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Abstract. We consider the problem of semi-supervised bootstrap learning for
scene categorization. Existing semi-supervised approaches are typically unreli-
able and face semantic drift because the learning task is under-constrained. This
is primarily because they ignore the strong interactions that often exist between
scene categories, such as the common attributes shared across categories as well
as the attributes which make one scene different from another. The goal of this
paper is to exploit these relationships and constrain the semi-supervised learn-
ing problem. For example, the knowledge that an image is an auditorium can
improve labeling of amphitheaters by enforcing constraint that an amphitheater
image should have more circular structures than an auditorium image. We pro-
pose constraints based on mutual exclusion, binary attributes and comparative
attributes and show that they help us to constrain the learning problem and avoid
semantic drift. We demonstrate the effectiveness of our approach through exten-
sive experiments, including results on a very large dataset of one million images.

1 Introduction

How do we exploit the sea of visual data available online? Most supervised computer
vision approaches are still impeded by their dependence on manual labeling, which, for
rapidly growing datasets, requires an incredible amount of manpower. The popularity
of Amazon Mechanical Turk and other online collaborative annotation efforts [1, 2] has
eased the process of gathering more labeled data, but it is still unclear whether such
an approach can scale up with the available data. This is exacerbated by the heavy-
tailed distribution of objects in the natural world [3]: a large number of objects occur so
sparsely that it would require a significant amount of labeling to build reliable models.
In addition, human labeling has a practical limitation in that it suffers from semantic and
functional bias. For example, humans might label an image of Christ/Cross as Church
due to high-level semantic connections between the two concepts.

An alternative way to exploit a large amount of unlabeled data is semi-supervised
learning (SSL). A classic example is the “bootstrapping” method: start with a small
number of labeled examples, train initial models using those examples, then use the
initial models to label the unlabeled data. The model is retrained using the confident
self-labeled examples in addition to original examples. However, most semi-supervised
approaches, including bootstrapping, have often exhibited low and unacceptable accu-
racy because the limited number of initially labeled examples are insufficient to con-
strain the learning process. This often leads to the well known problem of “semantic
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Fig. 1. Standard Bootstrapping vs. Constrained Bootstrapping: We propose to learn multiple clas-
sifiers (auditorium and amphitheater) jointly by exploiting similarities (e.g., both are indoor and
have seating) and dissimilarities (e.g, amphitheater has more circular structures than auditorium)
between the two. We show that joint learning constrains the SSL, thus avoiding semantic drift.

drift” [4], where newly added examples tend to stray away from the original meaning
of the concept. The problem of semantic drift is more evident in the field of visual
categorization because intra-class variation is often greater than inter-class variation.
For example, “electric trains” resemble “buses” more than “steam engines” and many
“auditoriums” appear very similar to “amphitheaters”.

This paper shows that we can avoid semantic drift and significantly improve per-
formance of bootstrapping approach by imposing additional constraints. We build upon
recent work in information extraction [5], and propose a novel semi-supervised image
classification framework where instead of each classifier selecting its own set of images,
we jointly select images for each classifier by enforcing different types of constraints.
We show that coupling scene categories via attributes and comparative attributes' pro-
vides us with the constraints necessary for a robust bootstrapping framework. For ex-
ample, consider the case shown in Figure 1. In the case of the naive bootstrapping
approach, the initial “amphitheater” and “auditorium” classifiers select self-labeled im-
ages independently which leads to incorrect instances being selected (outlined in red).
However, if we couple the scene categories and jointly label all the images in the dataset,
then we can use the auditorium images to clean the amphitheater images, since the lat-
ter should have more circular structures compared to the former. We demonstrate that
the joint labeling indeed makes the data selection robust and improves the performance
significantly. While we only explore the application of these new constraints to boot-

! Comparative attributes are special forms of attributes that are used to compare and express
relationships between two nouns. For example, “banquet halls” are bigger than “bedrooms”;
“amphitheaters” are more circular than “auditoriums”.
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strapping approaches, we believe they are generic and can be applied to other semi-
supervised approaches as well.

