
Software analysis
of the KpqC candidates
(+ bonus slides on patents)

Daniel J. Bernstein



Objectives for cryptographic software

Assume specified cryptosystem X meets its security
goals: e.g., IND-CCA2 security 2256 for a KEM.
Basic questions about software for X :

• Is the software correct, i.e., does it
compute the specified functions for all inputs?

• Is the software constant-time, i.e., does it
avoid leaking secrets through timings?

• Is the software efficient enough to meet the
user’s cost constraints?

Daniel J. Bernstein, Software analysis of the KpqC candidates 2



Bugs in software can damage security
From the NCC-Sign code (minus braces):

if (t0 < 3)
a[ctr++] = 1 - t0;

if (t1 < 3 && ctr < len)
a[ctr++] = 1 - t0;

if (t2 < 3 && ctr < len)
a[ctr++] = 1 - t0;

if (t3 < 3 && ctr < len)
a[ctr++] = 1 - t0;

Similar randomness-reuse bugs were announced in
2018+2019 in the official Dilithium+Falcon code.

Daniel J. Bernstein, Software analysis of the KpqC candidates 3



Some advice on catching bugs
Compile and test with -fsanitize=address.

Test bad inputs: e.g., modified ciphertexts.
Follow https://bench.cr.yp.to/tips.html
to integrate your software into SUPERCOP. See if
SUPERCOP’s tests pass. See if multiple compiler
options produce identical SUPERCOP checksums.
Have someone else use the specification to write
Python software. Compute checksums from Python
and see if those match the checksums from C code.
Expensive but convincing: computer-checked proofs.

Daniel J. Bernstein, Software analysis of the KpqC candidates 4

https://bench.cr.yp.to/tips.html
https://classic.mceliece.org/mceliece-sage-20221023/test-checksums.sage.html
https://cr.yp.to/papers.html#pwccp


Some advice on catching bugs
Compile and test with -fsanitize=address.
Test bad inputs: e.g., modified ciphertexts.

Follow https://bench.cr.yp.to/tips.html
to integrate your software into SUPERCOP. See if
SUPERCOP’s tests pass. See if multiple compiler
options produce identical SUPERCOP checksums.
Have someone else use the specification to write
Python software. Compute checksums from Python
and see if those match the checksums from C code.
Expensive but convincing: computer-checked proofs.

Daniel J. Bernstein, Software analysis of the KpqC candidates 4

https://bench.cr.yp.to/tips.html
https://classic.mceliece.org/mceliece-sage-20221023/test-checksums.sage.html
https://cr.yp.to/papers.html#pwccp


Some advice on catching bugs
Compile and test with -fsanitize=address.
Test bad inputs: e.g., modified ciphertexts.
Follow https://bench.cr.yp.to/tips.html
to integrate your software into SUPERCOP. See if
SUPERCOP’s tests pass. See if multiple compiler
options produce identical SUPERCOP checksums.

Have someone else use the specification to write
Python software. Compute checksums from Python
and see if those match the checksums from C code.
Expensive but convincing: computer-checked proofs.

Daniel J. Bernstein, Software analysis of the KpqC candidates 4

https://bench.cr.yp.to/tips.html
https://classic.mceliece.org/mceliece-sage-20221023/test-checksums.sage.html
https://cr.yp.to/papers.html#pwccp


Some advice on catching bugs
Compile and test with -fsanitize=address.
Test bad inputs: e.g., modified ciphertexts.
Follow https://bench.cr.yp.to/tips.html
to integrate your software into SUPERCOP. See if
SUPERCOP’s tests pass. See if multiple compiler
options produce identical SUPERCOP checksums.
Have someone else use the specification to write
Python software. Compute checksums from Python
and see if those match the checksums from C code.

Expensive but convincing: computer-checked proofs.

