
PQSRC highlights

Daniel J. Bernstein



PQSRC, FVPQS, and Crypto Frontiers

Post-Quantum Software Research Center (PQSRC) is
hosted at the University of Illinois at Chicago.
One of the Intel Crypto Frontiers Research Center projects:
Fast Verified Post-Quantum Software (FVPQS),
a joint project between

• Daniel J. Bernstein at PQSRC and
• Tung Chou, Bow-Yaw Wang, and Bo-Yin Yang

at Academia Sinica in Taiwan.

This talk: Highlights of PQSRC’s work on FVPQS.
For more on FVPQS, see Bow-Yaw Wang’s talk later today.

Daniel J. Bernstein, PQSRC highlights 2



Examples of the motivation for FVPQS
2018 announcement re Dilithium: software bug meant that
“reuse of randomness can easily be exploited to recover the
secret key”.

2019 announcement re Falcon: software bug meant that
“signatures were valid but leaked information on the private
key . . . the traditional development methodology (i.e. ‘being
super careful’) has failed”.
2020 announcement re FrodoKEM: software timing leak
allowed a demo extracting “the secret key for all security levels
using about 230 decapsulation calls”.
Another 2020 announcement re FrodoKEM: “the FrodoKEM
team also fixed the timing oracle [GJN20] badly and caused a
more serious security problem while trying to do that.”

Daniel J. Bernstein, PQSRC highlights 3

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/aWxC2ynJDLE/m/YOsMJ2ewAAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/7Z8x5AMXy8s/m/Spyv8VYoBQAJ
https://ia.cr/2020/743
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/kSUKzDNc5ME/m/EMFYz9RNCAAJ


Examples of the motivation for FVPQS
2018 announcement re Dilithium: software bug meant that
“reuse of randomness can easily be exploited to recover the
secret key”.
2019 announcement re Falcon: software bug meant that
“signatures were valid but leaked information on the private
key . . . the traditional development methodology (i.e. ‘being
super careful’) has failed”.

2020 announcement re FrodoKEM: software timing leak
allowed a demo extracting “the secret key for all security levels
using about 230 decapsulation calls”.
Another 2020 announcement re FrodoKEM: “the FrodoKEM
team also fixed the timing oracle [GJN20] badly and caused a
more serious security problem while trying to do that.”

Daniel J. Bernstein, PQSRC highlights 3

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/aWxC2ynJDLE/m/YOsMJ2ewAAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/7Z8x5AMXy8s/m/Spyv8VYoBQAJ
https://ia.cr/2020/743
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/kSUKzDNc5ME/m/EMFYz9RNCAAJ


Examples of the motivation for FVPQS
2018 announcement re Dilithium: software bug meant that
“reuse of randomness can easily be exploited to recover the
secret key”.
2019 announcement re Falcon: software bug meant that
“signatures were valid but leaked information on the private
key . . . the traditional development methodology (i.e. ‘being
super careful’) has failed”.
2020 announcement re FrodoKEM: software timing leak
allowed a demo extracting “the secret key for all security levels
using about 230 decapsulation calls”.

Another 2020 announcement re FrodoKEM: “the FrodoKEM
team also fixed the timing oracle [GJN20] badly and caused a
more serious security problem while trying to do that.”

Daniel J. Bernstein, PQSRC highlights 3

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/aWxC2ynJDLE/m/YOsMJ2ewAAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/7Z8x5AMXy8s/m/Spyv8VYoBQAJ
https://ia.cr/2020/743
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/kSUKzDNc5ME/m/EMFYz9RNCAAJ


Examples of the motivation for FVPQS
2018 announcement re Dilithium: software bug meant that
“reuse of randomness can easily be exploited to recover the
secret key”.
2019 announcement re Falcon: software bug meant that
“signatures were valid but leaked information on the private
key . . . the traditional development methodology (i.e. ‘being
super careful’) has failed”.
2020 announcement re FrodoKEM: software timing leak
allowed a demo extracting “the secret key for all security levels
using about 230 decapsulation calls”.
Another 2020 announcement re FrodoKEM: “the FrodoKEM
team also fixed the timing oracle [GJN20] badly and caused a
more serious security problem while trying to do that.”

