose descriptor to capture

pose information. We present results on a variety of hand

animations including a ballet sequence, a stylized sneaky

walk and a jumping jacks sequence. We also evaluate our

algorithm quantitatively using a motion capture sequence as

input.

2. Related Work

The graphics community has recognized that the medium

of pencil and paper (or stylus and tablet) is intuitive in

many respects, for example, to rapidly sketch character mo-

tion [TBvdP04], or key poses [DAC∗03]. In Section 2.1, we

discuss the work that is most closely related to ours in that

the 3D pose is being modified or reconstructed based on an

artist’s 2D input. The computer vision community is also in-

terested in reconstructing articulated 3D pose from images

for such applications as marker-less motion capture, activity

recognition and generation of novel viewpoints. In Section

2.2, we discuss representative works that assume a known

skeleton, and use motion capture data as domain knowledge

in reconstruction.

2.1. 3D Animation from a Hand Animator’s Input

Animation researchers have attempted to use input from tra-

ditionally trained artists to make motion capture animation

more expressive [LGXS03]. Li and colleagues start with a

motion capture animation, and ask an artist to redraw cer-

tain key frames to make them more expressive. A user alters

the pose and limb lengths of the skeleton in the correspond-

ing motion capture frame to match the drawing as closely as

possible. The algorithm then warps the mesh to match the

artist’s drawing and provides a seamless transition to previ-

ous and subsequent frames. Our work attempts to exchange

the human-in-the-loop for a more automatic method that sets

the skeletal poses for an entire hand-animated sequence.

Davis and colleagues generate all possible 3D poses un-

derlying a given hand-drawn stick figure [DAC∗03]. They

design a user interface to present these poses in order of de-

sirability. The onus of picking the ‘right’ 3D pose rests on the

user of the interface. Our work complements this work as we

generate only one 3D pose for each input drawing—the onus

is on our method to select the ‘right’ 3D pose so that the final

animation captures the style of the original hand-animation.
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In [BLCD02], Bregler and colleagues track a 2D animated

character and retarget the animation onto new characters in

2D and 3D. Their method requires that the animator provide

key poses, which their algorithm interpolates and warps. In

the case of retargetting to a new 3D character, the animator

will have to generate key poses in 3D, most likely using a

commercial animation package. We build upon this previous

work to be able to generate all the skeletal poses without

requiring that the artist interact with 3D software.

2.2. 3D Human Pose Reconstruction from Images

We note that much research has been devoted to studying

the problem of reconstructing 3D pose from 2D image data.

An extensive survey of techniques can be found in [MG01]

and [Gav99].

A large body of work assumes a known 3D skeleton and

tries to find the skeletal parameters that minimize an image

distance metric [LC85,SB01,Tay00,DCR01,ST03,Smi07].

Notably, Taylor [Tay00], DiFranco [DCR01] and Sminchis-

escu [Smi07] track 3D human pose using monocular input

data. DiFranco and colleagues [DCR01] assume that cam-

era parameters and 2D correspondences are known for every

frame to be tracked, and determine the 3D poses that min-

imize the image projection error under kinematic and dy-

namic constraints. Taylor [Tay00] does not assume that the

input images were acquired using a calibrated camera, but

asks a user to choose the desired pose from the set of all pos-

sible solutions, for every input image. Sminchisescu [ST03]

estimates articulated human motion using image features

like optical flow, motion boundaries and edge energies. In

general, images provide a rich set of features that can be

used for tracking robustly and handling noise [SB03]—our

inputs are line drawings, which lack this richness.

Even though reconstruction of human poses has been

done without human motion models [BM98, DCR01,

CTMS03], recent reconstruction techniques have benefited

from learning probabilistic models of human motion—either

from motion capture data [HLF99, Bra99, SBF00, SBS02,

AT04,AT06,UFF06], or, from 3D range scan data [BSB∗07].

In particular, Sidenbladh, Black and Sigal [SBS02] observe

that for high dimensional data (such as human motion) it is

easier to match to segments in a huge database, than it is to

model the database. They generate a 3D pose by picking a

sample from the database in such a way that the previously

generated poses are a good match to the sample’s previous

history. This 3D pose can be used as a prior for image-based

tracking as in [SB01].