Contributions: We present a framework for coupled bootstrap learning and explore
its application to the field of image classification. The input to our system is an ontol-
ogy which defines the set of target categories to be learned, the relationships between
those categories and a handful of initial labeled examples. We show that given these ini-
tial labeled examples and millions of unlabeled images, our approach can obtain much
higher accuracy by coupling the labeling of all the images using multiple classifiers. The
key contributions of our paper are: (a) a semi-supervised image classification frame-
work which jointly learns multiple classifiers, (b) demonstrating that sharing informa-
tion across categories via attributes [6,7] is crucial to constrain the semi-supervised
learning problem, (c) extending the notion of sharing across categories and showing
that information sharing can also be achieved by capturing dissimilarities between cat-
egories. Here we build upon the recent work on relative attributes [8] and comparative
adjectives [9] to capture differences across categories. In this paper, the relationships be-
tween attributes and scene categories are defined by a human annotator. As opposed to
image-level labeling, attribute and comparative attribute relationships are significantly
cheaper to annotate as they scale with the number of categories (not with the number of
images). Note that the attributes need not be semantic at all [10]. However, the general
benefit of using semantic attributes is that they are human-communicable [11] and we
can obtain them automatically using other sources of data such as text [12].

2 Prior Work

During the past decade, computer vision has seen some major successes due to the in-
creasing amount of data on the web. While using big data is a promising direction, it is
still unclear how we should exploit such a large amount of data. There is a spectrum of
approaches based on the amount of human labeling required to use this data. On one end
of the spectrum are supervised approaches that use as much hand-labeled data as pos-
sible. These approaches have focused on using the power of crowds to generate hand-
labeled training data [1,2]. Recent works have also focused on active learning [13-17,
11], to minimize human effort by selecting label requests that are most informative. On
the other end of the spectrum are completely unsupervised approaches, which use no
human supervision and rely on clustering techniques to discover image categories [18,
19].

In this work, we explore the intermediate range of the spectrum; the domain of
semi-supervised approaches. Semi-supervised learning (SSL) techniques use a small
amount of labeled data in conjunction with a large amount of unlabeled data to learn
reliable and robust visual models. There is a large literature on semi-supervised tech-
niques. For brevity, we only discuss closely related works and refer the reader to recent
survey on the subject [20]. The most commonly used semi-supervised approach is the
“bootstrapping” method, also known as self-training. However, bootstrapping typically
suffers from semantic drift [4] — that is, after many iterations, errors in labeling tend
to accumulate. To avoid semantic drift, researchers have focused on several approaches
such as using multi-class classifiers [21] or using co-training methods to exploit con-
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ditionally independent feature spaces [22]. Another alternative is to use graph-based
methods, such as the graph Laplacian, for SSL. These methods capture the manifold
structure of the data and encourage similar points to share labels [23]. In computer vi-
sion, efficient graph based methods have been used for labeling of images as well [24].
The biggest limitation with graph based approaches is the need for similarity measures
that create graphs with no inter-class connections. In the visual world, it is very difficult
to learn such a good visual similarity metric. Often, intra-class variations are larger than
inter-class variations, which make pair-wise similarity based methods of little utility. To
overcome this difficulty, researchers have focused on text based features for better esti-
mation of visual similarity [25].

In this work, we argue that there exists a richer set of constraints in the visual world
that can help us constrain the SSL-based approaches. We present an approach to com-
bine a variety of such constraints in a standard bootstrapping framework. Our work is
inspired by works from the textual domain [5] that try to couple learning of category
and relation classifiers. However, in our case, we build upon recent advances in the
field of visual attributes [6,7] and comparative attributes [8,9] and propose a set of
domain-specific visual constraints to model the coupling between scene categories.

3 Constrained Bootstrapping Framework

Our goal is to use the initial set of labeled seed examples (£) and a large unlabeled
dataset ({/) to learn robust image classifiers. Our method iteratively trains classifiers
in a self-supervised manner. It starts by training classifiers using a small amount of
labeled data and then uses these classifiers to label unlabeled data. The most confident
new labels are “promoted” and added to the pool of data used to train the models, and
the process repeats. The key difference from the standard bootstrapping approach is the
set of constraints that restrict which data points are promoted to the pool of labeled data.