Daniel J. Bernstein, PQSRC highlights 3

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/aWxC2ynJDLE/m/YOsMJ2ewAAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/7Z8x5AMXy8s/m/Spyv8VYoBQAJ
https://ia.cr/2020/743
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/kSUKzDNc5ME/m/EMFYz9RNCAAJ


More examples of the motivation for FVPQS

2023.12 KyberSlash1 announcement: under some compilers,
reference implementation leaks secrets through div timing.

2023.12 KyberSlash2 announcement: under some compilers,
reference implementation leaks secrets through div timing
in another way, via reencryption.
Key-recovery attacks have been demonstrated for both leaks.
14 Kyber libraries issued patches against KyberSlash.
2024.06 announcement re Kyber: under some compilers,
reference implementation leaks secrets through
conditional-branch timing.

Daniel J. Bernstein, PQSRC highlights 4

https://kyberslash.cr.yp.to
https://kyberslash.cr.yp.to
https://kyberslash.cr.yp.to/papers.html
https://kyberslash.cr.yp.to/libraries.html
https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/


More examples of the motivation for FVPQS

2023.12 KyberSlash1 announcement: under some compilers,
reference implementation leaks secrets through div timing.
2023.12 KyberSlash2 announcement: under some compilers,
reference implementation leaks secrets through div timing
in another way, via reencryption.

Key-recovery attacks have been demonstrated for both leaks.
14 Kyber libraries issued patches against KyberSlash.
2024.06 announcement re Kyber: under some compilers,
reference implementation leaks secrets through
conditional-branch timing.

Daniel J. Bernstein, PQSRC highlights 4

https://kyberslash.cr.yp.to
https://kyberslash.cr.yp.to
https://kyberslash.cr.yp.to/papers.html
https://kyberslash.cr.yp.to/libraries.html
https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/


More examples of the motivation for FVPQS

2023.12 KyberSlash1 announcement: under some compilers,
reference implementation leaks secrets through div timing.
2023.12 KyberSlash2 announcement: under some compilers,
reference implementation leaks secrets through div timing
in another way, via reencryption.
Key-recovery attacks have been demonstrated for both leaks.

14 Kyber libraries issued patches against KyberSlash.
2024.06 announcement re Kyber: under some compilers,
reference implementation leaks secrets through
conditional-branch timing.

Daniel J. Bernstein, PQSRC highlights 4

https://kyberslash.cr.yp.to
https://kyberslash.cr.yp.to
https://kyberslash.cr.yp.to/papers.html
https://kyberslash.cr.yp.to/libraries.html
https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/


More examples of the motivation for FVPQS

2023.12 KyberSlash1 announcement: under some compilers,
reference implementation leaks secrets through div timing.
2023.12 KyberSlash2 announcement: under some compilers,
reference implementation leaks secrets through div timing
in another way, via reencryption.
Key-recovery attacks have been demonstrated for both leaks.
14 Kyber libraries issued patches against KyberSlash.

2024.06 announcement re Kyber: under some compilers,
reference implementation leaks secrets through
conditional-branch timing.

Daniel J. Bernstein, PQSRC highlights 4

https://kyberslash.cr.yp.to
https://kyberslash.cr.yp.to
https://kyberslash.cr.yp.to/papers.html
https://kyberslash.cr.yp.to/libraries.html
https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/


More examples of the motivation for FVPQS

2023.12 KyberSlash1 announcement: under some compilers,
reference implementation leaks secrets through div timing.
2023.12 KyberSlash2 announcement: under some compilers,
reference implementation leaks secrets through div timing
in another way, via reencryption.
Key-recovery attacks have been demonstrated for both leaks.
14 Kyber libraries issued patches against KyberSlash.
2024.06 announcement re Kyber: under some compilers,
reference implementation leaks secrets through
conditional-branch timing.

