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Abstract. This paper addresses the well-established problem of un-
supervised object discovery with a novel method inspired by weakly-
supervised approaches. In particular, the ability of an object patch to
predict the rest of the object (its context) is used as supervisory signal
to help discover visually consistent object clusters. The main contribu-
tions of this work are: 1) framing unsupervised clustering as a leave-one-
out context prediction task; 2) evaluating the quality of context predic-
tion by statistical hypothesis testing between thing and stuff appearance
models; and 3) an iterative region prediction and context alignment ap-
proach that gradually discovers a visual object cluster together with
a segmentation mask and fine-grained correspondences. The proposed
method outperforms previous unsupervised as well as weakly-supervised
object discovery approaches, and is shown to provide correspondences
detailed enough to transfer keypoint annotations.
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1 Introduction

Proponents of unsupervised representation learning [1I23l4] and unsupervised
object discovery BIGITISIOTOITTIIZ] have long argued that these approaches have
the potential to solve two fundamental problems with supervised methods. The
first is obvious: training labels are expensive to collect. More subtly, human an-
notations can introduce unwanted biases into representations [13]. Unsupervised
object discovery has, however, proven extremely difficult; one state-of-the-art
result [3] uses a million CPU-hours, yet reports only three discovered objects
(cats, faces, and bodies), and the “neurons” sensitive to these objects could only
be identified through the use of labeled data.

At its core, object discovery is a clustering problem; the goal is to group
together image regions (patches or segments) that depict the same object. Stan-
dard clustering algorithms like K-means rely on a good distance metric, but
unfortunately, distances in different regions of the feature space often aren’t
comparable [I4]. This means that the “tightness” of each cluster will be a poor
measure of whether it actually depicts an object. A number of recent works have
argued that weak supervision can be an effective way to get more visually mean-
ingful clusters [TATHITOIT7IIRITIR20/2TI22/23]. The supervision (e.g., scene labels,
GPS coordinates, etc.) gives information about which image regions should be
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Fig. 1. Suppose we want to create a visually meaningful cluster containing the cat
eye patch in (a). (b) shows a cluster produced by simple nearest neighbors, but there
is too little information in just a cat eye, so it is confused with a motorbike. Nearest
neighbors on a larger patch (c) introduces new errors because the patch now captures
too much variation. Our proposed method (d) starts with the cluster in (b) and uses
the context as a “supervisory signal” to discard the incorrect match.

close together (e.g., belong to the same cluster) and which should be far apart.
But can a similar effect be achieved without any supervision?

The main contribution of this paper is the use of context [24] as a supervisory
signal. At a high level, context provides similar information as a weak label: e.g.,
given a set of matched cat eye patches on Figure [Ip, we expect the context
surrounding those patches to depict cat faces. Errors in the matching (e.g. the
motorcycle wheel) can then be detected and discarded because the context will
not match. (One might object that we could simply include context as part of
the feature used for matching, but Figure [Tk shows that this performs poorly, as
it is unable to handle the large variations between the cat faces).

Using context as a supervisory signal means we need a way to determine
whether two contexts are sufficiently similar. However, standard distance metrics
will be just as unreliable at measuring the visual similarity of the context as the
visual similarity of the patches themselves. An ‘easy’ context (e.g., a uniform
region) will have too many matches, whereas a ‘difficult’ context (e.g., a complex
shape) will potentially match nothing. Our key insight is to normalize for this,
by modeling the ‘difficulty’ of the context. Mathematically, our formulation is
reminiscent of statistical hypothesis testing for object recognition [25]. For a
given image, we have two competing hypotheses: 1) that the context in that
image is best described as a ‘thing,’” i.e. an object with a well-defined shape,
versus 2) that the image is best described as ‘stuff’ [26], i.e. that it is best
modeled using low-level image statistics. Both models “predict” what the context
will contain, i.e. they produce a probability distribution in image feature space,
such that we can compute a single probability value for the image context. If the
thing model predicts better, then the cluster is likely a good one, and the patch
is likely a member of it. We perform a simple likelihood ratio test to determine
if this is the case.

At what granularity should our models be allowed to predict? If we force the
thing model to predict a cat face all at once, even a correct prediction might align
poorly with the ground truth. Evaluating whether such a prediction is correct
then becomes difficult. Making small predictions near the initial patch will be
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Fig. 2. Algorithm overview. Given a “condition” region (in green), our algorithm pre-
dicts the “prediction” region (in red) twice: once using a model that assumes corre-
spondence with some complex shape (the thing model, bottom), and once assuming
that the region is best modeled as texture (the stuff model, top). Both models’ predic-
tions are compared to the true region. If thing outperforms stuff, the prediction region
is considered to be part of the discovered object. This process then repeats with the a
new prediction region (anatomically accurate stick-figures from xked [28])

easier because errors due to misalignment will be small, but they will contain
little information. Our approach finds middle ground by iteratively predicting
small regions over a larger area. Between each prediction, we align the model
to the true data. That is, we “grow” the predicted region one small step at a
time, reminiscent of texture synthesis [27]. The model’s alignment errors are thus
corrected before they drift too far.

2 Overview

At a high level, our pipeline is similar to algorithms for mid-level patch discov-
ery [T6/T5], especially in the early stages. Like [16], we first sample a large number
of random patches (10,000 for our PASCAL VOC experiments), and then find
the top few nearest neighbors in HOG feature space for each of them, across
the entire dataset. ([I6] uses normalized correlation as a distance metric, but we
found Exemplar LDA [29], with a Gaussian learned from the entire unlabeled
dataset, to give slightly better matches). These cluster proposals form the input
to our object discovery algorithm. At the high level, the algorithm: 1) discards
patches within each cluster whose context is inconsistent with the other patches,
2) ranks the clusters, and 3) discards clusters that do not contain visually con-
sistent objects. The ranking (i.e. ‘score’ of a cluster) is simply the sum of the
scores of patches that weren’t discarded. Thus, the meat of our algorithm boils
down to the process of scoring the context around a single patch. A given patch
is scored using all the other patches in the cluster using leave-one-out prediction.
That is, given n patches in a cluster, we use the context associated with patch
1 through patch n — 1 to predict the context around the n’th patch.