The most important difference between our work and the

existing body of research is that the vision community has

input that has a true 3D interpretation. In contrast, the skill

of an artist lies in how cleverly they can convey the style

of the motion, and their techniques may include modifying

perspective, altering lengths of limbs and curving bones—

as a result, there is likely no correct 3D interpretation of

Figure 3: 3Dmotion capture poses are projected to 2D using

a user-specified camera.

the hand-drawn frames that fits precisely to a hierarchical

skeleton. Vision researchers are interested in tracking human

figures in a reliable and automated manner, whereas we are

interested in capturing the essence of a 2D character’s move-

ment. In addition, in the presence of noise, there is a trade-

off between tracking precisely and maintaining naturalness

of movement. We choose naturalness and smoothness of mo-

tion over precise tracking when faced with this trade-off.

3. Approach

The input to our algorithm is a sequence of hand-drawn im-

ages (Figure 3). A user identifies virtual markers on the ani-

mated figure’s joints in every input frame, denoted x̃h. They

also specify an orthographic camera R that approximates the

imaginary camera used by the artist to create their draw-

ings. Both these inputs can be reasonably integrated into the

2D animation workflow because the cleanup artist already

touches up every frame of the animation when it reaches

their station. In practice, it takes less than a minute per frame

to mark out the virtual markers, and a couple of minutes per

sequence to specify the camera using a simple GUI. We also

assume that a 3D model has been constructed and rigged

with a simple skeleton that represents a good approximation

to the hand-drawn figure.

We take advantage of motion capture as a source of data

(see, for example,mocap.cs.cmu.edu) and assume that a mo-

tion capture segment, X3Dmocap, is given that is a reasonable

match to the hand animated sequence (Figure 3). The timing

of this motion capture segment depends on the style of the

actor who was motion captured, and is bound by the laws of

the physical world (e.g. gravity). In contrast, the artist uses

timing to communicate emotion or tempo, and may choose

not to respect physical laws [Bab09]. The first step in our

method is to warp the motion capture segment to align with

the timing of the hand animation (Figure 4). The second step

is to align to the pose intended by the artist in each frame

of their drawing (Figure 5). We now describe each of these

steps in more detail.
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3.1. Description of Skeleton

The complete skeleton for a 3D character is parametrized

by the three rotation values for M joints and the 3D world

position of the root. The pose at a time t is denoted by X ja,

which is a (3M+3)×1 vector.

For the purpose of lifting the 2D pose to three dimensions,

we use a simplified parametrization—the 3D world positions

of N virtual markers. Then, the 3D pose at a given time t is

X3D =
[

X1
T
,X2

T
, . . . ,XN

T
]T

. (1)

where each Xi ∈ R3 is the 3D position of a virtual marker,
and X3D is a 3N × 1 vector. These marker positions con-
tain information about two of the three joint angles for each

joint. We compute the third joint angle, yaw rotation about

the bone of the limb segment, separately to obtain the com-

plete pose X ja, which can be sent to a commercial software

package for rendering (Section 3.6).

In our examples, N is either 19 or 24, and M is either

20 or 21. This character model is hierarchical in that every

joint is defined relative to its parent in the hierarchical chain.

An example limb hierarchy would be pelvis - upperback -

lowerback - right clavicle - right humerus - right radius -

right hand. We define the hierarchical chains in terms of both

joint angles and corresponding virtual markers.

3.2. Pose Descriptor

We introduce a pose descriptor to extract translation and

scale invariant information about a 2D pose—the intuition

behind this descriptor is that a character can be in the same

pose at different locations, and two characters can have the

same pose even if their relative limb lengths are different. We

are inspired by shape contexts [BMP02], which are intended

to be descriptors for matching two input shapes. Our goal is

the inverse—to generate a 3D pose to match the descriptor

extracted from the input hand drawing.