Daniel J. Bernstein, PQSRC highlights 4

https://kyberslash.cr.yp.to
https://kyberslash.cr.yp.to
https://kyberslash.cr.yp.to/papers.html
https://kyberslash.cr.yp.to/libraries.html
https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/


The pursuit of speed
Official Keccak (SHA-3) code package:

• KeccakP-1600-reference.c,
• KeccakP-1600-x86-64-shld-gas.s,
• KeccakP-1600-AVX2.s,
• KeccakP-1600-AVX512.s,
• KeccakP-1600-times8-SIMD512.c,
• . . .

“Why so many implementations?” — People want more speed
than an “optimizing” compiler obtains from reference code.

Post-quantum crypto is more complicated than Keccak,
and post-quantum software includes large volumes of
hand-optimized software.

Daniel J. Bernstein, PQSRC highlights 5

https://cr.yp.to/papers.html#pqcomplexity


The pursuit of speed
Official Keccak (SHA-3) code package:

• KeccakP-1600-reference.c,
• KeccakP-1600-x86-64-shld-gas.s,
• KeccakP-1600-AVX2.s,
• KeccakP-1600-AVX512.s,
• KeccakP-1600-times8-SIMD512.c,
• . . .

“Why so many implementations?” — People want more speed
than an “optimizing” compiler obtains from reference code.
Post-quantum crypto is more complicated than Keccak,
and post-quantum software includes large volumes of
hand-optimized software.

Daniel J. Bernstein, PQSRC highlights 5

https://cr.yp.to/papers.html#pqcomplexity


PQSRC highlight: saferewrite

Tool from https://pqsrc.cr.yp.to/downloads.html.
Has been used to verify many software optimizations.

Easy-to-use interface. Examples included in latest package:
707 implementations of 274 simple functions. Automated.
Tries, often successfully, to answer the question of whether
optimized code matches reference code for all inputs:
prove yes, or find an input where the outputs are different.
Also scans code for timing variations, including mul and div.
Example: automatically catches the bug in FrodoKEM’s
cmp_64xint16, and automatically verifies the fixed code.
Automatically analyzes binaries: e.g., can find compiler
differences, or differences between C and assembly language.

Daniel J. Bernstein, PQSRC highlights 6

https://pqsrc.cr.yp.to/downloads.html


PQSRC highlight: saferewrite

Tool from https://pqsrc.cr.yp.to/downloads.html.
Has been used to verify many software optimizations.
Easy-to-use interface. Examples included in latest package:
707 implementations of 274 simple functions. Automated.

Tries, often successfully, to answer the question of whether
optimized code matches reference code for all inputs:
prove yes, or find an input where the outputs are different.
Also scans code for timing variations, including mul and div.
Example: automatically catches the bug in FrodoKEM’s
cmp_64xint16, and automatically verifies the fixed code.
Automatically analyzes binaries: e.g., can find compiler
differences, or differences between C and assembly language.

Daniel J. Bernstein, PQSRC highlights 6

https://pqsrc.cr.yp.to/downloads.html


PQSRC highlight: saferewrite

Tool from https://pqsrc.cr.yp.to/downloads.html.
Has been used to verify many software optimizations.
Easy-to-use interface. Examples included in latest package:
707 implementations of 274 simple functions. Automated.
Tries, often successfully, to answer the question of whether
optimized code matches reference code for all inputs:
prove yes, or find an input where the outputs are different.
Also scans code for timing variations, including mul and div.
Example: automatically catches the bug in FrodoKEM’s
cmp_64xint16, and automatically verifies the fixed code.

Automatically analyzes binaries: e.g., can find compiler
differences, or differences between C and assembly language.

Daniel J. Bernstein, PQSRC highlights 6

https://pqsrc.cr.yp.to/downloads.html


PQSRC highlight: saferewrite

Tool from https://pqsrc.cr.yp.to/downloads.html.
Has been used to verify many software optimizations.
Easy-to-use interface. Examples included in latest package:
707 implementations of 274 simple functions. Automated.
Tries, often successfully, to answer the question of whether
optimized code matches reference code for all inputs:
prove yes, or find an input where the outputs are different.
Also scans code for timing variations, including mul and div.
Example: automatically catches the bug in FrodoKEM’s
cmp_64xint16, and automatically verifies the fixed code.
Automatically analyzes binaries: e.g., can find compiler
differences, or differences between C and assembly language.