Daniel J. Bernstein, Software analysis of the KpqC candidates 4

https://bench.cr.yp.to/tips.html
https://classic.mceliece.org/mceliece-sage-20221023/test-checksums.sage.html
https://cr.yp.to/papers.html#pwccp


Some advice on catching bugs
Compile and test with -fsanitize=address.
Test bad inputs: e.g., modified ciphertexts.
Follow https://bench.cr.yp.to/tips.html
to integrate your software into SUPERCOP. See if
SUPERCOP’s tests pass. See if multiple compiler
options produce identical SUPERCOP checksums.
Have someone else use the specification to write
Python software. Compute checksums from Python
and see if those match the checksums from C code.
Expensive but convincing: computer-checked proofs.

Daniel J. Bernstein, Software analysis of the KpqC candidates 4

https://bench.cr.yp.to/tips.html
https://classic.mceliece.org/mceliece-sage-20221023/test-checksums.sage.html
https://cr.yp.to/papers.html#pwccp


Timing variations can damage security

In 6 experiments out of 10, my 2024-05-11 attack
script recovered a long-term SMAUG-T128 secret
key from <10 minutes of decapsulation timings of
the SMAUG-T optimized code.

“What if we use keys just once?” — Stops many
timing-attack demos but doesn’t guarantee security.
See, e.g., 2018 “Single trace attack against RSA
key generation in Intel SGX SSL”.

Daniel J. Bernstein, Software analysis of the KpqC candidates 5

https://groups.google.com/g/kpqc-bulletin/c/_tdKzc7zT-0/m/ay4KC6B6AQAJ
https://groups.google.com/g/kpqc-bulletin/c/_tdKzc7zT-0/m/ay4KC6B6AQAJ
https://openlib.tugraz.at/download.php?id=5ab193a2bc1d8&location=browse


Timing variations can damage security

In 6 experiments out of 10, my 2024-05-11 attack
script recovered a long-term SMAUG-T128 secret
key from <10 minutes of decapsulation timings of
the SMAUG-T optimized code.
“What if we use keys just once?” — Stops many
timing-attack demos but doesn’t guarantee security.
See, e.g., 2018 “Single trace attack against RSA
key generation in Intel SGX SSL”.

Daniel J. Bernstein, Software analysis of the KpqC candidates 5

https://groups.google.com/g/kpqc-bulletin/c/_tdKzc7zT-0/m/ay4KC6B6AQAJ
https://groups.google.com/g/kpqc-bulletin/c/_tdKzc7zT-0/m/ay4KC6B6AQAJ
https://openlib.tugraz.at/download.php?id=5ab193a2bc1d8&location=browse


Some advice on catching timing variations
After integrating software into SUPERCOP:
mark goal-constbranch and goal-constindex;
then run TIMECOP 2, which is part of SUPERCOP.

When the code passes all tests on your machine,
submit the software to SUPERCOP: e.g.,

• AIMER is in supercop-20240716,
• HAETAE is in supercop-20240625,
• MQ-Sign is in supercop-20240625,
• NTRU+ is in supercop-20240625.

Then https://bench.cr.yp.to shows tests,
including TIMECOP results, from many machines.

Daniel J. Bernstein, Software analysis of the KpqC candidates 6

https://bench.cr.yp.to/tips.html#timecop
https://bench.cr.yp.to


Some advice on catching timing variations
After integrating software into SUPERCOP:
mark goal-constbranch and goal-constindex;
then run TIMECOP 2, which is part of SUPERCOP.
When the code passes all tests on your machine,
submit the software to SUPERCOP: e.g.,

• AIMER is in supercop-20240716,
• HAETAE is in supercop-20240625,
• MQ-Sign is in supercop-20240625,
• NTRU+ is in supercop-20240625.

Then https://bench.cr.yp.to shows tests,
including TIMECOP results, from many machines.

Daniel J. Bernstein, Software analysis of the KpqC candidates 6

https://bench.cr.yp.to/tips.html#timecop
https://bench.cr.yp.to


What TIMECOP checks for
TIMECOP runs your code, checking whether there
is any data flow from secret inputs (including
randomness) to branch conditions or array indices.

Limitations: TIMECOP will not
• catch data flow not visible in these runs (e.g.,

does signing a long message trigger a branch?),
• run perfectly on all computers (e.g.,

it gives up on AMD XOP instructions),
• catch variable-time instructions other than

branches and memory accesses, or
• fix the problems it finds.