But as was discussed earlier, a major difficulty is that some contexts are
easier to predict than others. For instance, given a patch of blank wall, it’s
easy to predict that the context will be similarly blank. If we don’t account for
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this, then any cluster that’s full of blank patches (or any other simple texture)
might be declared an object. Note, however, that this prediction doesn’t really
require the algorithm to understand that the patch is a wall; a highly accurate
prediction could be made just based on low-level statistics. Hence, we don’t
measure how well the context of a patch can be predicted, but instead, how
much the clustering helps us predict the context. Specifically, our algorithm uses
two models that produce two predictions. The first—the stuff model-—produces
predictions based solely on knowledge of low-level image /texture statistics, which
it extrapolates from the single patch whose context it is predicting. This model
could easily predict that a blank wall will continue indefinitely. The other—the
thing model—uses the specific correspondence defined by the cluster to make its
predictions. Figure [2] illustrates why this is effective. The initial patch cluster
(which generates the correspondence outlined in green) contains the bodies of
the stick figures. The thing model can align these bodies and predict the presence
of the neck. The stuff model, however, uses only low-level image statistics and
predicts (incorrectly) that the contours will most likely continue straight. We
then compare the likelihoods; the patch is considered a member of the cluster if
the thing likelihood is significantly higher than the stuff likelihood.

To make this algorithm work as stated, however, we must compute the likeli-
hood P(c|p) of the context ¢ given the patch p, under two separate models, and
do so with reasonable accuracy. The problem of generative image modeling has
a long history in computer vision [TJ4253003TI32], but historically these algo-
rithms have performed poorly for object recognition problems, especially com-
pared to the discriminative methods that have, of late, largely displaced them in
the field. A core difficulty shared by generative methods is that they assume the
image features are independent, conditioned on some set of latent variables. Ob-
taining a likelihood P(c|p) requires integrating out those latent variables, which
is generally intractable. Approximations (e.g. MCMC or variational methods) ei-
ther do not scale well, or produce probability estimates that cannot be compared
between different models. To get around this problem, our algorithm partitions
the context ¢ into small regions ¢ (for example, if ¢ is the HOG representation
of the context, each ¢, may be a single cell.) Next, we factorize the conditional
likelihood as follows:

c|p = H Ck|Cl,...,Ck717p) (1)

Here, the ordering of the ¢;’s can be whatever makes the computation easiest (in
the case of HOG, ¢, may be adjacent to the region covered by {ci, ..., ck—1,p}.)
This deceptively simple algebraic manipulation—really just an application of
the probability chain rule—is remarkably powerful. First, note that it is not an
approximation, even though it makes no independence assumptions. It remains
tractable because the cj’s are actually observed values; unlike in latent-variable
models, the c¢;’s do not need to be integrated out in order to compute a valid
likelihood. Furthermore, each c¢; may be chosen so that its conditional distribu-
tion is well approximated with a simple parametric distribution (we find that a
single HOG cell is well approximated by a Gaussian), even though we do not
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assume anywhere that the joint distribution has a parametric representation.
Despite these good properties, we have found no previous work which attempts
to compute image likelihoods using such a factorization (note that [31] comes
close; however, their model still contains higher-order potentials, meaning that
the terms in the product cannot be computed independently, and that inference
still requires MCMC). We show that these incremental predictions can be made
efficiently and with surprising accuracy, enough that the resulting likelihoods
can be compared between our thing and stuff models.

3 Algorithm

We first formalize our notation. Assume we have a cluster proposal containing
n patches. We select one ‘held out’ patch, and number it 0 (the others are
numbered 1 through n — 1). Let H° denote the feature representation for the
image containing patch number 0, which we will call the query image. Let H,g
be the k’th feature in HY, in our case, a single HOG cell. Let P index the subset
of features in H° that were inside patch 0 (in Figure [2} P would be a strict
subset of the region outlined in green for all but the first term in the product
in Equation . Finally, let C be an ordered set of indices for the features in the
context, i.e. the complement of P (in Figure 2} C indexes the remainder of the
green, the red, and also the rest of the image). This means we predict C[1] using
P alone, C[2] using P UC[1], and so on. C[1 : t] indexes the first t HOG cells in
the context that get predicted. Our original factorization (Eq. for the thing
model can now be written more formally as:
IC]
PT(H8|H7OD) = HPT(Hg[t]|H8[1:t—1]aH703) (2)
t=1

We will have a similar factorization for Pgs of the stuff model. In Figure [2] the
region outlined in red corresponds to Hg[t], and those outlined in green corre-
spond to {Hg[lztfl]’ HY}. We repeat this computation of P.(HQ 1 |H8[M71], HY)
for all t; i.e. at the next iteration, the red region will get added to the green
region and we’ll choose a new red region.

For simplicity, we assume that the conditional distributions are Gaussian
for both thing and stuff models; we find empirically that forcing both thing
and stuff predictions into the same, simple family makes the likelihoods more
comparable. To ease exposition, we’ll call the HOG cells {H8[1:t71]aH70>} the
“condition” region, and Hg 1 the “prediction” region. We choose the order of C
by increasing distance from the center of the patch; this means that, for each
HOG cell we predict, at least one of its neighbors will be in the condition region.