Daniel J. Bernstein, PQSRC highlights 6

https://pqsrc.cr.yp.to/downloads.html


PQSRC highlight: cryptoint

Almost-header-only C library distributed as module inside
SUPERCOP, lib25519, libmceliece, libntruprime.
Liberally licensed to allow widest possible reuse.

Library provides functions for constant-time comparisons, bit
extractions, etc. on {int,uint}{8,16,32,64}. Advantages
over previous work: more functions; the implementation is
designed to protect against compilers introducing timing
variations; all functions are verified using saferewrite.
For x86-64 and aarch64, library uses inline assembly,
including a new readasm tool to improve auditability
and to avoid common classes of inline-assembly bugs.
For portable code, library uses optblocker, a volatile zero.

Daniel J. Bernstein, PQSRC highlights 7

https://bench.cr.yp.to/supercop.html
https://lib25519.cr.yp.to
https://lib.mceliece.org
https://libntruprime.cr.yp.to


PQSRC highlight: cryptoint

Almost-header-only C library distributed as module inside
SUPERCOP, lib25519, libmceliece, libntruprime.
Liberally licensed to allow widest possible reuse.
Library provides functions for constant-time comparisons, bit
extractions, etc. on {int,uint}{8,16,32,64}. Advantages
over previous work: more functions; the implementation is
designed to protect against compilers introducing timing
variations; all functions are verified using saferewrite.

For x86-64 and aarch64, library uses inline assembly,
including a new readasm tool to improve auditability
and to avoid common classes of inline-assembly bugs.
For portable code, library uses optblocker, a volatile zero.

Daniel J. Bernstein, PQSRC highlights 7

https://bench.cr.yp.to/supercop.html
https://lib25519.cr.yp.to
https://lib.mceliece.org
https://libntruprime.cr.yp.to


PQSRC highlight: cryptoint

Almost-header-only C library distributed as module inside
SUPERCOP, lib25519, libmceliece, libntruprime.
Liberally licensed to allow widest possible reuse.
Library provides functions for constant-time comparisons, bit
extractions, etc. on {int,uint}{8,16,32,64}. Advantages
over previous work: more functions; the implementation is
designed to protect against compilers introducing timing
variations; all functions are verified using saferewrite.
For x86-64 and aarch64, library uses inline assembly,
including a new readasm tool to improve auditability
and to avoid common classes of inline-assembly bugs.
For portable code, library uses optblocker, a volatile zero.

Daniel J. Bernstein, PQSRC highlights 7

https://bench.cr.yp.to/supercop.html
https://lib25519.cr.yp.to
https://lib.mceliece.org
https://libntruprime.cr.yp.to


PQSRC highlight: nttcompiler

Tool from https://pqsrc.cr.yp.to/downloads.html.
Usable for many lattice systems: e.g., used in libntruprime.

nttcompiler input: size-2k NTT strategy.
Output: (1) portable C; (2) C with AVX2 intrinsics.
nttcompiler verifies that the AVX2 binaries
produce correct NTT outputs for all possible inputs.
“Don’t compilers produce poor speeds?” — Yes for
general-purpose languages, but often a domain-specific
compiler does a good job starting from a domain-specific
language. See generally “The death of optimizing compilers”.
Closest previous work: SPIRAL DSL for floating-point FFTs.
But NTTs raise new codegen+verification questions.

Daniel J. Bernstein, PQSRC highlights 8

https://pqsrc.cr.yp.to/downloads.html
https://cr.yp.to/talks.html#2015.04.16
https://spiral.net/


PQSRC highlight: nttcompiler

Tool from https://pqsrc.cr.yp.to/downloads.html.
Usable for many lattice systems: e.g., used in libntruprime.
nttcompiler input: size-2k NTT strategy.
Output: (1) portable C; (2) C with AVX2 intrinsics.
nttcompiler verifies that the AVX2 binaries
produce correct NTT outputs for all possible inputs.

“Don’t compilers produce poor speeds?” — Yes for
general-purpose languages, but often a domain-specific
compiler does a good job starting from a domain-specific
language. See generally “The death of optimizing compilers”.
Closest previous work: SPIRAL DSL for floating-point FFTs.
But NTTs raise new codegen+verification questions.