In this work, we focus on learning scene classifiers for image classification. We rep-
resent these classifiers as functions (f : X — Y') which, given input image features =z,
predict some label y. Instead of learning these classifiers separately, we propose an ap-
proach which learns these classifiers jointly. Our central contribution is the formulation
of constraints in the domain of image classification. Specifically, we exploit the recently
proposed attribute-based approaches [6, 7] to provide another view of the same data and
enforce multi-view agreement constraints. We also build upon the recent framework of
comparative adjectives [9] to formulate pair-wise labeling constraints. Finally, we use
introspection to perform an additional step of self-refinement to weed out false positives
included in the training set. We describe all the constraints below.

3.1 Output Constraint: Mutual Exclusion (ME)

Classification of a single datapoint by multiple scene classifiers is not an independent
process. We can use this knowledge to enforce certain constraints on the functions
learned for the classifiers. Mathematically, if we know some constraint on output values
of two classifiers f; : X — Y7 and f5 : X — Y5 for an input x, then we can require the
learned functions to satisfy these. One such output constraint is the mutual exclusion
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constraint (ME). In mutual exclusion, positive classification by one classifier imme-
diately implies negative classification for the other classifiers. For example, an image
classified as “restaurant” can be used as an negative example for “barn”, “bridge” etc.

Current semi-supervised approaches enforce mutual exclusion by learning a multi-
class classifier where a positive example of one class is automatically treated as a nega-
tive example for all other classes. However, the multi-class classifier formulation is too
rigid for a learning algorithm. Consider, for example, “banquet hall” and “restaurant”,
which are very similar and likely to be confused by the classifier. For such classes, the
initial classifier learned from a few seed examples is not reliable enough; hence, adding
the mutual exclusion constraint causes the classifier to overfit.

We propose an adaptive mutual exclusion constraint. The basic idea is that during
initial iterations, we do not want to enforce mutual exclusion between similar classes
(y1 and y2), since this is likely to confuse the classifier. Therefore, we relax the ME
constraint for manually annotated similar classes — a candidate added to the pool of one
is not used as a negative example for the other. However, after a few iterations, we adapt
our mutual exclusion constraints and enforce these constraints across similar classes as
well.

3.2 Sharing Commonalities: Binary-Attribute Constraint (BA)

For the second constraint, we exploit the commonalities shared by scene categories. For
example, both “amphitheaters” and “auditoriums” have large seating capacity; “bed-
rooms” and “conference rooms” are indoors and man-made. We propose to model these
shared properties via attributes [6, 7]. Modeling visual attributes helps us enforce a con-
straint that the promoted instances must also share these properties.

Formally, we model this constraint in a multi-view framework [22]. For a function
f+ X — Y, we partition X into views (X,, X;) and learn two classifiers f, and f,
which can both predict Y. In our case, f, : X, — Y is the original classifier which uses
low-level features to predict the scene classes. We model the sharing between multiple
classes via f;. fp, is a compositional function (f;, : X; — A — Y') which uses low-level
features to predict attributes A and then uses them to predict scene classes. It should be
noted that even though we use multi-view framework to model sharing, it is quite a
powerful constraint. In case of sharing, the function f, updates at each iteration by
learning a new attribute classifier, X; — A, which collects large amounts of data from
multiple scene classes (e.g., the indoor attribute classifier picks up training instances
from restaurant, bedroom, conference-room etc.). Also, note that the human annotated
mapping from attribute space to scene class, A — Y, remains fixed in our case.

3.3 Pairwise Constraint: Comparative Attributes (CA)

The above two constraints are unary in nature: these constraints still assume that the
labeling procedures for two instances X; and X5 should be completely independent
of each other. Graph-based approaches [20, 24] have focussed on constraining labels of
instances X, X5 based on similarity — that is, if two images are similar they should have
same labels. However, learning semantic similarity using image features is an extremely
difficult problem specifically because of high intra-class variations. In this paper, we
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model stronger and richer pairwise constraints on labeling of unlabeled images using
comparative attributes. For example, if an image X is labeled as “auditorium”, then
another image X5 can be labeled as “amphitheater” if and only if it has more circular
structures than X.

