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Abstract. Ontology translation is one of the most difficult problems
that web-based agents must cope with. An ontology is a formal speci-
fication of a vocabulary, including axioms relating the terms. Ontology
translation is best thought of in terms of ontology merging. The merge of
two related ontologies is obtained by taking the union of the terms and
the axioms defining them. We add bridging azioms not only as “bridges”
between terms in two related ontologies but also to make this merge into a
complete new ontology for further merging with other ontologies. Trans-
lation is implemented using an inference engine (OntoEngine), running
in either a demand-driven (backward-chaining) or data-driven (forward
chaining) way. We illustrate our method by describing its application
in an online ontology translation system, OntoMerge, which translates
a dataset in the DAML notation to a new DAML dataset that captures
the same information, but in a different ontology. A uniform internal rep-
resentation, Web-PDDL is used for representing merged ontologies and
datasets for automated reasoning.

1 Introduction

One of the most difficult problems that web-based agents must cope with is
ontology translation, because web-based agents often use different ontologies to
represent the information they want to share with each other, even when some
of them use the same web-agent language such as WSDL [1] or DAML [2] to
represent that information. We define an ontology as a formal specification of
a vocabulary, including axioms relating the terms. A dataset is defined as a
set of facts expressed using a particular ontology [24]. The ontology translation
problem is to translate a dataset represented in one (source) ontology to a dataset
represented in another (target) ontology. The differences between two ontologies
can include syntactic and semantic differences, both of which we will have to
deal with.

Previous work on ontology translation has made use of two strategies. One
is to translate a dataset in any source ontology to the dataset in one big, cen-
tralized ontology that serves as an interlingua which can be translated into a
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dataset in any target ontology. Ontolingua [20] is a typical example for this
strategy, but this strategy can’t really work well unless a global ontology can
cover all existing ontologies, and we can get agreement by all ontology experts
to write translators between their own ontologies and this global ontology. Even
if in principle such harmony can be attained, in practice keeping all ontologies
— including the new ones that come along every day — consistent with the One
True Theory is very difficult. If someone creates a simple, lightweight ontology
for a particular domain, he may be interested in translating it to neighboring
domains, but can’t be bothered to think about how it fits into a grand unified
theory of knowledge representation. The other strategy is to do ontology trans-
lation directly from a dataset in a (source) ontology to a dataset in another
(target) ontology, on a dataset-by-dataset basis, without the use of any kind of
interlingua. OntoMorph [18] is a typical example of this strategy. For practical
purposes this sort of program can be very useful, but it tends to rely on special
properties of the datasets to be translated, and doesn’t address the question of
producing a general-purpose translator that handles any source dataset.

Past work [20, 18] in this area has addressed both syntactic and semantic-
issues, but tends to focus more on syntactic translation [18] because it is easier
to automate. The “semantic” problem is to replace the vocabulary of the source
ontology with the vocabulary of the target, which is much more difficult. The
reason it is so difficult is that it often requires subtle judgment about the rela-
tionships between meanings of terms in one ontology and the meanings of terms
in another ontology. Semantic translation requires ontology experts’ intervention
and maintenance [24] and can not be fully automated because only humans can
understand the meanings of terms and the relationships between these terms.

In this paper we present the theory and algorithms underlying our online on-
tology translation system, OntoMerge, which is based on a new approach to the
translation problem: ontology translation by ontology merging and automated
reasoning. The merge of two related ontologies is obtained by taking the union of
the terms and the axioms defining them, using XML namespaces to avoid name
clashes. We then add bridging axioms that relate the terms in one ontology to
the terms in the other through the terms in the merge. We develop one merged
ontology not only as a “bridge” between two related ontologies but also as a new
ontology for further merging with other ontologies in the ontology community.

Although ontology merging requires ontology experts’ intervention and main-
tenance, automated reasoning by an inference engine (OntoEngine) can be con-
ducted in the merged ontology in either a demand-driven (backward-chaining)
or data-driven (forward chaining) way to implement ontology translation auto-
matically.