3.1 Stuff Model

To construct the stuff prediction PS(Hg[t] \Hg[lzt_l],H%) (which we will abbre-
viate as pg[t]), the simplest approach is to 1) extract a subset of the condition

region that is spatially close to C[t], 2) find nearest neighbors for that subset
from a large database of images, and 3) use the context around those retrieved
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Fig. 3. Summary of our stuff model. (a) Given a condition region (green), we extract
cells (blue) that are near to the prediction region (red). We assume we have a dictionary
reminiscent of visual words (in our case, a GMM) learned from many sampled patches
(b-c). For each dictionary element, we estimate the conditional distribution over the
prediction region (red). We remove cells that aren’t in the condition region (d) before
assigning the extracted cells to the dictionary. Finally, we use the associated conditional
distribution as our prediction.

neighbors to form our prediction. Of course, this would be extremely computa-
tionally expensive, so we instead summarize our dataset using clustering, in a
manner reminiscent of visual words.

Our more efficient approach is shown in Figure [3] We begin with a query
image (Figure ), with a condition region (in green) and a prediction region (in
red). We assume that we have available a ‘dictionary’ (Figure ) constructed
from a large sample of image patches (Figure )7 each of which was in a shape
that’s similar (but not necessarily identical) to the shape of the selected subset
of the condition region (which is outlined in blue in Figure [3p). We learn 12
separate dictionaries to ensure that we always have a reasonably good match to
a given local condition region. To construct these dictionaries, we first sample
about a million such patches (Figure ), and learn a Gaussian Mixture Model
(GMM) from the HOG features of these image patches. We temporarily ignore
the region of these patches that corresponds to the prediction region (outlined in
red in Figure ) and learn the GMM only on the rest. We restrict each GMM
component to have a diagonal covariance matrix for computational efficiency.
We use 5000 GMM components, and show some centroids in Figure [3k. We also
estimate, for each component of the GMM, the prediction that will be made
by this component for the red region. For this, we first soft-assign each of our
sampled patches to the components of the GMM, and compute the empirical
mean and covariance of the associated red cells for each component. This mean
and covariance are interpreted as the parameters a Gaussian conditional distri-
bution; we show the means of these conditional distributions outlined in red in
Figure 3.

To actually make a prediction, we first determine which components of the
GMM should be responsible for the prediction. We soft-assign the condition
region of our query image (specifically, the subset outlined in blue) to the com-
ponents of our GMM. Unfortunately, there may be dimensions of our GMM
components that correspond to HOG cells outside the condition region; for in-
stance, the leftmost cells highlighted in blue in Figure ) To deal with this, we
marginalize out any such cells from the GMM as shown in Figure[3d (Hence why
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Fig. 4. Our thing model predicts the pre-
diction region (red rectangle) given the
condition region (green border) in the
query image. We estimate correspondence
for the prediction region (red ellipse)—i.e.
regions in other images likely to have sim-
ilar contents—as the basis for this predic-
tion. The red correspondence must be ob-
tained without observing the prediction re-
gion, so we first estimate correspondence
for the condition region (green ellipses)
and extrapolate to the prediction region.

Condition Region | & Prediction Region

Image i

we use GMM’s instead of K-means, as the marginalization of a GMM is well-
defined). We next soft-assign the image data to the components of the GMM,
which gives us a weighted set of conditional distributions over the prediction re-
gion. We average these predictions into a single Gaussian (specifically, we treat
the set of predictions as a GMM over a single HOG cell, and compute a single
Gaussian that matches the mean and variance of this GMM).

3.2 Thing Model

The thing model attempts to capture the details of a complex shape using the
set of images that were retrieved when we built our initial patch cluster. Making
a prediction for a particular prediction region Pr(Hg,|Hg .y, Hp) (which
we will abbreviate as pat ) boils down to the problem of correspondence: if we
can estimate which regions in the other images are likely to correspond to our
current prediction region, then we can predict that the features will be the same.
To avoid biasing the likelihood value, we must not to access the features H, g[t]
while making the prediction, but there are cells in the condition region near the
prediction region that we could use. Hence, we find the correspondence for each
cell in the condition region (a standard image warping problem). Once we have
this correspondence, we extrapolate it to the prediction region. Note, though,
that we cannot assume this correspondence will exist for every image. Besides
the standard problem of occlusion, we also have to deal with the many errors in
the Exemplar-LDA matching. We have found that the top 20 matches are usually
reasonably pure, but for some interesting objects the lower-ranked matches may
be wrong. Hence, we only use the top 20 images per prediction, meaning we
must use the data extremely efficiently.

Formally, recall that C and P index the HOG cells in our query image, and
so each index in these sets can be written as 2-dimensional points (z,y) on the
grid of HOG cells. We represent the correspondence as a mapping f*(x,y) from
the cell (z,y) in the query image to cells in the HOG grid for image ¢, where @
ranges from 1 to n — 1 (we’ll call these the ‘predictor’ images). We optimize our
mapping such that H}i(x,y) is as similar as possible to H(Ow,y) for all (z,y) in the
condition region (we defer the computation of f to Appendix . Note that we
are interested in correspondence for C[t] = (x4, y:), the prediction region, but we
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aren’t allowed to access the HOG feature at H, &t]; therefore (x4, y:) isn’t, strictly

speaking, in the domain of f?. To find correspondence for the prediction region,
we find the nearest point (x},y;) in the condition region and compute a simple
linear extrapolation:

f@eye) = 1@y + (@) — (27, 9)) (3)

Thus far, we've treated fi(z¢,y;) as if it indexed a single HOG cell, but is that
enough? Recall that we have about 20 images; actually less than the dimension-
ality of HOG! Worse, correspondence is often ambiguous. Consider the example
in Figure @] The condition region contains the front wheel of a car and some of
the car’s side panel, and we are interested in a prediction region further to the
right. Ideally, the algorithm should give some probability mass to the event that
the panel will continue, and some mass to the event that it will end and a wheel
will start. However, if f%(x;,y;) returns a single point as the correspondence for
the prediction region, then the algorithm will be arbitrarily confident that either
the prediction region should contain a continuation of the panel or that it will
end. To address this, we alter our definition of f such that its range is the space
of tuples of mean vectors and covariance matrices parameterizing 2-d Gaussian
distributions.