For a given 2D pose, the descriptor starts at the root

(which is the pelvis) and travels every hierarchical limb

chain. For every link in the chain, we determine the posi-

tion vector of the child marker in a coordinate frame fixed to

its parent. As illustrated in Figure 5, the position vector for

the wrist would be calculated with respect to a coordinate

frame fixed to the elbow. The reference orientation for this

coordinate frame can be absolute (i.e. oriented along the x-

axis of the world coordinate frame), or relative (i.e. oriented

along the corresponding limb, in this case, right radius). The

pose descriptor P for a given pose would be the vector of po-

lar angles for the position vectors of K virtual markers of the

skeletal model,

P= [θ1,θ2, ...,θK ]T (2)

where K is the number of limbs that are needed to charac-

terize the pose. For all our examples, we use K = 8 (left and
right humerus, radius, femur and tibia) .

Figure 4: The projected motion capture segment is retimed

to match the timing of the hand animated frames.

Figure 5: The pose descriptor consists of in-the-image-

plane angles for every limb segment. The limb segments of

the projected motion capture pose are modified to match the

pose descriptor for the hand drawn pose via planar rotation.

3.3. Temporal Alignment

Given the sequence of hand-drawn poses x̃h, we use the

dynamic time warp algorithm to re-time the motion cap-

ture segment X3Dmocap. This algorithm aligns two variable

length time series, subject to monotonicity in the time di-

mension. The optimal alignment minimizes the total dis-

tance between warped elements in the two series [SC90],

[Ell03].

In order to define a distance metric to compare hand-

drawn 2D poses with motion capture poses, we project each

3D pose X3Dmocap using the orthographic camera R to get

2D poses x̃2D. We compute the pose descriptors Ph and P2D
for every pose x̃h and x̃2D. The distance between a hand-

drawn pose and a motion capture pose (either 3D, or its pro-

jection) is defined as the sum of the internal angle difference

between the angles comprising the corresponding pose de-

scriptors,

d(X3Dmocap, x̃h) = d(x̃2D, x̃h) = d(P2D,Ph) (3)

d(P2D,Ph) =
K

∑
i=1

f (θ2Di,θhi) (4)

where f returns the internal angle difference between θ2Di
and θhi.
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Figure 6: The reconstructed 3D pose minimizes the error

in projected marker positions. We determine the joint angles

corresponding to the 3D marker positions, and estimate yaw

from motion capture data.

3.4. 2D Pose Alignment

Given the retimed motion capture segment, our goal is to

generate 3D poses to match the pose descriptors for the cor-

responding artist drawn poses. Because the input provides

information about only two dimensions of a 3D pose, we

project the 3Dmotion captured posesX3D to two dimensions

with the user-defined camera R. The projected motion cap-

ture poses are denoted x̃2D. We achieve our goal in two steps:

first, modify the projected motion capture poses x̃2D (Figure

5), and then, reconstruct the 3D marker positions from the

modified projections (Figure 6).

We divide the character model into ‘upper body’, which

consists of the hierarchical chains containing the two arms

and the head, and ‘lower body’, which consists of the joint

chains involving the legs. We make this distinction because

limbs that are in contact with the ground need to be handled

differently from limbs that are not in contact.

We start at the pelvis and work our way through each hi-

erarchical chain of the upper body. Each limb segment of the

projected motion capture pose is rotated in the image plane

so that the in-plane polar angle is the same as the desired

pose descriptor, that is, the corresponding polar angle in the

hand drawn pose (Figure 5). The lower body is not modified

in this step.

The modified pose is denoted x2D. Through this modifica-

tion step, we attempt to extract the pose of the hand-drawn

character while filtering out much of the noise and impreci-

sion.

3.5. 3D Marker Reconstruction

Given the 2D pose x2D, we infer the missing third dimen-

sion. We find 3D virtual marker positions X∗3D such that

X
∗

3D = argmin
X3D

(ep+λ1el +λ2er) (5)

where ep is the projection error, el is the error in limb

lengths, er is the motion capture regularization term, and λ1

and λ2 are the associated weights. Increasing λ1 permits the

limb lengths to change more (accounting for small amounts

of squash and stretch in the artist drawn pose), and increas-

ing λ2 biases the 3D reconstruction towards the motion cap-

ture pose.