2 Owur Approach

2.1 Uniform Internal Representation

As we have pointed out, past work in the area of ontology translation has usually
mixed up syntactic translation and semantic translation. We think it is more



enlightening to separate the two. If all ontologies and datasets can be expressed
in terms of some uniform internal representation, we can focus on semantic
operations involving this representation, and handle syntax by translating into
and out of it. Although the users don’t need to know the details of this internal
representation, getting them right is important to make our program work. For
web-based agents, the representation should contain the following elements:

1. A set of XML namespaces

2. A set of types related to namespaces.

3. A set of symbols, each with a namespace and a type.
4. A set of axioms involving the symbols.

Our language, called “Web-PDDL”, is the AI plan-domain definition lan-
guage PDDL augmented with XML namespaces and more flexible notations for
axioms [25]. Like the original PDDL [23], Web-PDDL uses Lisp-like syntax and
is a strongly typed first order logic language. Here is an example, part of a bibli-
ography ontology [6] written in Web-PDDL. The DAML version of this ontology
is at http: //www.daml.org/ontologies/81.

(define (domain yale_bib-ont)
(:extends (uri "http://www.w3.org/2000/01/rdf-schema#"
:prefix rdfs))
(:requirement :existential-preconditions
:conditional-effects)

(:types Publication - 0bj
Article Book Techreport Incollection
Inproceedings - Publication
Literal - @rdfs:Literal)

(:predicates (author p - Publication a - Literal)

Assertions using this ontology are written in the usual Lisp style: (author
pub20 "Tom Jefferson"), for instance. Quantifiers and other reserved words
use a similar parenthesized syntax.

We write types starting with capital letters. A constant or variable is de-
clared to be of a type T by writing “x - T”. To make the namespace extensions
work, we have broadened the syntax for expressing how one ontology (“domain”)
extends another. In the original PDDL, there was no specification of how do-
main names were associated with domain definitions. On the web, the natural
way to make the association is to associate domains with URIs, so we replace
simple domain names with uri expressions, which include a :prefix specifi-
cation similar to XML namespace prefixes. With this new feature, we can add
@prefix: to each term in a Web-PDDL file to declare its namespace (ontology);
for instance, @rdfs:Literal means a type from the rdfs namespace. Symbols
without a prefix come from the local namespace.



Types can be thought of as sets, but they are not first-class terms in the
language. The sets denoted by two types must be disjoint unless one is a subtype
of the other. It is sometimes useful to state that an object x has type T', where
T is a subtype of the type it was declared with. For this purpose you use the
pseudo-predicate is, writing (is T x).

If someone wants to use our system with an external representation other
than Web-PDDL, there must exist a translator between the two. We have pro-
vided such a translator, which we call PDDAML [11], for translating between
Web-PDDL and DAML. Writing translators for other XML-based web languages
would not be difficult. In the following sections, we will use Web-PDDL to de-
scribe our work on ontology merging and automated reasoning, and ignore the
external representation.

2.2 Ontology Merging and Bridging Axioms

Once we have cleared away the syntactic differences, the ontology translation
problem is just semantic translation from the internal representations of a dataset
in the source ontology to the internal representations of a dataset in the tar-
get ontology. Semantic translation requires ontology experts’ intervention and
maintenance because only humans can understand the relationships between the
meanings of terms in one ontology and terms in another ontology. For the rest of
this paper, we will use two alternative bibliography ontologies as a running ex-
ample. These were developed as contributions to the DAML Ontology Library,
and while they are both obviously derived from Bibtex terminology, different
design decisions were made by the people who derived them. One was developed
at Yale, and we have given it the prefix yale bib [4]; the other was developed at
CMU, and it gets the prefix cmu_bib [5]. Although neither of them is a realisti-
cally complex ontology, the semantic differences that arise among corresponding
types, predicates and axioms in these two ontologies serve as good illustrations
of what happens with larger examples.