Formally, for a given pair of scene classes, f1 : X7 — Y7 and fo : Xo — Y5,
we model the pairwise constraints using a function f¢ : (X7, X2) — Y. and enforce
the constraint that (f1, fa2, f¢) should produce a consistent triplet (y1, y2, y.) for a given
pair of images (x1, x2) . Some examples of consistent triplets in our case would include
(field, barn, more open space) and (church, cemetery, has larger structures) which mean
‘field has more open space than barn’ and ‘church has larger structures than cemetery’.

3.4 Introspection or Self-Cleaning

In iterative semi-supervised approaches, a classifier should ideally improve with each
iteration. Empirically, these classifiers tend to make more mistakes in the earlier itera-
tions as they are trained on very small amount of data. Based on these two observations,
we introduce an additional step of introspection where after every five iterations, start-
ing at fifteen, we use the full framework to score already included training data (instead
of the unlabeled data) and drop positives that receive very low scores. This results in
further performance improvement of the learned classifiers.

4 Mathematical Formulation: Putting it together

We now describe how we incorporate the constraints described above in a bootstrap-
ping semi-supervised approach. Figure 2 shows the outline of our approach. We have
a set of binary scene classifiers f;...fy, attribute classifiers f{...f{ and comparative
attribute classifiers ff...ff,. Initially, these classifiers are learned using seed examples
but are updated at each iteration using new labeled data. At each iteration, we would
like to label the large unlabeled corpus ({f) and obtain the confidence of each labeling.
Instead of labeling all images separately, we label them jointly using our constraints.
We represent all images in U/ as nodes in a fully connected graph. The most likely as-
signment of each image (node) in the graph can be posed as minimizing the following
energy function E(y) over class labels assignments y = {1, .., Yy }:

z; €U (z4,25)€EU?

where @(z;, y;) is the unary node potential for image ¢ with features x; and its candidate
label y; and ¥ (x;, x;, y;, y;) is the edge potential for labels y; and y; of pair of images
7 and 7. It should be noted that y; denotes assigned label to image ¢ which can take label
assignments in {l;....0,, }.

The unary term ®(x;,y;) is the confidence in assigning label y; to image 7 by the
combination of scene and attribute classifier scores. Specifically, if f;(x;) is the raw
score of j" scene classifier on ; and f@* (x;) is the raw score of k*" attribute classifier
on x;, then the unary potential is given by:
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The first term takes in the raw scene classifier scores and converts these scores into
potentials using the sigmoid function (o (t) = exp(yt)/(1+exp(vt))) [26]. The second

term uses a weighted voting scheme for agreement between scene and attribute classi-

fiers (A1 is the normalization factor). Here, A is the set of binary attributes, 1, ,, (ax)
is an indicator function which is 1 if the attribute ay, is detected in the image ¢ but —ay
is a property of scene class y; (and vice versa). p() denotes the confidence in prediction
for attribute classifier®. Intuitively, this second term votes positive if both the attribute
classifier and scene classifier agree in terms of class-attribute relationships. Otherwise,
it votes negative where the vote is weighted in terms of the confidence of prediction.
The binary term ¥ (x;, x;,y;,y;) between images ¢ and j with labels y; and y;

represents comparative-attribute relations between labeled classes.