The first term ep in the error function minimizes the sum

of the squared distance between the projection of X3D and

the 2D marker positions that describe the pose x2D,

ep = ‖RX3D−x2D‖. (6)

Equation 6 is underconstrained because there are 3N un-

knowns and 2N constraints. Because we assume that the in-

dividual limbs of the 3D character model are rigid bodies,

we enforce constant limb lengths through the second error

term el . The positions of the two virtual markers on the ends

of a given limb can be denoted by (xi,yi,zi) and (x j,y j,z j).
Then, the length of the limb is

(xi− x j)
2+(yi− y j)

2+(zi− z j)
2 = L2 (7)

where L is the length of the given limb. We can linearize

Equation 7 using a Taylor series expansion around the best

match motion capture pose and stacking the length equations

for each limb to yield

el = ‖AlimbX3D−blimb‖. (8)

where Alimb and blimb are functions of the retimed motion

capture pose and L.

In Section 3.4, we discussed how to modify the projec-

tion of the best match motion capture pose X3D. We use this

3D pose as a prior for the reconstruction from the modified

projection x2D. The regularization term is

er = ‖X3D−X3Dmocap‖. (9)

The final objective function (Equation 5) can be rewritten

in terms of these three error terms.

X
∗

3D = argmin
X3D

‖RX3D−x2D‖+λ1‖AlimbX3D−blimb‖

+λ2‖X3D−X3Dmocap‖

We can formulate a linear least squares system to estimate

the optimal X3D that minimizes this objective function, in

closed form,

W





R

Alimb
I



X3D =





x2D
blimb
X3Dmocap



 (10)

WA f ullX3D = b f ull . (11)

whereW contains the weights of the various error terms.

The set of solutions X3D lies in a low dimensional sub-

space of the set of all possible poses [SHP04]. Each pose
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can be modeled as a linear combination of basis vectors,

X3D = µ+
P

∑
i=1

bici (12)

= µ+CXb (13)

where ci is a basis vector, bi is the corresponding weight,

C is a 3N × P matrix of basis vectors, Xb is a vector of
weights for each of the P basis vectors, and µ is the mean.

Principal Component Analysis finds the set of basis vectors

that maximize variance in a lower dimensional representa-

tion. We perform PCA on an activity specific database to find

the set of basis vectors for each example motion separately.

The weighted least squares system in Equation 10 can

then be written as

WA f ull (CXb+µ) = b f ull , (14)

WA f ullCXb = b f ull−A f ullµ, (15)

WAXb = b (16)

We can find the least squares solution to Equation 16 and

reproject Xb to get the 3D marker positions X3D. As this

is a linear system, the solution is the global minimum, is

numerically stable, and can be found in closed form.

3.6. Computation of Joint Angles: Roll, Pitch, Yaw

Every limb is described by the three joint angles (roll, pitch

and yaw) relative to its parent limb. Because the root joint

for our character model is the pelvis, we start by recovering

the rotation of the pelvis with respect to the world coordi-

nate frame via procrustes analysis (details are provided as

supplementary material) [JCG04] and work our way down

each hierarchical chain to generate the full pose X ja.

The marker positions X3D give us two out of the three

joint angles for a limb segment, roll and pitch. We compute

yaw rotation from motion capture data.

The joint angles for our skeletal model (Section 3.1) describe

the rotation of the limb segment in the xyz ordering—when

we convert this description to the zyx ordering, θx and θy are

functions of 3D marker positions (roll and pitch), and θz is

the ‘yaw’ angle, which can not be computed from marker

positions. We look up the rotation of the corresponding limb

segment in the motion capture pose, and simply use that θz
to complete the generated 3D pose.

4. Results

We demonstrate our method on four hand animations by two

artists. The examples include ballet, a stylized sneaky walk,

a jumping jacks sequence, and a ‘happy flower’ sequence.

The ballet dancer is drawn to be a fully fleshed character,

while the rest of the characters are drawn as stick figures.

All our results are best seen as video.