For example, both ontologies have a type called Article, but @cmu bib:
Article and @yale bib:Article mean two different things. In the yale_bib on-
tology, Articleis a type which is disjoint with other types such as Inproceedings
and Incollection. Therefore, @yale bib:Article only means those articles
which were published in a journal, but @cmu bib:Article includes all articles
which were published in a journal, proceedings or collection.

Another example: both of these ontologies have a predicate called booktitle.
In the cmu_bib ontology, (booktitle ?b - Book ?bs - String) means ?b is
a Book and it has title ?bs as String. While in the yale bib ontology, (booktitle
?p - Publication ?pl - Literal) means 7p is an Inproceedings or an
Incollection, and 7pl is the title of the proceedings or collection which con-
tains ?p.

Here is how these distinctions would come up in the context of an ontology-
translation problem. Suppose the source dataset uses the yale bib ontology, and
includes this fragment:



(:objects ... Jefferson76 - Inproceedings)

(:facts ... (booktitle Jefferson76 "Proc. Cont. Cong. 1") ...)

The translated dataset in the cmu_bib ontology would then have to include
this:

(:objects ... Jefferson76 - Article
proc301 - Proceedings)

(facts ... (inProceedings Jefferson76 proc301)
(booktitle proc301 "Proc. Cont. Cong. 1") ...)

Note that we have had to introduce a new constant, proc301, to designate the
proceedings that Jefferson76 appears in. Such skolem terms [28] are necessary
whenever the translation requires talking about an object that can’t be identified
with any existing object.

It is tempting to think of the translation problem as a problem of rewriting
formulas from one vocabulary to another. The simplest version of this approach
is to use forward-chaining rewrite rules. A more sophisticated version is to use
lifting axioms [17], axioms of the form (if p q), where p is expressed entirely
in the source ontology and q entirely in the target ontology. Such a rule could
be used in either a forward or backward (demand-driven) way, but the key
improvement is that the axiom is a true statement, not an ad-hoc rule. This is
essentially the idea we will use, except that we do away with any restrictions
on the form or the vocabulary of the rules, and we adopt the term “bridging
axiom” for them. A bridging aziom is then any axiom at all that relates the
terms of two or more ontologies. By looking for such axioms, we separate the
problem of relating two vocabularies from the problem of translating a particular
dataset. This makes dataset translation a slightly more difficult problem, but the
flexibility and robustness we gain are well worth it.

Another antecedent of our research is the work on data integration by the
database community. For a useful survey see [21]. The work closest to ours is that
of [22], who use the term “helper model” to mean approximately what we mean
by “merged ontology.” One difference is that in their framework the bridging
rules are thought of as metarules that link pairs of data sources, whereas we em-
bed the rules in the merged ontology. However, the greatest difference is that for
databases the key concerns are that inter-schema translations preserve sound-
ness and completeness. In the context of the Semantic Web, while soundness
is important, it is not clear even what completeness would mean. So we have
adopted a more empirical approach, without trying to assure that all possible
useful inferences are drawn. Because it is entirely possible that an ontology could
introduce undecidable inference problems, it’s not clear how we could do better
than that.



Bridging axioms use vocabulary items from both the source and target on-
tologies, and in fact may make use of new symbols. We have to put these symbols
somewhere, so we introduce the concept of the merged ontology for a set of com-
ponent ontologies, defined as a new ontology that contains all the symbols of the
components, plus whatever new ones are needed. (Namespaces ensure that the
symbols don’t get mixed up.)

We can now think of dataset translation this way: Take the dataset and
treat it as being in the merged ontology covering the source and target. Draw
conclusions from it. The bridging axioms make it possible to draw conclusions
from premises some of which come from the source and some from the target,
or to draw target-vocabulary conclusions from source-language premises, or vice
versa. When we get a pure conclusion in either vocabulary from merged-ontology
premises we call it a projection into that vocabulary. The approach to translation
that we focus on in this paper is to do forward inference from a source dataset
in the merged vocabulary, retaining the projections as the result. In some cases,
backward chaining would make more sense, as we discuss in the “Future Work”
section below. In either case, the idea is to push inferences through the pattern

source < merge < target.

