
Cryptographic code snippets

Daniel J. Bernstein

Timing attacks

Example of exploiting timing variations

June 2024 paper from Bernstein, Bhargavan,
Bhasin, Chattopadhyay, Chia, Kannwischer, Kiefer,
Paiva, Ravi, Tamvada: “KyberSlash: Exploiting
secret-dependent division timings in Kyber
implementations.”
https://kyberslash.cr.yp.to/papers.html

Demos: exploiting KyberSlash1/2 to extract secret
key from reference Kyber-512/Kyber-768 software
on a Cortex-A7/Cortex-M4 in a few hours/minutes.

Daniel J. Bernstein, Cryptographic code snippets 3

https://kyberslash.cr.yp.to/papers.html

The code that was exploited
// Replaced KYBER_Q with Q to fit on slide.
// KyberSlash1:
t=(((t<<1)+Q/2)/Q)&1;
...
// KyberSlash2:
t[j]=((((uint16_t)u<<4)+Q/2)/Q)&15;
...
t[j]=((((uint32_t)u<<5)+Q/2)/Q)&31;
...
t[k]=((((uint32_t)t[k]<<11)+Q/2)/Q)&0x7ff;
...
t[k]=((((uint32_t)t[k]<<10)+Q/2)/Q)&0x3ff;

Daniel J. Bernstein, Cryptographic code snippets 4

More examples this year

May 2024: I posted a demo that often recovers keys
from the official optimized software for SMAUG-T
on an Intel Skylake in minutes.
(Context: SMAUG-T is a smaller KEM than Kyber.)
June 2024: Purnal posted a demo that reportedly
recovers secret key from reference Kyber-512
software in minutes on a laptop, if the software is
compiled with clang 15 (2022) or newer.

Daniel J. Bernstein, Cryptographic code snippets 5

https://groups.google.com/g/kpqc-bulletin/c/_tdKzc7zT-0/m/ay4KC6B6AQAJ
https://kpqc.cryptolab.co.kr/smaug-t
https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

One of many older examples

2020 Guo–Johansson–Nilsson FrodoKEM attack
paper “A key-recovery timing attack on
post-quantum primitives using the
Fujisaki-Okamoto transformation and its application
on FrodoKEM”: “Experiments show that the attack
code is able to extract the secret key for all security
levels using about 230 decapsulation calls.”

This was a timing leak from memcmp.

Daniel J. Bernstein, Cryptographic code snippets 6

https://eprint.iacr.org/2020/743
https://eprint.iacr.org/2020/743

One of many older examples

2020 Guo–Johansson–Nilsson FrodoKEM attack
paper “A key-recovery timing attack on
post-quantum primitives using the
Fujisaki-Okamoto transformation and its application
on FrodoKEM”: “Experiments show that the attack
code is able to extract the secret key for all security
levels using about 230 decapsulation calls.”
This was a timing leak from memcmp.

Daniel J. Bernstein, Cryptographic code snippets 6

https://eprint.iacr.org/2020/743
https://eprint.iacr.org/2020/743

Blame the protocols?

“Protocols should never use long-term keys! Do
whatever you have to do to keep switching keys!”

— This stops many timing-attack demos
but doesn’t guarantee security.
See, e.g., 2018 “Single trace attack against
RSA key generation in Intel SGX SSL”.
We know one way to systematically stop all timing
attacks: eliminate data flow from secrets to timings.

Daniel J. Bernstein, Cryptographic code snippets 7

https://openlib.tugraz.at/download.php?id=5ab193a2bc1d8&location=browse

Blame the protocols?

“Protocols should never use long-term keys! Do
whatever you have to do to keep switching keys!”
— This stops many timing-attack demos
but doesn’t guarantee security.
See, e.g., 2018 “Single trace attack against
RSA key generation in Intel SGX SSL”.

We know one way to systematically stop all timing
attacks: eliminate data flow from secrets to timings.

Daniel J. Bernstein, Cryptographic code snippets 7

https://openlib.tugraz.at/download.php?id=5ab193a2bc1d8&location=browse

Blame the protocols?