Fi@y) = [Hyy 2] (4)

Thus, fi(x,y) defines Gaussian distribution over the HOG grid of image 4. (In
Equation |3, the addition is only performed on p: i.e. f'(x,y) + (a,b) = [l , +
(a,b), £% ]). Figure [4] visualizes these Gaussians as ellipses. In this illustration,
note that the covariance of the Gaussians are small near the wheel (where there
is less ambiguity), but they grow as the matching becomes more ambiguous.
While this makes the optimization of f somewhat more complicated, ultimately
it means the algorithm uses more data to make each prediction, and in the case
of Figure [d] guesses that the prediction region could correspond to panel or to
wheel.

This correspondence allows us to extract many HOG cells from each image
that may correspond to the prediction region; to actually form a prediction, we
aggregate these samples across all predictor images, with each sample weighted
by the likelihood that it actually corresponds to the prediction region. Mathe-
matically, we form our prediction by fitting a Gaussian in HOG feature space to
the weighted set of HOG cells in H'...H"~! that the prediction region potentially
corresponds to:

T 0o .. f f
e =N (Hep: ey 2epn) (5)
where
lué[t] = Z né[t],u,vaL,v ) Eg[t] - Z né[t],u,v(HZL,v - M{)(HZL,’U - lu’{)—r (6)

Here, Zw)v Ué[t} wo = 1. There are two components of this weighting: né[t] e =
wé[t],u’vwé[t]. The first is based on the spatial correspondence f, and is defined
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Fig. 5. An example of our thing model running in “generative mode.” As we run the
alignment procedure, we generate each HOG cell in the prediction image as the average
of the cells it corresponds to in the predictor images (we allow the algorithm to make
a fresh prediction for each cell at each iteration, to allow better alignment). Starting
only from the images on the left and the element-level correspondence shown by the
red bounding boxes, we can synthesize a new, plausible car in HOG space, which we
then render using inverse HOG [33].

as wé[t]’u’v = N([u, v]; p, ,» X%, ,,,) for prediction region (2, y;) (normalized to
sum to 1 across u and v). This weight, however, is not sufficient by itself, because
the correspondence from the prediction region to image ¢ might be completely
wrong (e.g. if there is nothing in image ¢ that corresponds to the prediction
region). Hence, we use wé[t to downweight the images where we expect the
correspondence to be incorrect. Intuitively, we simply observe how useful image
i was for the earlier predictions of other regions near to C[t]. The mathematical
details are somewhat involved and not required for understanding the rest of the

algorithm, so we defer them to Appendix

3.3 Determining what to predict

A remaining problem is that our thing model generally won’t do a good job
predicting every cell in the query image, since the object of interest may not
fill the image, or it may be occluded. One possible resolution is to throw away
any region where the thing model predicted poorly, but we find that this biases
the entire algorithm toward overestimating the probability that the image is a
thing (much like a gambler who judges his luck based only on the days when
he won). A better solution is to have the thing model gracefully degrade to
‘mimic’ the stuff model when it believes it can’t predict well. For simplicity,
our algorithm makes a binary decision. Either it uses the correspondence-based
algorithm (Equation exclusively, or it ‘mimics’ the stuff model exactly (i.e. it
sets its conditional distribution Pr(h|Hgy,., ), Hp) equal to Ps(h|Hg,., 3, Hp)
for all h). Note that when the thing model mimics the stuff model, pg[t] will be

equal to pg[t], and hence the value of HQ will have no effect on the likelihood
ratio score. To determine when the thing model should mimic the stuff model,
we use two heuristics. First, we measure how well the thing model has predicted
the query image in regions near the current prediction region. Second, to do a
better job estimating the bounds of the object, we measure whether the thing
model believes C[t] corresponds to regions in other images that were predicted
poorly. For implementation details, see Appendix [C]
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Fig. 6. Left: purity vs coverage for objects discovered on a subset of Pascal VOC 2007.
The numbers in the legend indicate area under the curve (AUC). In parentheses is
the AUC up to a coverage of .5 (lower ranked clusters generally aren’t objects). Right:
precision-recall for car keypoints transferred via unsupervised correspondence.

3.4 Details of our discovery pipeline

The above sections outline a verification procedure that tells us whether the thing
model predicted better than the stuff model for each individual element detec-
tion. However, one final difficulty is that a single cluster initialized by exemplar-
LDA may actually contain two separate objects, and the verification procedure
will happily verify both of them. To prevent this, we start by verifying a single
patch, and attempt to grow the cluster in a way that selects for the object de-
picted in that first patch. After the first prediction, we can compute a “usage
score” for every predictor image (see Appendix , which captures how much
that image helped predict the query image. We take the top image according to
this score and compute its likelihood ratio, which produces more usage scores
for the predictor images. We average the resulting usage scores for each image.
We use 20 predictor images for each verification. To choose them, we first select
at most 10 of the verified images with highest usage score, and for the rest we
select the unverified images with the top exemplar-LDA score.

4 Results

Our goal is to demonstrate unsupervised object discovery on realistic databases
with as little human intervention as possible. Our experiments focus on the
PASCAL VOC, a challenging database for modern, supervised object detection
algorithms. We evaluate discovery on PASCAL object categories, and also show
results for keypoint transfer on the “car” category.