Getting back to our example of merging the yale bib and cmu_bib ontolo-
gies, we suppose we are using a merged ontology with prefix cyb_merging. When
one term (type or predicate) in the yale_bib ontology has no semantic dif-
ference with another term in the cmu bib ontology, we just use a new term
with the same meaning as the old ones, then add bridging axioms to express
that these three terms are the same. It happens that (as far as we can tell),
@cmu _bib:Book is the same type as @yale bib:Book, so we can introduce a type
Book in the cyb_merging ontology, and define it to mean the same as the other
two. Because types are not objects, we cannot write an axiom such as (= Book
@cmu_bib:Book). (A term with no namespace prefix should be assumed to live
in the merged ontology.) So we have to use a pseudo-predicate (or, perhaps,
“meta-predicate”) T-> and write rules of the sort shown below. We call these
type-translation rules:

(axioms:
(T-> @cmu_bib:Book Book)
(T-> @yale_bib:Book Book)

The general form of a type-translation rule is

(T-> typel type2 [P])

which means “typel is equivalent to type2, except that objects of typel satisfy
property P.” We call P the distinguisher of typel and type2. If P is omitted,



it defaults to true. For instance, suppose ontologies ont-A and ont-B both use
the type Animal, but ont-A uses it to mean “terrestrial animal”. Then the type-
translation rule would be

(T-> @ont-A:Animal @ont-B:Animal (terrestrial x))

All other axioms can be stated in ordinary first-order logic. Consider the
predicate title, declared as (title ?p - Publication 7t - String) in both
the yale bib and cmu_bib ontologies. We just reuse the same symbol in our
cyb_merging ontology. The corresponding bridging axioms become:

(forall (?p - Publication ?ts - String)
(iff (Q@cmu_bib:title 7p 7ts) (title 7p 7ts)))

(forall (7p - Publication 7ts - String)
(iff (Q@yale_bib:title 7p 7ts) (title 7p 7ts)))

When one term (type or predicate) in the yale bib ontology has a semantic
difference from the related term in the cmu bib ontology, the bridging axioms
become more substantial. Sometimes the axioms reflect our decision that one
of the component ontologies gets a concept closer to “right” than the other. In
our example, we might decide that cmu bib has a better notion of Article
(a type). Then we add bridge axioms for Article, @cmu bib:Article, and
@yale bib:Article:

(T-> @cmu_bib:Article Article)

(forall (?a - Article)
(iff (exists (7j - Journal ?s - Issue)
(and (issue 7s 7j) (contains ?s 7a)))
(is @yale_bib:Article 7a)))

The above bridging axioms mean: in cyb_merging ontology, Article is the
same type as @cmu_bib:Article, which we prefer. But if and only if an Article
is contained in some Journal, it is a @yale_bib:Article.

We also add bridge axioms for booktitle, for which we decide that yale bib’s
predicate makes more sense. The axioms relate @cmu_bib:booktitle, @yale bib:
booktitle, and our new predicate thus:

(forall (7a - Article 7tl - String)
(iff (@yale_bib:booktitle 7a 7tl)
(booktitle 7a 7tl)))



(forall (7a - Article ?7tl - String)
(iff (booktitle 7a 7tl)
(exists (7?b - Book)
(and (contains ?b ?7a)
(@cmu_bib:booktitle ?b ?tl)))))

These bridging axioms mean: we make booktitle in the merged ontology be
the same predicate as @yale bib:booktitle, and then declare that, if and only
if 7a is an Article with booktitle 7tl, there exists some Book 7b such that
7b contains 7a and ?b has @cmu:booktitle 7t1.

The full version of the merge of the cmu_bib and yale bib ontologies can be
found at [8].

Given the merged ontology, any term in either component ontology can be
mapped into a term or terms in the cyb_merging ontology, some terms in
cyb_merging can be projected back into term(s) in cmu bib and some into
term(s) in yale_bib. When some datasets represented in the yale bib ontol-
ogy need to be translated into the datasets represented in the cmu_bib ontology,
an automated reasoning system, such as a theorem prover, can do inference by
using those bridging axioms to implement translation, as we explained above.
We will explore the forward-chaining option in depth in the next section.