Figures 7 and 9 are frames taken from the videos for the

Figure 7: Note that the head bobs from side to side in the 3D

animation generated by our method, and the arms match the

hand animation much more closely than the motion captured

poses.

ballet sequence and the jumping jack sequence. The top row

contains frames from the hand animated sequence, the mid-

dle row is the 3D animation generated by our method, and

the bottom row is the time aligned motion capture segment.

The skirt and ponytail on the ballet dancer, and the hair on

the jumping cartoon were separately simulated. In Figure 7,

we can see the head move from side to side in the 3D anima-

tion (as in the hand animation). We found that it was quite

difficult for a human subject to perform a vigorous action

like jumping jacks while bobbing their head. As a result,

our motion capture database does not contain any jumping

jacks sequence with significant side-to-side head movement.

A comparison of the character’s arms in the frames in Figure

7 also illustrates how our algorithm modifies the motion cap-

ture segment to better match the hand-drawn poses. In Fig-

ure 9, we see how the 3D animation generated by our method

matches the ballet animation. Figure 8 shows sample frames

from the ‘happy flower’ and ‘sneaky walk’ sequences. The

feet of the flower are clamped to the ground as they were in

the hand-drawn animation.

The free parameters in our method are the weights of

limb length constraints λ1 and regularization λ2, the num-

ber of principal components P and the length of the smooth-

ing window w used to smooth the input markers x̃h. In prac-

tice, λ1 = 0.001 and λ2 = 0.1 work well for almost all the
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Figure 8: Results on a happy flower and a stylized walk.

Table 1: Reconstruction error when camera parameters are

varied.

∆θ ∆φ mean rms error max rms error

(degrees) (degrees) (meters) (meters)

0 0 0.0045 0.0173

5 0 0.0046 0.0173

-5 0 0.0045 0.0174

10 0 0.0048 0.0179

-10 0 0.0047 0.0175

0 10 0.0050 0.0169

0 -10 0.0051 0.0180

Baseline is the error between ground truth marker positions

and time aligned motion capture marker positions : mean

rms error = 0.0062, max rms error = 0.0257

results we generated. The pirouette sequence in the ballet

example required higher regularization λ2 = 1 because 2D
information without any temporal coherence is not sufficient

to disambiguate whether the arms are in front of the torso or

behind it. We chose P = 20 for all the examples.

We also evaluate our method quantitatively by projecting

a motion capture walk sequence to 2D using a known cam-

era. The projected poses are the target poses (x̃h) for the eval-

uation. The results are graphed in Figure 10. The ticks on the

x-axis represent the 3D positions of the virtual markers i.e.

the elements of the vector X∗3D. Ticks 1 through 42 repre-

sent markers on the ‘upper body’, that is, the limb segments

Figure 9: The arms and torso better match the hand anima-

tion compared to the motion capture data.

Figure 10: Error in 3D marker position.

that were modified to match the pose descriptor of the hand-

drawn pose. The red curve is the RMS error between the

3D marker positions of the best match motion capture seg-

ment and the ground truth marker positions, for a 100 frame

segment. The blue curve is the RMS error between the 3D

marker positions generated by our method (called 3D recon-

struction), and the ground truth marker positions.

We also investigate how the error in specifying R affects

reconstruction error. Because we assume a simple ortho-

graphic camera model, the camera can be parametrized by

the azimuth and elevation angles. The green curve in Fig-

ure 10 plots the RMS error in marker position (over all N

markers) when the azimuth is off by 5◦. In Table 1, we report

the mean and maximum RMS error in 3D marker positions
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when the azimuth and elevation are off by ±5◦ and ±10◦.
The baseline is the mean and maximum RMS error between

the marker positions of the best match motion capture seg-

ment and ground truth (the red curve in Figure 10). For er-

rors up to ±10◦, the error in the marker positions generated
by our method is less than the baseline. This demonstrates

that the pose descriptor is robust enough to tolerate a small

mismatch between the user-specified camera and the artist’s

imaginary camera.

Our method takes approximately 2 minutes to generate

joint angles for a 200 frame input sequence—it takes around

7 seconds to compute the pose descriptors for all the frames,

and around 1 second to compute the 3D reconstruction using

the least squares minimization. Most of the 2 minutes are

spent in time alignment and in computing joint angles from

marker positions.