U (@i, w4, 0;) = Y Lew (Ui y5) log(o (f* (24, 25))) 3

cr€eC

% The confidence in prediction is defined as: p(f** (z;)) = maz(a(f** (2:)),1— o (f** (2:)))
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where C denotes the set of comparative attributes, 1., (y;, y;) denotes if a given com-
parative attribute cj, exists between pairs of classes y; and y; and f°(x;,x;) is the
score of comparative-attribute classifier for the pair of images x;, z;. Intuitively, this
term boosts the labels y; and y; if a comparative attribute c;, scores high on pairwise
features. For example, if instances ¢, j are labeled “conference-room” and “bedroom”,
their scores get boosted if the comparative attribute “has more space” scores high on
pairwise features (since “conference rooms” have more space than “bedrooms”).
Promoting Instances: Typically in the semi-supervised problem, |U/| varies from tens
of thousand to million images. Estimating the most likely label for each image in U/
necessitates minimizing Eq.(1) which is computationally intractable in general. Since
our goal is to find a few very confident images to add to the labeled set £ we do not
need to minimize Eq.(1) over the entire /. Instead, we follow the standard practice
of pruning the image nodes which have low probability of being classified as one of
the n scene classes. Specifically, we evaluate the unary term (&), that represents the
confidence of assigning label to an image, for the entire {/ and use it to prune out and
keep only the top-N candidate images for each class. In our experiments, we set N to
3 times the number of instances to be promoted.

While pruning image nodes reduces the search space, exact inference still remains
intractable. However, approximate inference techniques like loopy belief propagation
or Gibbs sampling can be used to find the most likely assignments. In this work, we
compute the marginals at each node by running one iteration of loopy belief propagation
on the reduced graph. This approximate inference gives us the confidence of candidate
class labeling for each image incorporating scene, attribute and comparative-attribute
constraints. Now we select C' most confidently labeled images for each class (i), add
them to (£ UU') — L (and remove from (U \ U') — U) and re-train our classifiers.

4.1 Scene, Attribute and Comparative Attribute Classifiers

We now describe the classifiers used for scenes, attributes and comparative attributes.

Scene & Attribute classifier: Our scene category classifiers as well as attribute classi-
fier are trained using boosted decision trees [27]. We use 20 boosted trees with 8 internal
nodes for scene classifier and 40 boosted trees with 8 internal nodes for training our at-
tributes. These classifiers were trained on the 2049 dimensional feature vector from
[28]. Our image feature includes 960D GIST [29] features, 75D RGB features (image
is resized to 5 x 5) [3], 30D histogram of line lengths, 200D histogram of orientation
of lines and 784D 3D-histogram Lab color space (14 x 14 x 4).

Comparative attribute classifier: Given a pair of images (x;, z;), the goal of compara-
tive attributes classifier is to predict whether the pair satisfies comparative relationships
such as “more circular” and “has more indoor space”. To model and incorporate com-
parative attributes, we follow the approach proposed in [9] and train classifiers over dif-
ferential features (x; — x;). We train the comparative attribute classifiers using ground
truth pair of images that follow such relationships and for the negative data we use ran-
dom pair of images and inverse relationships. We used a boosted decision tree classifier
with 20 trees and 4 internal nodes.
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S5 Experiments

We now present experimental results to demonstrate the effectiveness of constraints in
bootstrapping based approach. We first present a detailed experimental analysis of our
approach using the fully labeled SUN dataset [30]. Using a completely labeled dataset
allows us to evaluate the quality of unlabeled images being added to our classifiers
and how it affects the performance of our system. Finally, we evaluate our complete
system on a large scale dataset which uses approximately 1 million unlabeled images
to improve the performance of scene classifiers. For all the experiments we use a fixed
vocabulary of scene classes, attributes and comparative attributes as described below.
Vocabulary: We evaluate the performance of our coupled bootstrapping approach in
learning 15 scene categories’® randomly chosen from from SUN dataset . These classes
are: auditorium, amphitheater, banquet hall, barn, bedroom, bowling alley, bridge, casino
indoor, cemetery, church outdoor, coast, conference room, desert sand, field cultivated
and restaurant. We used 19 attribute classes: horizon visible, indoor, has water, has
building, has seat rows, has people, has grass, has clutter, has chairs, is man-made,
eating place, fun place, made of stone, meeting place, livable, part of house, relaxing,
animal-related, crowd-related. We used 10 comparative attributes: is more open, had
more space (indoor), had more space (outdoor), has more seating space, has larger struc-
tures, has horizontally longer structures, has taller structures, has more water, has more
sand and has more greenery. The relationship between scene category and attributes
were defined using a human annotator (see the website for list of relationships).
Baselines: The goal of this paper is to show the importance of additional constraints in
semi-supervised domain. We believe these constraints should improve the performance
irrespective of the choice of a particular approach. Therefore, as a baseline, we com-
pare the performance of our constrained bootstrapping approach with two versions of
standard bootstrapping approach: one uses independent multiple binary classifiers and
the other uses multi-class scene classifiers.