We should mention one additional advantage of merged ontologies compared
to direct translation rules [18,17] between two related ontologies. The merged
ontology serves not only as a “bridge” between the two given related ontolo-
gies, but also as a new ontology for further merging. If fool bib, foo2_ bib,
foo3_bib ...come out, we can use cyb_merging as a starting point for building a
merged ontology that covers them all, or we may prefer a more incremental strat-
egy where we merge fool bib and foo2 bib, creating, say “foo_1_2 merging”,
which would be used for translating between these two, then merge it with
cybmerging if and when a need arises for translations involving components of
both merged ontologies. Exactly how many merged ontologies one needs, and
how to select the right one given a new translation problem, are open research
questions that we discuss in “Future Work” below. But the point to make here
is that the number of merged ontologies one needs is unlikely to be as large
as the number of rewrite-rule sets one would need under the direct-translation
approach. If there are N ontologies that need to be translated into each other,
the direct-translation approach requires N(N — 1) rule sets (assuming for sim-
plicity that all pairwise combinations occur), which could be cut to N(N —1)/2
if the rules are bidirectional. Our approach requires on the order of N merged
ontologies. Of course, the exact amount of work saved depends on the sizes of
the overlaps among the component ontologies, and how these sizes change as
they are merged, both of which are hard to predict.

2.3 Automated Reasoning

Theorem proving scares people. The desired to avoid it has led researchers to
develop web languages, such as RDF and DAML, that look more like description



logics [16] and not so much like predicate calculus, putting up with the awkward-
ness of description logics in hopes of reaping some benefit from their tractable
computational properties. We reverse that decision by translating DAML back
into predicate calculus and doing old-fashioned theorem proving on the result-
ing internal representation. Our rationale is that, based on the examples we
have looked at, we are inclined to think most of the theorem-proving problems
that arise during ontology translation, while not quite within the range of Dat-
alog, are not that difficult [24]. Our inference engine, called OntoEngine, is a
special-purpose theorem prover optimized for these sorts of problems. When
some dataset in one or several source ontologies are input, OntoEngine can do
inference in the merged ontology, collecting the resulting projections into one or
several target ontologies automatically.

A key component of OntoEngine is the indexing structure that allows it to
find formulas to be used in inference. Figure 1 shows what this structure looks
like. As ontologies and datasets are loaded into OntoEngine, their contents are
stored into this structure, as are the results of inferences.

We use a combination of tree-based and table-based indexing. At the top
level we discriminate on the basis of namespace prefixes. For each namespace,
there is an ontology node. The facts stored in an ontology node are next discrim-
inated by predicate. The resulting Predicate nodes are then discriminated into
five categories:

Predicate declarations

Positive literals (atomic formulas)

Negative literals (negated atomic formulas)
Implications with the predicate in the premise
Implications with the predicate in the conclusion

Cup o=

Predicate declarations are expressions such as (title ?p - Publication 7tl
- String). Positive literals and negative literals are facts such as (title b1l
"Robo Sapiens") and (not (title bl "John Nash")).

All other formulas from bridging axioms except type translation rules can be
expressed as implications in INF (Implicative Normal Form):

PoA-APj--- AP, = Q1A AQrA---AQm

where each P; and (); is an atomic formula. We use the word clause as a synonym
for implication. The conjunction of P’s we call the premise of the clause; the
conjunction of (s we call the conclusion.

In the indexing structure, the fourth and fifth categories are implications in
which the predicate in question occurs in the premise or conclusion, respectively.
(Of course, it could occur in both, in which case the formula would be indexed
into both categories.)

So far, we have implemented a forward-chaining inference algorithm using
the indexing structure of figure 1. The algorithm is shown in figure 2. In the
procedure Forwardchaining, the phrase “best clause” needs some explanation.
Theoretically, since we are drawing all possible inferences, it doesn’t matter in
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Ontology node: AT (o Bb2
‘cyb_merging”

Predicate?