4.1 Quantitative Results: Purity-Coverage on PASCAL VOC 2007

Following the experimental setup of [I5], we perform unsupervised object dis-
covery on all PASCAL VOC 2007 images containing a dining table, horse, mo-
torbike, bus, train, or sofa. We evaluate the quality of the discovered objects
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using the purity-coverage curve [I4], which we compute in three steps: 1) for
each of our discovered patch clusters, we select the top 10 patches (as scored
by the likelihood ratio value); 2) we compute the purity of each cluster using
these 10 patches, according to the majority VOC label in the cluster; 3) we sort
the clusters by purity. To obtain the k’th point on the purity-coverage curve, we
plot the average purity for the first through £’th clusters in this ranking versus
the total number of images that contribute at least one patch to the clusters
1 through k. (Note that, unlike [I5], we follow [I4] and plot purity and cover-
age on the same graph, since we find it makes the methods more comparable.)
The result is shown in Figure |§| left. We slightly outperform [I5], especially for
the high purity regime (we get nearly 10% extra coverage before we make our
first mistake). However, note that [I5] is not completely unsupervised as it re-
quires a “natural world” dataset, which typically contains a somewhat different
distribution of visual data than the “discovery” dataset, providing an implicit,
albeit very weak, supervision. Our method significantly outperforms other, truly
unsupervised methods.

Implementation details : We start with over 10,000 randomly-sampled image
patches at multiple resolutions to initialize the clusters. Cluster verification is
relatively computationally expensive, so in practice we terminate the verification
of each cluster as soon as it appears to be producing low scores. We start by
verifying a single patch for each cluster, and we kill the half of the clusters
with low thing likelihood. We repeat this procedure iteratively, doubling the
number of verifications before killing the worst half in terms of thing likelihood
(keeping at least 1,000 at the end). We end when we have run 31 verifications
per surviving element. To choose the elements to kill, one approach is to kill
those with the lowest score. However, this can lead to many duplicates and
poor coverage. Instead, we use a greedy selection procedure reminiscent of [34]
Specifically, given a selection y of clusters, let sX ;.; be the log likelihood ratio for
the j’th highest-scoring patch in image i out of all clusters contamed in x. We
greedily select clusters to include in y to maximize Z . 2775X_ i.e. exponentially
discounting the scores of patches from the same 1mage

l]’

4.2 Qualitative Results: Object Discovery on PASCAL VOC 2011

Next, we turn to the full PASCAL VOC 2011 (Train+Val) dataset, which con-
tains more than 11,000 images. We are aware of no other unsupervised object dis-
covery algorithm which can handle the full PASCAL VOC dataset without labels
or subsampling. Figure[7]shows some of our qualitative results. In the left column,
we show our automatically-generated rank for the discovered object. Center, we
show the initialization for each of these clusters: the top 6 patches retrieved using
Exemplar LDA. Right we show the top 6 regions after verification. The masks vi-
sualize which HOG cells the algorithm believes contain the object: specifically, we
map our Bayesian confidence scores 3 * ¢, , (See Appendix |A)) to their locations
in the image. Black borders indicate either the edge of the image, or the display
cut off. Figure [§| shows a few examples of discovered regions that correspond to
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Fig. 7. Examples of regions discovered in PASCAL VOC 2011. Left: object rank. Cen-
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SRR 42

Fig. 8. Typical failure cases from our algorithm. These “objects” appear in our final
top 50. Most likely this is a failure of the background model, which does not produce
a high enough likelihood for these particular self-similar textures.
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self-similar textures rather than objects, which is the most common failure mode
of our algorithm. Implementation Details: To rank the discovered objects, we use
the same procedure as in Section applied to the full PASCAL VOC 2011 to
discover the top 1,000 clusters. To make a better visualization, we also perform
an additional de-duplication step following [16]. Our full ranking is available
online at: http://graphics.cs.cmu.edu/projects/contextPrediction/.

4.3 Keypoint annotation transfer

Finally, we demonstrate the quality of our discovered intra-cluster correspon-
dences by applying our method to the problem of keypoint annotation using
the car annotations on PASCAL 2011 from [35]. The goal is to predict keypoint
locations in an unlabeled image using other labeled images, in our case, with-
out knowing it is a car. To perform transfer, we begin with the 1,000 objects
discovered from PASCAL VOC 2011 above. For a given test image, we first use
Exemplar-LDA to find which of the 1,000 clusters fire in this image. For each
detection, we perform our context-based verification. Each verification uses the
top 20 predictor images according to verification score, and we transfer keypoints
from all 20 images using f. We make the assumption that each keypoint occurs
only once per instance, so we score each keypoint and take, for each label, the
keypoint with maximum score. We compute this score as cc[y *wé[t]ﬂ%U * S, where
the points (x,y) and (u,v) are the points that the keypoint was transferred to
and from, respectively, s is the overall verification probability (likelihood of thing
over likelihood of thing 4 likelihood of stuff) for the patch, and ccpy 4, is the per-
point confidence computed in Appendix A. If multiple verifications happen for
the same image (i.e. multiple patches are detected) and the regions considered
to be thing overlap (intersection over union greater than .2), then the keypoints
predicted for those verifications are merged and de-duplicated so that there is
only one prediction per label.

Unfortunately, the evaluation of [35] isn’t suitable in our situation, since
they only measure keypoint accuracy conditioned on correctly-predicted bound-
ing boxes. Since our algorithm may discover partial correspondences (e.g. only
the wheel), we wish to evaluate on keypoints directly. We consider a keypoint
prediction “correct” if there is a ground-truth keypoint of the same label within a
distance less than 10% of the max dimension of the associated bounding box. We
penalize repeated keypoint detections. Each predicted keypoint has a confidence
score, so we can compute a precision-recall curve. For reasons of computation
time, we only evaluate on images containing at least one car that’s larger than
150 pixels on its minimum dimension (476 images total), and predict keypoints
in a leave-one-out paradigm. Note that while we measure performance only on
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Fig. 9. An example of keypoint
transfer. For each predicted key-
point, we show a patch from
the image where that keypoint
was transferred from. These cor-
respondences are discovered with-
out any supervision. Note that
multiple different labels are pre-
dicted for the wheel centers. This

happens because our algorithm ~ R B Wheel Ctr
finds all wheels somewhat visu- - "
ally similar, and proposes as many @ i we

correspondences as possible.