5. Conclusion and Discussion

We have demonstrated a method that generates 3D anima-

tion of human motion from traditional hand-drawn frames.

Our key insight is that domain information can help resolve

ambiguities and handle the noise that is inherent in 2D hand

drawings. Our approach extracts the style elements of the

artist’s drawings and transfers them to 3D. We use motion

capture data as a starting point, and describe a pose descrip-

tor to quantify the difference between a motion captured

pose and a hand-drawn pose. By modifying the projected

motion capture pose in 2D, and then lifting the modified pose

to 3D, we create new 3D animation.

An assumption made early on in our method is that model

changes such as the lengthening of limbs, or the curving of

bones, are ‘noise’, not input data. The technique of “squash

and stretch” is used to great effect by hand animators; our

method generates the 3D poses for a rigid skeleton and does

not address the significant changes in shape seen in tradi-

tional squash and stretch. A natural next step would be to in-

corporate this element into the 3D animations we generate.

There can be many ways to compare human poses, for exam-

ple, image measurements such as moments [Bra99], various

filter responses [SB01], chamfer distances [BSB∗07], or the

basic bit-xor [CTMS03], all of which are global descriptors.

Histograms of shape contexts [AT04, AT06] are compara-

tively ‘quasi-local’ in that they encode silhouette shape over

angular and radial bins centered at regularly spaced points

on the silhouette. These descriptors could be useful if we

were comparing changes in the silhouette shapes of individ-

ual body parts and not only the orientations of the bones.

One limitation of this approach is that we are dependent

in a few essential ways on the motion capture segment that

we start with. Because foot plants are picked from the mo-

tion capture data, we cannot change the given motion cap-

ture walk to a wider stance walk in our results. Also, the

yaw rotation for every limb is computed from motion cap-

ture data. So, if the database contains a hand wave with the

palm facing forward, we cannot change that to have the palm

face backward. Despite this, motion capture data provides a

good starting point because it is a sequence of smooth, nat-

ural and coherent 3D poses. This sequence is not the 3D an-

imation we desire because it is in the style of the actor who

was captured, and the motion is fundamentally limited by the

laws of physics. Animation, on the other hand, involves con-

veying the unique style of the character and the ‘plausibly

impossible’ in the context of physics. Our method uses mo-

tion capture data as a starting point to create the desired 3D

sequence— one which contains the same set of moves, but in

the style and personality of the animated character. It would

be interesting to think about how to extend this approach for

motions that cannot be easily captured in a motion capture

studio.

Another limitation is that the pose descriptor can only

handle in-the-image-plane mismatch in limb angles—we

have not included foreshortening in our definition. This lim-

itation is perhaps not so crucial because the animator picks

camera angles that show the motion off well as part of

the animation process. We choose this pose descriptor over

the sum of squared distances between virtual marker posi-

tions [HLF99,DCR01,Tay00] as it is a local descriptor and

can be used to capture subtle differences in the angular orien-

tation of individual body parts. Also, the properties of trans-

lation and scale invariance are well suited for comparing mo-

tion captured poses and hand-drawn poses because the actor

and the character could occupy different parts of the image,

and may have different body proportions.

The third limitation of our method is that we use a simple

orthographic camera model instead of the general perspec-

tive form. This choice allows us to formulate the 3D recon-

struction problem as a linear system. We can then solve the

minimization in a single step by finding the least squares so-

lution. This formulation influenced many of our design deci-

sions, for instance, representing pose as the set of 3D marker

positions instead of hierarchical joint angles.

Our work is an important step in leveraging the unique tal-

ent of traditional hand animators to create animations in the

3D medium. Many interesting interactions are possible in

this scenario. For example, one can physically simulate the

ballet dancer’s skirt once we have the dancer’s motion in 3D,

and composite it onto the hand animation to reduce the bur-

den on the hand animator. Or, allow a hand-drawn character

to interact with physical simulations in the 3D environment,

batting a ball, for example.
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