Predicate node: “author?

Positive facts Negative facts Definition Premise Conclusion
(title bl (not (title bl title ?p (title ?p ?ts) (@yale_bib:title
“Robo Sapiens”) “John Nash”)) - Publiction = o 7p 7tl)
?ts - String (@cmu_bib:title| | —
?p ?ts) (title ?p ?tl)

Fig. 1. Indexing Structure for OntoEngine

what order we draw them. However, in our current version of the algorithm
there are cases where doing the inferences in the wrong order would result in
incompleteness. If clause 1 is

P =Q1AQ:

and clause 2 is
P,AQr = Qs

then our algorithm will fail to conclude ()3 from P; and P, unless clause 1 runs
first, because )3 has to be present for clause 2 to conclude (3. To compensate,
we use a heuristic to try to ensure that we get as many conclusions as possible
as early as possible. The heuristic is to choose the “best clause,” defined as a
weighted average:

W1 x size of conclusion — Ws X size of premise

The design of OntoEngine profited from our study of KSL’s JTP (Java The-
orem Prover [9]). In the end we decided not to use JTP, but to develop our own
prover, because JTP didn’t contain some of the mechanisms we needed, espe-
cially type-constrained unification, while at the same time being oriented too
strongly toward the traditional theorem-proving task.

3 Application: OntoMerge

We have embedded our deductive engine in an online ontology-merging service
called OntoMerge[10]. In addition to OntoEngine, OntoMerge uses PDDAML[11]
to translate into and out of the knowledge-representation language DAML+OIL[3].



Procedure Process(facts)
Repeat
oneFact = next fact in facts
Forwardchaining(oneFact)
Until last fact in facts

Procedure Forwardchaining(fact)
Get best INF clause from corresponding Premises
newFacts = Modus_Ponens(fact, clause)
Repeat
newFact = next fact in newFacts
Forwardchaining(newFact)
Until last fact in newFacts

Function Modus_Ponens(fact, clause) return facts

Repeat

oneAtf = next AtomicFormula from leftside of clause

substi = Unify (oneAtf, fact)

Add substi into the whole substitutions and check its consistency
Until get the consistent whole substitutions
Get newFacts by substituting rightside of clause with substitutions
Repeat

newFact = next fact in newFacts

If newFact belongs to target ontology Then store it

Else add it into facts which will be returned for further inference
Until last fact in newFacts
Return facts

Function Unify(oneAtf, fact) return substitutions
Repeat
Get one variable from oneAtf and corresponding constant from fact
Typecheck(variable, constant)
If succeed Then make single substitution and add it to substitutions
Until there is no more variable
Return substitutions

Function Typecheck(variable, constant) return boolean

match = false
If variable’s type is same as or the super type of constant’s type Then match = true
Else

typeCons = type of constant

fact = (is typeCons constant)

Forwardchaining(fact)

If exist var, (is typeCons var) is the only premise of some clause and

variable’s type is same as or the super type of var’s type Then match = true

Return match

Fig. 2. The forward-chaining algorithm




OntoMerge serves as a semi-automated nexus for agents and humans to find ways
of coping with notational differences, both syntactic and semantic, between on-
tologies. It accepts a dataset as a DAML file in the source ontology, and will
respond with the dataset represented in the target ontology, also as a DAML
file.

When receiving a DAML file, OntoMerge calls PDDAML to translate it into
a translation problem expressed as a Web-PDDL file which is input to online
version of OntoEngine. To do anything useful, OntoEngine needs to retrieve
a merged ontology from its library that covers the source and target ontolo-
gies. Such an ontology must be generated by human experts, and if no one has
thought about this particular source/target pair, before, all OntoEngine can do
is record the need for a new merger. (If enough such requests come in, the ontol-
ogy experts may wake up and get to work.) Assuming a merged ontology exists,
located typically at some URL, OntoEngine tries to load it in. If it is written in
DAML or other Web language, OntoEngine first calls PDDAML to translate it
to Web-PDDL file, then loads it in. Finally, OntoEngine loads the dataset(facts)
which need to be translated in and processes those facts one by one until no
new fact is left nor generated. To get a final output file in DAML, OntoMerge
calls PDDAML again to translate the Web-PDDL dataset to the corresponding
dataset in DAML.