L F Wheel Ctr L Mirror R Headlight [sic] L B Wheel Ctr

these images, we allow our algorithm to find correspondence in all images, even
those containing no cars. Labels were never used to find or score correspondences
(though we assume at most one instance of each keypoint label per object, which
helps us de-duplicate). Figure@shows our precision-recall curve. Admittedly our
recall is low, but note that out of 1,000 clusters, few correspond to cars (on the
order of 50). For comparison, we include a baseline that uses Exemplar-LDA di-
rectly, explained in Appendix@ Chance performance is well below 1% precision.
Figure [9 shows the raw output for one image, after thresholding the confidence
of keypoint transfers.

5 Conclusion

In this work, we have presented a method for validating whether a cluster of
patches depicts a coherent visual concept, by measuring whether the correspon-
dence provided by that cluster helps to predict the context around each patch.
However, many questions remain about the best ways to implement and use the
prediction models presented here. For instance, can we predict color in a pre-
diction region conditioned on the color of the condition region? If so, color may
become an important cue in detecting these regions. Texture and even bright-
ness information may be similarly useful. Another extension may be to treat
P(Hgy|Hey .y Hp) as a more classical machine learning problem: estimating
conditional distributions is, after all, a classical discriminative learning setup.
Our algorithm did not use standard discriminative learning algorithms due to a
lack of reliable training data, but in a supervised setting our thing model might
be replaced with a far simpler regression model trained discriminatively.
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A Computing the warping f

The goal in this section is to optimize the y and X in equation[d Recall that, for
each location (z,y) in the condition region of the image, we have an associated
Gaussian distribution over possible correspondences in image i (Equation ,
which we parameterize by u;y and E;y We minimize with respect to X' and u:

E(E’ :u’) = Z Cw,yé(Hg,gﬁ /’L;hy? Z;:,y) + A Z ZW(M;U’ Ei,gﬁ N’;Qy” 2;’,1;’)
i,y 4,2,y (z',y')EN (z,y)
(7)

Here, @ rewards ui‘,’y and E;yy for mapping Hg’y to similar HOG cells in image 7.
¥ encourages adjacent cells in the query image to map to adjacent cells in image
i (i.e. the mapping should be smooth). N(z,y) denotes the neighbors above,
below, left, and right of (z,y). ¢y, captures the probability that a given point
(z,y) is a part of the object. That is, we penalize feature mismatches more in
regions that are likely to contain the object.

A.1 Computing cg ,: the probability that (z,y) is thing

We already have thing and stuff likelihoods computed for cells in the condition
region, and a probability computed as pgy / (pfy + pfy) is exactly the sort of
weighting we want to use for ¢, ,. However, pT and p® tend to be quite noisy
for individual cells, so we smooth them. Mathematically, we use Bayes rule to
integrate the per-cell likelihoods across a small region, thereby estimating the
posterior probability that (z,y) is thing. We compute the likelihoods for each
model as follows:

.\ P([uv]=[z,y]) p([u,v]=[z,y])
VR | () oLi, = 1L @)
(u,v)e{C[1:t—1],P} (u,v)e{C[1:t—1],P}
(8)

We then compute ¢, = LI /(LT + L7 ). p* and p° are, respectively, p”
and p° without allowing mimicry, and p(v) weights the samples in the condition
region such that the likelihoods of nearby points matter more. In our implemen-
tation, we set p(v) o< N(v;0,0), a Gaussian weighting (isotropic, with mean 0
and variance o), normalized such that }°, \eqca—1)py P>w, 0] = [2,9]) = 1.

A.2 Computing &: the unary potentials

Intuitively, our definition of the unary potentials @ is that we try to use the
query image to explain as much of the the predictor images as possible. This
means that, whenever a feature (z,y) in the query image matches to multiple
features in image 1, Efcy will grow to explain as much as it can. Mathematically:
DH s Moy T2 y) =
= w0108 [N ((w,0); iy 0 25 ) # N (H, 3 HY, o D) + YN (H s i, X))
(9)
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Here, N (-; 1, 2) represents a multivariate normal PDF with mean p and variance
3, v is a regularization constant (set to 100 in our experiments), and pp, X are
the empirical mean and covariance of 31-dimensional HOG cell feature vectors
across the full dataset. Intuitively this is a mixture model to explain all HOG cells
in image i, where as much data as possible near . is explained by a Gaussian
in HOG space with mean H? z,y- The term involving ug provides a background
distribution over HOG cells that can explain any HOG cell somewhat well, and
prevents cells in image ¢ that have no good matches in the query image from
dominating the optimization.

A.3 Computing ¥: the pairwise potentials

The pairwise potentials ¥ enforce smoothness of the correspondence. If two
neighboring HOG cells are offset by some displacement in the query image, then
the gaussians representing their correspondences in image 7 should be offset by
the same displacement. We set:

W(M;,ya E:fc,yv Hi’y’a ch’,y’) : . . ., .
D (N(.7/’(‘Zw,y7 E;,y)aN('vl";’,y’ - [(l‘ Y ) - (:v,y)] ’2;’,74’))
(10)

where D is the KL-divergence between the two distributions.

A.4 Improving affine invariance: pairwise potentials (2 ,

The definition given in Section [A-3] often works well, but it can fail if there is a
large change in scale, rotation, or pose between our objects. Hence, we wish to
give less penalty to warps that are locally affine, even if the affine transformation
is large. To accomplish this, we reduce the value of A (but don’t eliminate it
entirely, since we don’t want to allow arbitrarily large affine transformations),
and define a new term which directly penalizes the departure from an affine
transformation at each location in f. We define a local affine transformation

ol . at each HOG cell in the query image (o’ , is represented with a 2-by-2

Ay Y Qg Y
affine transformation matrix). Then we minimize:
E/(Enu’aa) :E(27N)+)‘/Zvay’i(2i7ui7ai,y) (11)
T,y

In this equation:

Qx;yJ(EvuvaLy) = . . X .
> DN s s sy )s NG sy = [ y") = (2 y)] 0l )y Dt 1)

[@"y"), (=" v N]eLH (z,y)

(12)

Here, L(x,y) represents the edges of a 5-by-5 lattice centered at (z,y) (where
each lattice point represents a HOG cell in the query image). L(z,y) defines the
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region in the query image over which the local affine transformation «, , applies.
In defining L(z,y), we make edges directed and include edges that are symme-
tries of each other; i.e. L(3,3) contains both [(1,1),(1,2)] and [(1,2), (1,1)];
|L(z,y)| will thus contain 80 different edges. Note that each term in the sum
over grid edges is essentially the same penalty as ¥, except that we specify that
the displacement between the Gaussians should be defined by the affine trans-
formation. While this may seem like a large number of terms in the sum, in
practice we find that the time for optimization is still dominated by @, so we get
this approximate affine invariance essentially for free.