Daniel J. Bernstein, PQSRC highlights 8

https://pqsrc.cr.yp.to/downloads.html
https://cr.yp.to/talks.html#2015.04.16
https://spiral.net/


PQSRC highlight: nttcompiler

Tool from https://pqsrc.cr.yp.to/downloads.html.
Usable for many lattice systems: e.g., used in libntruprime.
nttcompiler input: size-2k NTT strategy.
Output: (1) portable C; (2) C with AVX2 intrinsics.
nttcompiler verifies that the AVX2 binaries
produce correct NTT outputs for all possible inputs.
“Don’t compilers produce poor speeds?”

— Yes for
general-purpose languages, but often a domain-specific
compiler does a good job starting from a domain-specific
language. See generally “The death of optimizing compilers”.
Closest previous work: SPIRAL DSL for floating-point FFTs.
But NTTs raise new codegen+verification questions.

Daniel J. Bernstein, PQSRC highlights 8

https://pqsrc.cr.yp.to/downloads.html
https://cr.yp.to/talks.html#2015.04.16
https://spiral.net/


PQSRC highlight: nttcompiler

Tool from https://pqsrc.cr.yp.to/downloads.html.
Usable for many lattice systems: e.g., used in libntruprime.
nttcompiler input: size-2k NTT strategy.
Output: (1) portable C; (2) C with AVX2 intrinsics.
nttcompiler verifies that the AVX2 binaries
produce correct NTT outputs for all possible inputs.
“Don’t compilers produce poor speeds?” — Yes for
general-purpose languages, but often a domain-specific
compiler does a good job starting from a domain-specific
language. See generally “The death of optimizing compilers”.

Closest previous work: SPIRAL DSL for floating-point FFTs.
But NTTs raise new codegen+verification questions.

Daniel J. Bernstein, PQSRC highlights 8

https://pqsrc.cr.yp.to/downloads.html
https://cr.yp.to/talks.html#2015.04.16
https://spiral.net/


PQSRC highlight: nttcompiler

Tool from https://pqsrc.cr.yp.to/downloads.html.
Usable for many lattice systems: e.g., used in libntruprime.
nttcompiler input: size-2k NTT strategy.
Output: (1) portable C; (2) C with AVX2 intrinsics.
nttcompiler verifies that the AVX2 binaries
produce correct NTT outputs for all possible inputs.
“Don’t compilers produce poor speeds?” — Yes for
general-purpose languages, but often a domain-specific
compiler does a good job starting from a domain-specific
language. See generally “The death of optimizing compilers”.
Closest previous work: SPIRAL DSL for floating-point FFTs.
But NTTs raise new codegen+verification questions.

Daniel J. Bernstein, PQSRC highlights 8

https://pqsrc.cr.yp.to/downloads.html
https://cr.yp.to/talks.html#2015.04.16
https://spiral.net/


PQSRC highlight: safegcd2

Formal proofs distributed as part of the HOL Light prover.
Used in, e.g., Amazon’s new formally verified speedups
for X25519 software and Ed25519 software in LibCrypto.
Also applicable in many post-quantum systems.

These are proofs that 1 + ⌊9437b/4096⌋ iterations of the
2019 Bernstein–Yang “divstep” iteration, starting with δ = 1/2
and 0 ≤ g ≤ f ≤ 2b, compute gcd, modular inverse, etc.
This iteration is convenient for fast constant-time code.
Planning paper on proof technique and software integration;
joint work with Harrison, Maxwell, Wang, Wuille, Yang.

Daniel J. Bernstein, PQSRC highlights 9

https://hol-light.github.io/
https://www.amazon.science/blog/better-performing-25519-elliptic-curve-cryptography


PQSRC highlight: safegcd2

Formal proofs distributed as part of the HOL Light prover.
Used in, e.g., Amazon’s new formally verified speedups
for X25519 software and Ed25519 software in LibCrypto.
Also applicable in many post-quantum systems.
These are proofs that 1 + ⌊9437b/4096⌋ iterations of the
2019 Bernstein–Yang “divstep” iteration, starting with δ = 1/2
and 0 ≤ g ≤ f ≤ 2b, compute gcd, modular inverse, etc.
This iteration is convenient for fast constant-time code.