OntoMerge has worked well so far, although our experience is inevitably lim-
ited by the demand for our services. In addition to the toy example from the
dataset in the yale bib ontology to the dataset in the cmu_bib ontology, we
have also run it to translate a dataset with more than 2300 facts about mili-
tary information of Afghanistan using more than 10 ontologies into a dataset
in the map ontology [14]. About 900 facts are related to the geographic features
of Afghanistan in the geonames ontology [12] and its airports in the airport
ontology [13]. We have merged the geonames ontology and the airport on-
tology with the map ontology. After OntoEngine loads the two merged on-
tologies in, it can accept all 2300 facts and translate those 900 facts in the
geonames and airport ontologies into about 450 facts in the map ontology in 7
minitues. For each @geonames:Feature or each @airport:Airport, the bridg-
ing axioms in the merged ontologies will be used for inference to create a pair
of skolem terms with types @map:Point and @map:Location in the fact like
(@map:location Location01 Point02). The values of the @geonames:longitude
(@airport:longitude) property and the Ogeonames:latitude (Qairport:
latitude) property for each @geonames:Feature (Qairport:Airport) can be
translated into the values of the @map:longitude property and the @map:
latitude property for the corresponding @map:Location. The value of the
@airport:icaoCode property for each @airport:Airport and the value of
@geonames:uniqueIdentifier property for each @geonames:Feature can be
translated into the values of @map:label property for the corresponding @map:
Point. The reason that the translated dataset only has 450 facts is some facts
in the geonames and airport ontologies can’t be translated to any term in the
the map ontology.



Prospective users should check out the OntoMerge website!. The website
is designed to solicit descriptions of ontology-translation problems, even when
OntoMerge can’t solve them. However, we believe that in most cases we can
develop a merged ontology within days that will translate any dataset from one
of the ontologies in the merged set to another.

4 Future Work

4.1 Backward Chaining

Although so far forward-chaining deduction has been sufficient for our needs, we
recognize that backward chaining is also necessary. For example, suppose one
agent has a query:

(and (father Fred ?x) (travel ?x ?7y) (desti ?y "SF"))
y y

which means “Did Fred’s father travel to South Florida?”, and this query could
be answered by another agent with its datasets in another ontology, which
may have different meanings for travel or desti. In this case, the ontology-
translation problem becomes the problem of answering the query in the target
ontology with the datasets in the source ontology.

In addition, backward chaining may be necessary in the middle of foward
chaining. For example, when OntoEngine is unifying the fact (P c1) with (P
?x) in the axiom:

(P ?x) A (member ?x [c1,c2,c3]) = (Q 7x)

it can’t conclude (Q c1) unless it can verify that c1 is a member of the list
[c1,c2,c3], and the only way to implement this deduction is by doing backward
chaining.

A full treatment of backward chaining across ontologies would raise the issue
of query optimization, which we have not focused on yet. There is a lot of work
in this area, and we will cite just two references: [19, 15]. We don’t yet know how
important this issue will be in the context of datasets found on the Web.

4.2 Methodology and Semi-automatic Tools for Ontology Merging

Although really knotty ontology-merging issues will have to be solved by apply-
ing human insight to the production of bridging axioms, we believe it may be
possible to develop automated tools to help in the merging process.

We said that the merge of two related ontologies is obtained by taking the
union of the terms and the axioms defining them. We then add bridging axioms
that relate the terms in one ontology to the terms in the other through the terms
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in the merge. This is rather different from what some other people have empha-
sizedin talking ontology combination. For example, in the PROMPT [27] and
Chimaera [26] systems, the focus is on ontology editing for two similar ontolo-
gies. They try to do ontology matching semi-automatically but they basically
provide user with some suggestions for merging similar terms, almost always
because of name similarity. The reason why it is hard to do anything else in
most ontology-matching systems is that most current ontologies contain more
types(i.e., classes) and predicates than axioms which relate these types and pred-
icates. Many ontologies contain no axioms at all, even when it is obvious that
their designers know more about the domain than subclass relationships.