A.5 Optimization

We optimize E’ using generalized EM and coordinate descent. The E-step com-
putes a weighting for cells in each of the predictor images, using Equation [0
That is, for each cell in the predictor images, we compute the likelihood that the
correspondence to the query image is responsible for explaining that cell. This
weight is computed as:

L N 0)s . 55+ N HE 3 HY S) )
Hyy N(( )Mw,yv )*N(Hil“)’ uuvZH)'i_'yN( umMHvzH)

All other variables are updated in the M-step. We can minimize the objective
with respect to a single Ni,y or ai’y (keeping all other variables fixed), in closed
form; the contribution of these variables to the overall objective is quadratic.
Hence, it is convenient to use coordinate descent for the M-step, where each
descent optimizes a single p, or ab . For each update of p! ,, we also make
an update to X7 , according to ordinary gradient desecent.

Updating o, The KL divergence between two Gaussians may be written:

3 (5 50) + G = ) 5 = o) k- (G50)) )

Note that all of the edges summed over in Equation [I2] are either vertical or
horizontal, so we may optimize the rows of a separately, in each case focusing
either on vertical or horizontal edges. The only term in the KL divergence that
matters is the one involving u. Hence, we can write the objective over the first
row of « as:

)\/
>
["y"), (=" v N]eLH (z,y) .
(I’sz/,yl - /J;//’y// - a;7y) ((E;I’y/)_l + (2;//’?!//)_1) (szlﬁl// - ,u;//’y// - a;7y)
(15)
This is a standard quadratic form which we can minimize. Here, L includes
only increasing horizontal edges (i.e., edges of the form [(z,y), (z + 1,9)]).
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Updating py ., For a fixed covariance matrix, the unary term can be computed
as (up to a constant offset):

Cay Z C;,y,u,v (lu’;,y - (u,v)) (E:ic,y)_l (/j’lx,y - (’LL, U))T (16)

uU,v

For the higher-order terms, we again only care about the part of the KL
divergence that depends on p. It can be computed as:

1 > AE(I) + > N E (e ) (17)

2
z’,y' €N (z,y) =y’ €L~ ([(z,y),(2",y")])
Where

E(e) = ((Hhy = Hor ) — l(z,y) — (& 9)]) * (5 )" + (Zin,yu)’l):
((lu’gz,y - /’(“Zr’,y’) -« [(l‘, y) - (‘T/7 y/)])
(18)
L= ([(x,y), («',y")]) is the set of all points where [(z,y), (z,v")] € L(z",y").
This is likewise a quadratic form which we minimize.

Updating X, Unfortunately, the expression for X keeping all other variables
constant does not result in an expression that we are aware can be solved in
closed form. Hence, we compute its gradient here. The gradient for the unary
term wrt. Z;’y is:

-1

633721 Z Coic,y,u,v - E;;,; + (Zi,y)il (U, U)T(uv U) (Eglc,y) (19)

We add to this the gradient with respect to the higher order terms. We’ll start
with the terms in the KL divergence (Equation that don’t involve p:

b

(z',y")EN(z,y)

(tr ((Z%,) " T+ (T ) 20 ) — 2k) . (20)

N —

Here, b counts the number of terms where such a KL divergence occurs that
includes X7 . i.e. b= X+ N|L7'([(z,y), («',y)])|. Note that the final term from
Equation [14] cancels when symmetrizing the KL-divergence. The gradient of this
is:

b i1 i N P \—

5 (T)TEL ()T (B, (21)

(z",y")EN (z,y)

Finally, the term involving p in Equation [T is essentially the same as Equa-
tion except that the X~ ,» can be dropped since it is a constant that can
be factored out of the rest. The gradient is:

N —

=Y DEoe ) NE(awy)| (@22

@'y’ €N (z,y) zy" e L= ([(=,y),(z",y")])
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Where:
(@)= (Z2) 7 (o —soy) —alm) @) oy
# (= ) = al(@y) = (@ y)) * (T,)

B Computing w}, ]

Intuitively, our use of wé[t] in Equation |6|is similar treating each predictor image
as an “expert” in a mixture-of-experts paradigm. Of course, a mixture-of-experts
paradigm assumes that we can force each expert i to produce a prediction sepa-
rately, so that we can give greater weight to those experts that predict well. We
obtain these per-expert predictions in a manner similar to how we obtain pre-
dictions for the full model: i.e., we estimate a likelihood Pr(Hg([Heyy., 1y Hp)
(which we will abbreviate as gém) for all 7 < ¢, using only data from image 7.
This single image, however, will contain too little data to do a good job estimat-
ing the covariance of each conditional gaussian. Thus, we set:

Where
GZC[T] = Z wé[T],u,ijL,v (25)

Note the similarities between the prediction made by one expert and the predic-
tion made by the full thing model. Eg[f] is actually identical to Equation ie.