Daniel J. Bernstein, Software analysis of the KpqC candidates 7



What TIMECOP checks for
TIMECOP runs your code, checking whether there
is any data flow from secret inputs (including
randomness) to branch conditions or array indices.
Limitations: TIMECOP will not

• catch data flow not visible in these runs (e.g.,
does signing a long message trigger a branch?),

• run perfectly on all computers (e.g.,
it gives up on AMD XOP instructions),

• catch variable-time instructions other than
branches and memory accesses, or

• fix the problems it finds.

Daniel J. Bernstein, Software analysis of the KpqC candidates 7



What TIMECOP checks for
TIMECOP runs your code, checking whether there
is any data flow from secret inputs (including
randomness) to branch conditions or array indices.
Limitations: TIMECOP will not

• catch data flow not visible in these runs (e.g.,
does signing a long message trigger a branch?),

• run perfectly on all computers (e.g.,
it gives up on AMD XOP instructions),

• catch variable-time instructions other than
branches and memory accesses, or

• fix the problems it finds.

Daniel J. Bernstein, Software analysis of the KpqC candidates 7



What TIMECOP checks for
TIMECOP runs your code, checking whether there
is any data flow from secret inputs (including
randomness) to branch conditions or array indices.
Limitations: TIMECOP will not

• catch data flow not visible in these runs (e.g.,
does signing a long message trigger a branch?),

• run perfectly on all computers (e.g.,
it gives up on AMD XOP instructions),

• catch variable-time instructions other than
branches and memory accesses, or

• fix the problems it finds.

Daniel J. Bernstein, Software analysis of the KpqC candidates 7



What TIMECOP checks for
TIMECOP runs your code, checking whether there
is any data flow from secret inputs (including
randomness) to branch conditions or array indices.
Limitations: TIMECOP will not

• catch data flow not visible in these runs (e.g.,
does signing a long message trigger a branch?),

• run perfectly on all computers (e.g.,
it gives up on AMD XOP instructions),

• catch variable-time instructions other than
branches and memory accesses, or

• fix the problems it finds.

Daniel J. Bernstein, Software analysis of the KpqC candidates 7



Declassification
Sometimes you need data flow from randomness
to branches for rejection sampling.
e.g., to generate a prime p for an RSA key:
generate an integer p; if p is not prime, start over.

To tell TIMECOP to stop tracing data flow from a
variable, use crypto_declassify:

#include "crypto_declassify.h"
...
do {

...
crypto_declassify(&rej,sizeof rej);

} while (rej);

Daniel J. Bernstein, Software analysis of the KpqC candidates 8



Declassification
Sometimes you need data flow from randomness
to branches for rejection sampling.
e.g., to generate a prime p for an RSA key:
generate an integer p; if p is not prime, start over.
To tell TIMECOP to stop tracing data flow from a
variable, use crypto_declassify:

#include "crypto_declassify.h"
...
do {

...
crypto_declassify(&rej,sizeof rej);

} while (rej);
Daniel J. Bernstein, Software analysis of the KpqC candidates 8



Divisions involving secrets
HAETAE code uses this function for secret inputs:

int32_t fix_round(int32_t num) {
num += (num >> 31) & (-LN + 1);
num += LN / 2;
return num / LN;

}

LN is a power of 2. Easy to avoid division here:

int32_t fix_round(int32_t num) {
return (num + LNHALF) >> LNBITS;

}

Daniel J. Bernstein, Software analysis of the KpqC candidates 9



Divisions can create timing variations

Compilers will often replace “divide by constant”
with an appropriate multiplication, but not always.
Depends on platform and compiler options.

Discovery in December 2023: divisions in the Kyber
reference code are exploitable on some platforms.
New paper “KyberSlash: Exploiting
secret-dependent division timings in Kyber
implementations” also reports results of a
TIMECOP patch to look for secret divisions.

Daniel J. Bernstein, Software analysis of the KpqC candidates 10

https://kyberslash.cr.yp.to/papers.html


Divisions can create timing variations

Compilers will often replace “divide by constant”
with an appropriate multiplication, but not always.
Depends on platform and compiler options.
Discovery in December 2023: divisions in the Kyber
reference code are exploitable on some platforms.