“Protocols should never use long-term keys! Do
whatever you have to do to keep switching keys!”
— This stops many timing-attack demos
but doesn’t guarantee security.
See, e.g., 2018 “Single trace attack against
RSA key generation in Intel SGX SSL”.
We know one way to systematically stop all timing
attacks: eliminate data flow from secrets to timings.

Daniel J. Bernstein, Cryptographic code snippets 7

https://openlib.tugraz.at/download.php?id=5ab193a2bc1d8&location=browse

Writing constant-time code

Multiple levels of strategies
My low-level focus for the rest of the talk:

• Take snippets of code with timing variations.
• Rewrite to avoid timing variations.
• Make sure the rewrite is correct.

Higher-level strategies that I won’t cover today:
• Reorganizing higher-level computations (e.g.,

bitslicing, or changing algorithms for sorting
and invmod) to streamline constant-time code.

• Switching to cryptosystems that simplify
constant-time code. Examples: X25519,
Ed25519, Salsa20, ChaCha20, and more.

Daniel J. Bernstein, Cryptographic code snippets 9

https://eprint.iacr.org/2017/793
https://sorting.cr.yp.to
https://safegcd.cr.yp.to
https://cr.yp.to/ecdh.html
https://ed25519.cr.yp.to
https://cr.yp.to/snuffle.html
https://cr.yp.to/chacha.html

Multiple levels of strategies
My low-level focus for the rest of the talk:

• Take snippets of code with timing variations.
• Rewrite to avoid timing variations.
• Make sure the rewrite is correct.

Higher-level strategies that I won’t cover today:
• Reorganizing higher-level computations (e.g.,

bitslicing, or changing algorithms for sorting
and invmod) to streamline constant-time code.

• Switching to cryptosystems that simplify
constant-time code. Examples: X25519,
Ed25519, Salsa20, ChaCha20, and more.

Daniel J. Bernstein, Cryptographic code snippets 9

https://eprint.iacr.org/2017/793
https://sorting.cr.yp.to
https://safegcd.cr.yp.to
https://cr.yp.to/ecdh.html
https://ed25519.cr.yp.to
https://cr.yp.to/snuffle.html
https://cr.yp.to/chacha.html

Multiple levels of strategies
My low-level focus for the rest of the talk:

• Take snippets of code with timing variations.
• Rewrite to avoid timing variations.
• Make sure the rewrite is correct.

Higher-level strategies that I won’t cover today:
• Reorganizing higher-level computations (e.g.,

bitslicing, or changing algorithms for sorting
and invmod) to streamline constant-time code.

• Switching to cryptosystems that simplify
constant-time code. Examples: X25519,
Ed25519, Salsa20, ChaCha20, and more.

Daniel J. Bernstein, Cryptographic code snippets 9

https://eprint.iacr.org/2017/793
https://sorting.cr.yp.to
https://safegcd.cr.yp.to
https://cr.yp.to/ecdh.html
https://ed25519.cr.yp.to
https://cr.yp.to/snuffle.html
https://cr.yp.to/chacha.html

Case study: incrementing an array
Let’s start with this self-contained function:

#include <stdint.h>
void inc128big(int8_t x[16])
{

for (int i = 15;i >= 0;--i)
if (++x[i])

break;
}

Note: Always compile with -fwrapv (or equivalent)
to guarantee twos-complement arithmetic.

Daniel J. Bernstein, Cryptographic code snippets 10

https://devblogs.microsoft.com/cppblog/new-code-optimizer/

First rewrite
Always run loop to the maximum length:

#include <stdint.h>
void inc128big(int8_t x[16])
{

int8_t mask = -1;
for (int i = 15;i >= 0;--i) {

x[i] -= mask;
if (x[i] != 0) mask = 0;

}
}

“Mask” convention: −1 for true, 0 for false.
Daniel J. Bernstein, Cryptographic code snippets 11

Second rewrite
Always update mask using logic operation:

#include <stdint.h>
void inc128big(int8_t x[16])
{

int8_t mask = -1;
for (int i = 15;i >= 0;--i) {

x[i] -= mask;
mask &= -(x[i] == 0);