it is estimated using data from all images. 92[71 is identical to uém in Equation
except that it integrates data from only a single image ¢. Given these per-image
predictions gém, we assume that any expert which predicted well for cells near
to C[t] will also do a good job predicting the cell C[t]. We use Bayes rule to
estimate the probability of each expert given the data: i.e. set wé[t] equal to the
posterior probability of image i versus the other images. Under a uniform prior,
the posterior is simply the re-normalized likelihood of the data under the differ-
ent models. To compute the likelihoods for each model at location C[t] = (x¢,y:),
we compute the following product of data likelihoods:
. . p([zy]—[ze,ye])
wepy ¢ II (%y)) (26)
(zy)e{C[1:t—1],P}

Here, p is the same as in Equation We normalize wé[t] such that ), wé[t] =1
(since our goal is to compute a relative weighting between images), and we cap
wé[t] at 1/3 to prevent any single image from dominating the prediction. When

deciding which element to hold out and predict during our object discovery
pipeline, compute the “usage score” of a given patch i as ), wém * Ce[e]-
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Step 1: Step 2: Step 3: Step 4:
Extract patches randomly Exemplar LDA retrieval Select top retrievals per patch  Nonmax suppression

iatch ' ritrlivils
|

Best left backwheel retrievals

Fig. 10. Intuition behind our baseline keypoint prediction algorithm. See text for de-
tails.

C Computing when to mimic the stuff model

We have two criteria to determine when the thing model mimics the stuff model:
(1) We measure how well the thing model has predicted the query image in cells
near the current prediction region, and (2) we measure whether the thing model
believes C[t] corresponds to cells in other images that were predicted poorly. For
(1), recall that ¢, , (Appendix is the Bayesian estimate of the probability
that (z,y) is a part of the thing; this can be used without modification. To
compute (2), assuming we have already performed prediction on another image
i, let ﬂi)v be the probability of the thing model for image at location (u,v) in
that image (i.e., pZ /(L , + Py ) computed while predicting image i, without
allowing mimicry). We can integrate these values as

Bew = Z @iy Z WEH] w0 Moo (27)

Here, the sum over 7 sums over only those images ¢ where prediction has already
been computed; wé[ o is defined as in equation@and dzé[t] 06 wé 43S defined
in equation [6] but re- normalized to sum to 1 over the smaller set og images. We
mimic if Bepy) * ey < .3, a threshold we determined empirically. If we haven’t
yet performed verification on any other images, we simply set B¢y = .5.

D Baseline algorithm for unsupervised keypoint
prediction

We are aware of no previous work which is designed for intra-category keypoint
prediction without any knowledge of object class labels, so we have developed
our own. This is a non-trivial mining task, and we have found that even per-
forming above chance involves considerable design complexity. Mid-level visual
elements (trained using exemplar LDA) are one simple and well-understood way
to obtain an initial correspondence, and we have found that this approach can
be extended for keypoint prediction. The intuition is shown in Figure In step
1, we sample 50 random patches from the image where we want to make predic-
tions. Some of these patches will hopefully contain the pixels that correspond to
each ground-truth keypoint that needs to be predicted (in the figure, we show
two sampled patches containing the left back wheel). Next, we want to predict
keypoints within each sampled patch. To do this, in step 2, we retrieve matching
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patches for each sampled patch using exemplar LDA, and in step 3, we select
the top keypoints for each label out of this retrieved set. That is, at the end of
step 3, we have at most one instance of each keypoint label per sampled patch.
Each keypoint is scored according to the LDA score of the retrieved patch. In
Figure for example, we retrieve several other patches containing left back
wheels. Note that we retrieve one patch containing a front wheel rather than a
rear wheel, which will result in a front wheel prediction for this patch (which
we don’t show in the figure). Finally, in step 4, we perform non-maximum sup-
pression across the sampled patches. For each keypoint label, we go through all
patches containing a prediction for that keypoint, in order of LDA-based score
for the keypoint. Each time we find an instance of the label of interest in a
patch p, we suppress all keypoints in lower-ranked patches that occur within the
bounding box for p. In Figure the red keypoint is less confident than the
yellow keypoint, and occurs within the bounding box associated with the yellow
keypoint, so it is suppressed. We continue selecting the top non-suppressed key-
points, until we run out. In practice this approach performs far above chance,
but it often fails to match the more difficult keypoints (e.g., it matches wheels
well, but harder keypoints like headlights or roofs must often be extrapolated
from the wheels, and these will be missed). However, since this baseline algo-
rithm samples a huge number of patches per image (far more than in the core
algorithm in this paper), the baseline can achieve higher recall.

E Visualization of our algorithm progression

To provide additional intuition about our algorithm, Figure [E] shows our algo-
rithm verifying a single correspondence.
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(a) Initial correspondence. Leftis the query image; right are 3 out of the 20 predictor images.
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(b) The state of the thing model after making predictions for one set of prediction regions (the HOG
cells surrounding the initial patch). On the left, we show log(P™¢;4/P5¢y) (i.e. each square represents
the likelihood ratio for one HOG cell). On the right we visualize the foreground model’s estimated
correspondence between the prediction image and the predictor images. (Note that the warping f
actually allows uncertainty and is not defined between cells. Hence, we perform smoothing in this
visualization, which can lead to a slight fisheye effect; see our online code for details).
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(c) The same state after another round of prediction. Note that certain structure is easy for the thing

model to predict (the wheel, the corners of the roof frame, parts of the bumper) whereas other parts
are difficult (notably the headlights, which can have a wide range of appearance across cars)
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(d) At round 12, the prediction algorithm reaches the back wheel. Note that up until the wheel, the

thing model has been predicting roughly as well as the stuff model, because the horizontal texture is
easy for both. However, the stuff model cannot predict the wheel.
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(e) After 24 rounds the algorithm terminates, because it the thing model no longer believes it can
predict more of the image well. The predictions themselves are quite noisy, but summing over a large

region, it is clear that the foreground model has predicted better than the background model across
the car.
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Fig. 11. A visualization of the progress of our algorithm while verifying a single cor-
respondence.
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