New paper “KyberSlash: Exploiting
secret-dependent division timings in Kyber
implementations” also reports results of a
TIMECOP patch to look for secret divisions.

Daniel J. Bernstein, Software analysis of the KpqC candidates 10

https://kyberslash.cr.yp.to/papers.html


Divisions can create timing variations

Compilers will often replace “divide by constant”
with an appropriate multiplication, but not always.
Depends on platform and compiler options.
Discovery in December 2023: divisions in the Kyber
reference code are exploitable on some platforms.
New paper “KyberSlash: Exploiting
secret-dependent division timings in Kyber
implementations” also reports results of a
TIMECOP patch to look for secret divisions.

Daniel J. Bernstein, Software analysis of the KpqC candidates 10

https://kyberslash.cr.yp.to/papers.html


New compilers can add timing variations

April 2024: “Tracking down some TIMECOP alerts
led to a 2021 gcc patch from ARM . . .
turning (-x)>>31 into a bool, often breaking
constant-time code. Can often work around with
(-x)>>30, and asm is safer anyway, but for portable
fallbacks we need security-aware compilers.”

Starting with version 15 in 2022,
clang often turns x&1 into variable branches.
TIMECOP catches these timing variations
if it’s run with these compilers.

Daniel J. Bernstein, Software analysis of the KpqC candidates 11

https://microblog.cr.yp.to/1713627640/index.html


New compilers can add timing variations

April 2024: “Tracking down some TIMECOP alerts
led to a 2021 gcc patch from ARM . . .
turning (-x)>>31 into a bool, often breaking
constant-time code. Can often work around with
(-x)>>30, and asm is safer anyway, but for portable
fallbacks we need security-aware compilers.”
Starting with version 15 in 2022,
clang often turns x&1 into variable branches.

TIMECOP catches these timing variations
if it’s run with these compilers.

Daniel J. Bernstein, Software analysis of the KpqC candidates 11

https://microblog.cr.yp.to/1713627640/index.html


New compilers can add timing variations

April 2024: “Tracking down some TIMECOP alerts
led to a 2021 gcc patch from ARM . . .
turning (-x)>>31 into a bool, often breaking
constant-time code. Can often work around with
(-x)>>30, and asm is safer anyway, but for portable
fallbacks we need security-aware compilers.”
Starting with version 15 in 2022,
clang often turns x&1 into variable branches.
TIMECOP catches these timing variations
if it’s run with these compilers.

Daniel J. Bernstein, Software analysis of the KpqC candidates 11

https://microblog.cr.yp.to/1713627640/index.html


Constant-time subroutines in SUPERCOP
#include "crypto_int32.h"
crypto_int32_positive_mask(x);
crypto_int32_negative_mask(x);
crypto_int32_zero_mask(x);
crypto_int32_nonzero_mask(x);
crypto_int32_equal_mask(x,y);
crypto_int32_unequal_mask(x,y);
crypto_int32_smaller_mask(x,y);
crypto_int32_leq_mask(x,y);
crypto_int32_bottombit_mask(x);
crypto_int32_bitmod_mask(x,i);
...

Daniel J. Bernstein, Software analysis of the KpqC candidates 12



Constant-time array lookups
uint8_t loadbyte(const uint8_t *in,

crypto_int64 inlen,crypto_int64 inpos)
{

uint8_t result = 0;
while (inlen > 0) {

result |=
*in & crypto_int64_zero_mask(inpos);

++in;
--inlen;
--inpos;

}
return result;

}
Daniel J. Bernstein, Software analysis of the KpqC candidates 13



Variable-time Fisher–Yates shuffling
In the Paloma code, (somewhat) random shuffling:

for (i = set_len - 1; i > 0; i--)
{

j = ((seed[w % 16]) % (i + 1));
/* Swap */
tmp = shuffled_set[j];
shuffled_set[j] = shuffled_set[i];
shuffled_set[i] = tmp;

w = (w + 1) & 0xf;
}

Daniel J. Bernstein, Software analysis of the KpqC candidates 14



Shuffling, continued
Shuffling is also used in many other cryptosystems:
e.g., NCC-Sign, SMAUG-T.
Often specifications ask for Fisher–Yates,
and all implementations of the cryptosystems
have to use Fisher–Yates for interoperability.
Implementors can use constant-time array lookups,
but then total Fisher–Yates time is n2.
I recommend changing the specifications to use
cr.yp.to/papers.html#divergence or
eprint.iacr.org/2024/548 or
cr.yp.to/2024/insertionseries-20240515.py.