}
}

Constant-time for some CPUs and compilers.
Daniel J. Bernstein, Cryptographic code snippets 12

Third rewrite
#include "crypto_int8.h"
#include <stdint.h>
void inc128big(int8_t x[16])
{

int8_t mask = -1;
for (int i = 15;i >= 0;--i) {

x[i] -= mask;
mask &= crypto_int8_zero_mask(x[i]);

}
}

Uses constant-time subroutine from SUPERCOP.
Daniel J. Bernstein, Cryptographic code snippets 13

Do the rewritten snippets work?
Maybe even more rewrites in asm.
Probably inc128big speed doesn’t matter,
but asm is the best defense against compilers.
With or without asm, rewrites risk introducing bugs.

e.g. CVE-2018-0733 for OpenSSL:
“Because of an implementation bug the PA-RISC
CRYPTO_memcmp function is effectively reduced to
only comparing the least significant bit of each
byte.” Bug introduced May 2016.
e.g. FrodoKEM replaced memcmp with a buggy
constant-time rewrite, allowing a faster attack.

Daniel J. Bernstein, Cryptographic code snippets 14

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/kSUKzDNc5ME/m/EMFYz9RNCAAJ

Do the rewritten snippets work?
Maybe even more rewrites in asm.
Probably inc128big speed doesn’t matter,
but asm is the best defense against compilers.
With or without asm, rewrites risk introducing bugs.
e.g. CVE-2018-0733 for OpenSSL:
“Because of an implementation bug the PA-RISC
CRYPTO_memcmp function is effectively reduced to
only comparing the least significant bit of each
byte.” Bug introduced May 2016.

e.g. FrodoKEM replaced memcmp with a buggy
constant-time rewrite, allowing a faster attack.

Daniel J. Bernstein, Cryptographic code snippets 14

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/kSUKzDNc5ME/m/EMFYz9RNCAAJ

Do the rewritten snippets work?
Maybe even more rewrites in asm.
Probably inc128big speed doesn’t matter,
but asm is the best defense against compilers.
With or without asm, rewrites risk introducing bugs.
e.g. CVE-2018-0733 for OpenSSL:
“Because of an implementation bug the PA-RISC
CRYPTO_memcmp function is effectively reduced to
only comparing the least significant bit of each
byte.” Bug introduced May 2016.
e.g. FrodoKEM replaced memcmp with a buggy
constant-time rewrite, allowing a faster attack.

Daniel J. Bernstein, Cryptographic code snippets 14

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/kSUKzDNc5ME/m/EMFYz9RNCAAJ

Obvious response: test, test, test
Testing millions of random inputs for inc128big
feels like it should trigger any bugs.
Also use fuzzing techniques. Try 216 inc128big
inputs where each input byte is −1 or 0. Try arrays
for CRYPTO_memcmp that differ in just a few bits.
Knuth’s Art of Computer Programming : “it is also
necessary to find some test cases that cause the
rarely executed parts of the program to be exercised”.

But there are endless snippets being rewritten.
Some bugs are going to slip through.

Daniel J. Bernstein, Cryptographic code snippets 15

Obvious response: test, test, test
Testing millions of random inputs for inc128big
feels like it should trigger any bugs.
Also use fuzzing techniques. Try 216 inc128big
inputs where each input byte is −1 or 0. Try arrays
for CRYPTO_memcmp that differ in just a few bits.
Knuth’s Art of Computer Programming : “it is also
necessary to find some test cases that cause the
rarely executed parts of the program to be exercised”.
But there are endless snippets being rewritten.
Some bugs are going to slip through.

Daniel J. Bernstein, Cryptographic code snippets 15

More powerful: symbolic testing

Download saferewrite and create
src/inc128big/api with these two lines:

inout int8 x 16
call inc128big

Create src/inc128big/ref/inc.c,
src/inc128big/mask1/inc.c, etc., with the
inc128big implementations from my slides.
Then follow the saferewrite instructions.