Planning paper on proof technique and software integration;
joint work with Harrison, Maxwell, Wang, Wuille, Yang.

Daniel J. Bernstein, PQSRC highlights 9

https://hol-light.github.io/
https://www.amazon.science/blog/better-performing-25519-elliptic-curve-cryptography


PQSRC highlight: safegcd2

Formal proofs distributed as part of the HOL Light prover.
Used in, e.g., Amazon’s new formally verified speedups
for X25519 software and Ed25519 software in LibCrypto.
Also applicable in many post-quantum systems.
These are proofs that 1 + ⌊9437b/4096⌋ iterations of the
2019 Bernstein–Yang “divstep” iteration, starting with δ = 1/2
and 0 ≤ g ≤ f ≤ 2b, compute gcd, modular inverse, etc.
This iteration is convenient for fast constant-time code.
Planning paper on proof technique and software integration;
joint work with Harrison, Maxwell, Wang, Wuille, Yang.

Daniel J. Bernstein, PQSRC highlights 9

https://hol-light.github.io/
https://www.amazon.science/blog/better-performing-25519-elliptic-curve-cryptography


PQSRC highlight: goppadecoding

HOL Light formal proofs, Lean formal proofs, and paper:
see https://cr.yp.to/papers.html#goppadecoding.
Verifies formulas used in deployed Classic McEliece software.

Context: Classic McEliece uses a much more powerful decoder
than typical lattice systems, giving it much higher security
at each ciphertext size, making it the most efficient choice
for applications using static post-quantum keys.
These proofs guarantee correctness for a specific decoder,
the decoder used in the Classic McEliece software.
Unexpected spinoff: can skip reencryption after this decoder
(although reencryption might still rescue security after faults).
Big step towards complete verification of the software.

Daniel J. Bernstein, PQSRC highlights 10

https://cr.yp.to/papers.html#goppadecoding
https://mceliece.org
https://cr.yp.to/talks.html#2024.07.17
https://cr.yp.to/talks.html#2024.09.17
https://cr.yp.to/papers.html#ntrw


PQSRC highlight: goppadecoding

HOL Light formal proofs, Lean formal proofs, and paper:
see https://cr.yp.to/papers.html#goppadecoding.
Verifies formulas used in deployed Classic McEliece software.
Context: Classic McEliece uses a much more powerful decoder
than typical lattice systems, giving it much higher security
at each ciphertext size, making it the most efficient choice
for applications using static post-quantum keys.

These proofs guarantee correctness for a specific decoder,
the decoder used in the Classic McEliece software.
Unexpected spinoff: can skip reencryption after this decoder
(although reencryption might still rescue security after faults).
Big step towards complete verification of the software.

Daniel J. Bernstein, PQSRC highlights 10

https://cr.yp.to/papers.html#goppadecoding
https://mceliece.org
https://cr.yp.to/talks.html#2024.07.17
https://cr.yp.to/talks.html#2024.09.17
https://cr.yp.to/papers.html#ntrw


PQSRC highlight: goppadecoding

HOL Light formal proofs, Lean formal proofs, and paper:
see https://cr.yp.to/papers.html#goppadecoding.
Verifies formulas used in deployed Classic McEliece software.
Context: Classic McEliece uses a much more powerful decoder
than typical lattice systems, giving it much higher security
at each ciphertext size, making it the most efficient choice
for applications using static post-quantum keys.
These proofs guarantee correctness for a specific decoder,
the decoder used in the Classic McEliece software.
Unexpected spinoff: can skip reencryption after this decoder
(although reencryption might still rescue security after faults).
Big step towards complete verification of the software.

Daniel J. Bernstein, PQSRC highlights 10

https://cr.yp.to/papers.html#goppadecoding
https://mceliece.org
https://cr.yp.to/talks.html#2024.07.17
https://cr.yp.to/talks.html#2024.09.17
https://cr.yp.to/papers.html#ntrw