Daniel J. Bernstein, Software analysis of the KpqC candidates 15

https://cr.yp.to/papers.html#divergence
https://eprint.iacr.org/2024/548
https://cr.yp.to/2024/insertionseries-20240515.py


Example of constant-time shuffling
sntrup generating r ∈ {−1, 0, 1}n of weight w :

• generate array of n random 32-bit integers;
• for(i=0;i<w;++i) r[i] = (r[i]&-2);
• for(i=w;i<n;++i) r[i] = (r[i]&-3)|1;
• crypto_sort_uint32(r,n);
• for(i=0;i<n;++i) r[i] = (r[i]&3)-1;

SUPERCOP provides crypto_sort_uint32.

cr.yp.to/papers.html#divergence proves that,
for search problems (not distinguishing problems!),
this is close enough to uniform random if n ≤ 213.
With more work, can do exactly uniform random.

Daniel J. Bernstein, Software analysis of the KpqC candidates 16

https://cr.yp.to/papers.html#divergence


Example of constant-time shuffling
sntrup generating r ∈ {−1, 0, 1}n of weight w :

• generate array of n random 32-bit integers;
• for(i=0;i<w;++i) r[i] = (r[i]&-2);
• for(i=w;i<n;++i) r[i] = (r[i]&-3)|1;
• crypto_sort_uint32(r,n);
• for(i=0;i<n;++i) r[i] = (r[i]&3)-1;

SUPERCOP provides crypto_sort_uint32.
cr.yp.to/papers.html#divergence proves that,
for search problems (not distinguishing problems!),
this is close enough to uniform random if n ≤ 213.
With more work, can do exactly uniform random.

Daniel J. Bernstein, Software analysis of the KpqC candidates 16

https://cr.yp.to/papers.html#divergence


Efficiency
See bench.cr.yp.to/results-kem.html
for measurements so far for NTRU+;
bench.cr.yp.to/results-sign.html
for measurements so far for HAETAE, MQ-Sign,
and (starting to appear) AIMER.
Also click on system names from
bench.cr.yp.to/primitives-kem.html and
bench.cr.yp.to/primitives-sign.html
to find implementation notes:
per-implementation speeds, test failures,
checksum failures, TIMECOP failures, etc.

Daniel J. Bernstein, Software analysis of the KpqC candidates 17

https://bench.cr.yp.to/results-kem.html
https://bench.cr.yp.to/results-sign.html
https://bench.cr.yp.to/primitives-kem.html
https://bench.cr.yp.to/primitives-sign.html


Bonus slides: Patents



What is a patent?

Patent: government-issued monopoly on an
“invention”. Using the “invention” without
authorization from the patent holder is unlawful.
I’ll take the U.S. as a running example.
U.S. law says that anyone who “without authority
makes, uses, offers to sell, or sells any patented
invention, within the United States or imports into
the United States any patented invention during the
term of the patent therefor, infringes the patent”.

Daniel J. Bernstein, Software analysis of the KpqC candidates 19



How patent infringement is penalized

Example of the process:
• You distribute free software.
• 6 years later, patent holder files a lawsuit.
• Patent holder says: people using your software

used the patented invention; this reduced the
patent holder’s income by 10 million USD.

• Court agrees.
• Court chooses N with 10 ≤ N ≤ 30 and forces

you to pay N million USD to patent holder.

Daniel J. Bernstein, Software analysis of the KpqC candidates 20



How courts evaluate patents, part 1

Each patent has a series of “claims”.
The patent is infringed if any claim is infringed.
e.g. claim 1 of the RSA patent: “A cryptographic
communications system comprising: . . . a
communications channel . . . M corresponds to a
number representative of a message . . .
n = p · q . . . C ≡ Me(mod n)” etc.
Court asks: What is a “channel”? What is a
“message”? What is “representative”? etc.