For our first set of experiments, we also compare our constrained bootstrapping

framework to the state-of-the-art SSL technique for image classification based on eigen
functions [24]. Following experimental settings from [24], we map the GIST descriptor
for each image down to a 32D space using PCA, use £k = 64 eigen functions with
A = 50 and € = 0.2 for computing the Laplacian (see [24] for details).
Evaluation Metric: We evaluate the performance of our approach using two met-
rics. Firstly, we evaluate the performance of our trained classifier in terms of Average-
Precision (AP) at each iteration on a held-out test dataset. Secondly, for the small-scale
experiments (sections 5.1 and 5.2), we also evaluate purity of the promoted instances in
terms of the fraction of correctly labeled images.

5.1 Experiment 1: Using pre-trained attribute classifiers

We first evaluate the performance of our approach on SUN dataset. We train the 15
scene classifiers using 2 images each (labeled set). We want to observe the effect of

3 We expect our approach to scale and perform better with more categories: increasing the num-
ber of categories will add more constraints and enforce extensive sharing, which is exactly
what our approach exploits.
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Fig. 3. Qualitative Results: We demonstrate how Binary Attribute (middle row) constraints and
Comparative Attribute (bottom row) constraints help us promote better instances as compared to
naive Bootstrapping (top row).

these constraints when the attribute and comparative attribute classifiers are not re-
trained at each iteration. Therefore, in this case, we used fixed pre-trained attribute
classifiers and relative attribute classifiers. These classifiers were trained on 25 exam-
ples each (from a held-out dataset). Our unlabeled dataset consists of 18,000 images
from SUN dataset. Out of these 18K images, 8.5K images are from these 15 categories
and the remainder are randomly sampled from the rest of the dataset. At each iteration,
we add 5 images per category from the unlabeled dataset to the classifier.

Figure 3 shows examples of how each constraint helps to select better instances that
should be added to the classifier. The bootstrapping approach clearly faces semantic
drift, as it adds “bridge”, “coastal” and “park” images to the “amphitheater” classifier.
It is the presence of binary attributes such as ‘has water’ and ‘has greenery’ that help
us to reject these bad candidates. While binary attributes do help to prune lot of bad
instances, they sometimes promote bad instances like the “cemetery” image (3" in 27¢
row). However, comparative attributes help us clean such instances. For example, the
“cemetery” image is rejected since it has less circular structure. Similarly, the “church”
image is rejected since it does not have the long horizontal structures compared to other
bridge images. Interestingly, our approach does not overfit to the seed examples and
can indeed cover a greater diversity, thus increasing recall. For example, in Figure 4,
the seed examples for banquet hall include close-view of tables but as iterations proceed
we incorporate distant views of banquet hall (eg., 3rd image in iteration 1 and 40).
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Fig. 4. Qualitative results showing selected candidates for our approach at iteration 1, 10, 40 and
90. Notice that during the final iterations, there are errors such as bedroom images being added
to conference rooms etc.