Daniel J. Bernstein, Cryptographic code snippets 16

https://pqsrc.cr.yp.to/downloads.html

Results of symbolic testing
Outputs in build/inc128big within a few minutes:

mask1/.../analysis/equals-ref-...
mask2/.../analysis/equals-ref-...
mask3/.../analysis/equals-ref-...

This analysis is unrolling the compiled binaries
and using an “SMT solver” to show that
the outputs are the same for all inputs.

Of course, saferewrite or the SMT solver
could have bugs. Don’t skip conventional tests!

Daniel J. Bernstein, Cryptographic code snippets 17

Results of symbolic testing
Outputs in build/inc128big within a few minutes:

mask1/.../analysis/equals-ref-...
mask2/.../analysis/equals-ref-...
mask3/.../analysis/equals-ref-...

This analysis is unrolling the compiled binaries
and using an “SMT solver” to show that
the outputs are the same for all inputs.
Of course, saferewrite or the SMT solver
could have bugs. Don’t skip conventional tests!

Daniel J. Bernstein, Cryptographic code snippets 17

Inside crypto_int8_zero_mask

crypto_int8 crypto_int8_zero_mask
(crypto_int8 x) {

#if defined(__GNUC__) && defined(__aarch64__)
crypto_int8 z;
__asm__ ("tst %w1,255\n csetm %w0,eq" :

"=r"(z) : "r"(x) : "cc");
return z;

#else
return ˜crypto_int8_nonzero_mask(x);

#endif
}

Daniel J. Bernstein, Cryptographic code snippets 18

Inside crypto_int8_nonzero_mask
crypto_int8 crypto_int8_nonzero_mask

(crypto_int8 x) {
#if defined(__GNUC__) && defined(__aarch64__)

crypto_int8 z;
__asm__ ("tst %w1,255\n csetm %w0,ne" :

"=r"(z) : "r"(x) : "cc");
return z;

#else
x |= -x;
return crypto_int8_negative_mask(x);

#endif
}

Daniel J. Bernstein, Cryptographic code snippets 19

Inside crypto_int8_negative_mask
crypto_int8 crypto_int8_negative_mask(crypto_int8 x) {
#if defined(__GNUC__) && defined(__x86_64__)

__asm__ ("sarb $7,%0" : "+r"(x) : : "cc");
return x;

#elif defined(__GNUC__) && defined(__aarch64__)
crypto_int8 y;
__asm__ ("sbfx %w0,%w1,7,1" : "=r"(y) : "r"(x) :);
return y;

#else
x >>= 8-6;
x ˆ= crypto_int8_optblocker;
x >>= 5;
return x;

#endif
}

Daniel J. Bernstein, Cryptographic code snippets 20

Why not just shift right by 7 in C?

Standard advice for many years:
don’t use secret bool in constant-time code;
e.g., don’t use secret !, <, &&, etc. in C or C++.
(The C language turns those into int, but the
programmer and compiler know that they’re bool.)
When papers complain about compilers producing
branches, one finds bool in the original code;
BearSSL says “Avoid boolean types”; etc.

April 2024: I pointed out that current compilers
are sometimes “optimizing” arithmetic into bool.

Daniel J. Bernstein, Cryptographic code snippets 21

https://www.cl.cam.ac.uk/~rja14/Papers/whatyouc.pdf
https://infoscience.epfl.ch/record/223794/files/32_1.pdf
https://www.bearssl.org/constanttime.html
https://microblog.cr.yp.to/1713627640/index.html

Why not just shift right by 7 in C?

Standard advice for many years:
don’t use secret bool in constant-time code;
e.g., don’t use secret !, <, &&, etc. in C or C++.
(The C language turns those into int, but the
programmer and compiler know that they’re bool.)
When papers complain about compilers producing
branches, one finds bool in the original code;
BearSSL says “Avoid boolean types”; etc.
April 2024: I pointed out that current compilers
are sometimes “optimizing” arithmetic into bool.