We expect that as ontology designers become more sophisticated, they will
want, nay, will demand, the ability to include more axioms in what they design.
This trend may support the development of real semi-automatic tools to do
ontology merging. These tools will go beyond name similarity, and try to find
matches between ontologies that preserve the truth of the axioms on either side.
For example, “cop” is superficially similar to “cap,” but any attempt to view
them as similar will cause the axioms involving them to become untranslatable.

4.3 The Ontology Covering Problem

Another interesting issue in ontology merging is the “ontology covering prob-
lem”. Given a set of source and target ontologies, OntoMerge looks for a merged
ontology that was formed by merging exactly the set of ontologies it’s now look-
ing at. But in general it might not find such an ontology in its database. Instead
it may find one that covers a subset of them, another that covers a superset, an-
other that covers a set that intersects the set we’re looking for. Here we introduce
the term covers, defined thus: Ontology “covers” other ontologies Oy, ..., Oy if
it is the merger of a superset of Oy, ..., O. It covers Oq,..., Oy exactly if it is
the merger of Oy,...,O.

Here is an example. Suppose OntoMerge is given two source ontologies Onto_1
and Onto_2, and a target ontology Onto_3. It would prefer to do all reasoning
in a merged ontology that covers these three exactly. If it has never seen any of
these ontologies before, it must report failure, and ask the knowledge engineers
to merge them. But as more and more ontologies are developed by the experts,
it’s possible that OntoMerge will have in its database Onto_1_3_5, the merger
of Onto_1, Onto_3, and Onto_5, and Onto_2_4_5, the merger of Onto_2, Onto_4,
and Onto_5. Now it has a choice of approaches:

— Run inferences in the combination of Onto_1_.3_5 and Onto_2.

— Run inferences in the combination of Onto_1_3_5 and Onto_2_4_5.
— Stop and ask the experts to merge Onto_1_3_5 and Onto_2.4_5.

— Stop and ask the experts to merge Onto_1, Onto_2, and Onto_3.

(Here, “combination” is just the union of two ontologies with no further bridging
axioms involved.)

It is not obvious which is the correct choice. We would at least like it to be the
case that the worst consequence of an incorrect choice is that some inferences may



be missed, or that the deduction process runs with less than optimal efficiency.
But we don’t know how to guarantee these properties.

Or suppose the ontology DB contains one ontology covering ontologies 1, 2,
3, and 4, and another covering 1, 2, 3, and 5. On paper, either will work. But
will we get the same inferences (projecting the vocabulary of Onto_4 and Onto_5
away)? Is one more efficient?

5 Conclusions

We have described a new approach to implement ontology translation by on-
tology merging and automated reasoning. Here are the main points we tried to
make:

1. Ontology translation is best thought of in terms of ontology merging. The
merge of two related ontologies is obtained by taking the union of the terms
and the axioms defining them, then adding bridging axioms that relate the
terms in one ontology to the terms in the other through the terms in the
merge.

2. It is important to separate syntactic translation and semantic translation. If
all ontologies and datasets can be expressed in terms of some uniform internal
representation, semantic translation can be implemented by automatic rea-
soning. Web-PDDL is an ideal uniform internal representation; the syntactic
translation can be done by dialect-dependent modules (such as PDDAML)
between Web-PDDL and other Web agent language (such as DAML).

3. We have developed a general-purpose inference system, OntoEngine, for per-
forming automated reasoning in merged ontologies for the purpose of ontol-
ogy translation. The key features of OntoEngine are its indexing structures
for managing multiple ontologies, control rules for ordering forward-chaining
operations, and the use of type-constrained unification.

4. We set up an ontology translation server, OntoMerge, to apply and validate
our method. We hope OntoMerge can attract more ontology translation
problem from other people and get their feedback, which will help our future
work.
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