Next, we quantitatively evaluate the importance of each constraint in terms of per-
formance on held-out test data. Figure 5(a) shows the performance of our approach
with different combinations of constraints. Our system shows significant improvement
in performance by adding attribute-based constraints. In fact, using a randomly chosen
set of ten attributes (ME+10BA) seems to provide enough constraints to avoid seman-
tic drift. Adding another nine attributes to the system does provide some improvement
during the initial iterations (ME+19BA). However, at later stages, the effect of these at-
tributes saturate. Finally, we evaluate the importance of comparative attributes by com-
paring the performance of our system with and without CA constraint. Adding CA
constraint does provides significant boost (6-7%) in performance. Figure 5(b) shows
the comparison of our full system with other baseline approaches. Our approach shows
significant improvement over all the baselines which include self-learning approaches
based on independent binary classifiers, self-learning based on multi-class classifier
and Eigen-functions [24]. We also show the upper-bound on the performance of our
approach, which is achieved if all the unlabeled data is manually labeled and used to
train the scene classifiers. Since the binary attribute classifiers are pre-trained on some
other data, it would be interesting to analyze the performance of these classifiers alone
(and without scene classifiers). Our approach performs significantly better than just us-
ing attributes alone. This indicates that coupling does provide constraints and help in
better labeling of unlabeled data. We also compare the performance of our full system
in terms of purity of added instances (See Figure 5(c)).

5.2 Experiment 2: Co-training attributes and comparative attributes

In the previous experiment we showed how each constraint is useful in improving the
performance of the semi-supervised approach. To isolate the reasons behind the perfor-
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Fig. 6. Selected candidates for baseline and our approach at iterations 1 and 60.

mance boost, we used fixed pre-trained attribute and comparative attribute classifiers. In
this experiment, we train our own attribute and comparative attribute classifiers. These
classifiers are trained using the same 30 images (15 categories x 2 images) which were
used to train the initial scene classifiers. Now, we use the co-training setup where we
retrain these attribute and comparative attribute classifiers at each iteration using the
new images from unlabeled dataset.

Figure 6 shows qualitative results of image instances which are added to the clas-
sifiers at iterations 1 and 60. The qualitative results show how the baseline approach
suffers from semantic drift and adds “auditorium” to “bedrooms” and “field” to “coast”.
On the other hand, our approach is more robust and even at 60" iteration adds good
instances to the classifier. Figure 7 shows the comparison of our approach against base-
lines. Notice that our approach outperforms all the baselines significantly even though
in this case we used the same seed examples to train the attribute classifier. This shows
that attribute classifiers can pool information from multiple classes to help avoid se-
mantic drift.

5.3 [Experiment 3: Large scale semi-supervised learning

In the two experiments discussed above, we demonstrated the importance and effective-
ness of adding different constraints to the bootstrapping framework. As a final exper-
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Fig. 7. Quantitative Evaluations: We evaluate our approach against standard baselines in terms of
(a) mean AP over all scene classes, (b) purity of added instances.

Table 1. Quantitative Results on Large Scale Semi-Supervised Learning (AP Scores)

Amphitheater| Auditorium| Banquet| Barn |Bedroom|Bowling|Bridge Casino|Cemetery | Church [Coast|Conference|Desert| Field |k Mean
Hall Alley indoor outdoor| Room | Sand |Cultivated

Tteration-0 0517 0317 | 0.260 |0.309] 0481 | 0.602 |0.144 [ 0.647 | 0.449 | 0.482 [0.539] 0.384 [0.716] 0.700 | 0270 |0.455

Self (Binary) 0.557 0269 | 0.324 [0.255] 0458 | 0.590 | 0.156 | 0.644| 0.453 | 0.499 [0.466] 0.317 [0.690| 0.572 | 0241 [0.433

Self (Multi-Class)| ~ 0.488 0254 | 0290 [0.261] 0.443 | 0.601 |0.162 [ 0.655| 0.509 | 0.475 |0.548| 0.322 [0.733| 0.657 | 0303 [0.447

Our Approach 0.571 0.298 | 0302 0.352] 0.521 | 0.627 |0.209 | 0.650 | 0.506 | 0.506 |0.571] 0.391 |0.786| 0702 | 0311 |0.487

iment, we now demonstrate the utility of such constraints for large scale learning. We
start with 25 seed examples from SUN dataset for each of the 15 categories. Our un-
labeled dataset consists of one million images selected from the imagenet dataset [31].
At each iteration, we add 10 images per category from unlabeled dataset to the clas-
sifier. Table 1 shows the performance of learned scene classifiers after 100 iterations.
The constrained bootstrapping approach not only improves the performance by 3.2%
but also outperforms all the baselines significantly.
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