Daniel J. Bernstein, Cryptographic code snippets 21

https://www.cl.cam.ac.uk/~rja14/Papers/whatyouc.pdf
https://infoscience.epfl.ch/record/223794/files/32_1.pdf
https://www.bearssl.org/constanttime.html
https://microblog.cr.yp.to/1713627640/index.html

What’s optblocker?

optblocker is a volatile variable set to 0.
The usage of optblocker is designed to prevent
compilers from seeing that there’s a 1-bit result.

e.g. crypto_int8_negative_mask(x) returns
((x>>2)ˆcrypto_int8_optblocker)>>5.
e.g. crypto_int8_bottombit_mask(x) returns
-(x&(1ˆcrypto_int8_optblocker)).

Daniel J. Bernstein, Cryptographic code snippets 22

What’s optblocker?

optblocker is a volatile variable set to 0.
The usage of optblocker is designed to prevent
compilers from seeing that there’s a 1-bit result.
e.g. crypto_int8_negative_mask(x) returns
((x>>2)ˆcrypto_int8_optblocker)>>5.

e.g. crypto_int8_bottombit_mask(x) returns
-(x&(1ˆcrypto_int8_optblocker)).

Daniel J. Bernstein, Cryptographic code snippets 22

What’s optblocker?

optblocker is a volatile variable set to 0.
The usage of optblocker is designed to prevent
compilers from seeing that there’s a 1-bit result.
e.g. crypto_int8_negative_mask(x) returns
((x>>2)ˆcrypto_int8_optblocker)>>5.
e.g. crypto_int8_bottombit_mask(x) returns
-(x&(1ˆcrypto_int8_optblocker)).

Daniel J. Bernstein, Cryptographic code snippets 22

Do these functions actually work?

There are more of these functions,
times int vs. uint,
times 8 vs. 16 vs. 32 vs. 64.
Overall 144 crypto_{int,uint} functions.

All checked against reference implementations
by saferewrite on various platforms,
plus various conventional tests in SUPERCOP.
Better to centralize on these functions
than have everyone reinventing the wheel.

Daniel J. Bernstein, Cryptographic code snippets 23

Do these functions actually work?

There are more of these functions,
times int vs. uint,
times 8 vs. 16 vs. 32 vs. 64.
Overall 144 crypto_{int,uint} functions.
All checked against reference implementations
by saferewrite on various platforms,
plus various conventional tests in SUPERCOP.
Better to centralize on these functions
than have everyone reinventing the wheel.

Daniel J. Bernstein, Cryptographic code snippets 23

Extra concerns for inline asm

There are 196 __asm__ lines in these files,
each with input-output declarations such as
"+r"(x) : : "cc". Declaration errors can
produce bugs in some callers despite passing tests.
The rules here are more complicated and error-prone
than the “restore all callee-save registers” rule
for separate asm functions; but I want these .h files
usable in programs that don’t want separate asm.

So I actually auto-generate these __asm__ lines
from lines in a simpler readasm language.

Daniel J. Bernstein, Cryptographic code snippets 24

Extra concerns for inline asm

There are 196 __asm__ lines in these files,
each with input-output declarations such as
"+r"(x) : : "cc". Declaration errors can
produce bugs in some callers despite passing tests.
The rules here are more complicated and error-prone
than the “restore all callee-save registers” rule
for separate asm functions; but I want these .h files
usable in programs that don’t want separate asm.
So I actually auto-generate these __asm__ lines
from lines in a simpler readasm language.

Daniel J. Bernstein, Cryptographic code snippets 24

The actual source code
This is the input used to auto-generate
crypto_{int,uint}{8,16,32,64}_zero_mask:
TYPE TYPE_zero_mask(TYPE X) {
#if arm64

TYPE Z;
8: readasm("arm64; int8 X Z; X & 255; Z = -1 if = else 0");

16: readasm("arm64; int16 X Z; X & 65535; Z = -1 if = else 0");
32: readasm("arm64; int32 X Z; X - 0; Z = -1 if = else 0");
64: readasm("arm64; int64 X Z; X - 0; Z = -1 if = else 0");

return Z;
#else

return ˜TYPE_nonzero_mask(X);
#endif
}

Daniel J. Bernstein, Cryptographic code snippets 25