Daniel J. Bernstein, Software analysis of the KpqC candidates 21



How courts evaluate patents, part 2

“The scope of a patent is not limited to its
literal terms but instead embraces all equivalents
to the claims described”. (Unanimous 2002
U.S. Supreme Court decision; emphasis added.
There are many previous court cases like this.)
Patent holder wins if “the accused product performs
substantially the same function in substantially the
same way with substantially the same result”.

Daniel J. Bernstein, Software analysis of the KpqC candidates 22

https://tile.loc.gov/storage-services/service/ll/usrep/usrep535/usrep535722/usrep535722.pdf
https://law.justia.com/cases/federal/appellate-courts/cafc/08-1284/08-1284-2011-03-27.html


Example of equivalents
The RSA patent’s introduction says “the present
invention may use a modulus n which is a product
of three or more primes (not necessarily distinct)”.
But the claims say specifically “n = p · q where
p and q are prime numbers”.

— “Aha, they made a mistake in writing the patent
claims! I can take n = 3pq and avoid the patent!”
— No. This is performing substantially the same
function in substantially the same way with
substantially the same result, so it infringes.

Daniel J. Bernstein, Software analysis of the KpqC candidates 23



Example of equivalents
The RSA patent’s introduction says “the present
invention may use a modulus n which is a product
of three or more primes (not necessarily distinct)”.
But the claims say specifically “n = p · q where
p and q are prime numbers”.
— “Aha, they made a mistake in writing the patent
claims! I can take n = 3pq and avoid the patent!”

— No. This is performing substantially the same
function in substantially the same way with
substantially the same result, so it infringes.

Daniel J. Bernstein, Software analysis of the KpqC candidates 23



Example of equivalents
The RSA patent’s introduction says “the present
invention may use a modulus n which is a product
of three or more primes (not necessarily distinct)”.
But the claims say specifically “n = p · q where
p and q are prime numbers”.
— “Aha, they made a mistake in writing the patent
claims! I can take n = 3pq and avoid the patent!”
— No. This is performing substantially the same
function in substantially the same way with
substantially the same result, so it infringes.

Daniel J. Bernstein, Software analysis of the KpqC candidates 23



Example of RSA patent enforcement

May 1991: Mark Riordan released
free “rpem” encryption software
using Rabin ciphertexts C = M2 mod pq.
Patent holders sent a letter saying that Riordan was
infringing the RSA patent (and the DH patent).
Riordan withdrew the software.
The claims said Me where “e is a number
relatively prime to 1 cm(p-1,q-1)”, but M2

accomplishes substantially the same thing.

Daniel J. Bernstein, Software analysis of the KpqC candidates 24

https://groups.google.com/g/sci.crypt/c/UUPxWhTiQrM/m/HWGWbwGhv0gJ
https://groups.google.com/g/sci.crypt/c/gFImCh6qmAs/m/9zKEAfbfdTIJ


More patent-enforcement examples
July 2016: Google rolled out post-quantum
experiment: “we plan to discontinue this experiment
within two years, hopefully by replacing it with
something better” (emphasis added); “ensure our
users’ data will remain secure long into the future”.
A patent holder asked Google for money. November
2016: Google said it was ending the experiment.

Another example, 2015: “Patent troll claims
HTTPS websites infringe crypto patent, sues
everybody . . . Netflix and others are fighting back
while Scotttrade and others are settling”.

Daniel J. Bernstein, Software analysis of the KpqC candidates 25

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://blog.cr.yp.to/20220129-plagiarism.html
https://web.archive.org/web/20211101204106/https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://web.archive.org/web/20211101204106/https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://arstechnica.com/tech-policy/2015/12/patent-troll-claims-https-websites-infringe-crypto-patent-sues-everybody/


More patent-enforcement examples
July 2016: Google rolled out post-quantum
experiment: “we plan to discontinue this experiment
within two years, hopefully by replacing it with
something better” (emphasis added); “ensure our
users’ data will remain secure long into the future”.
A patent holder asked Google for money. November
2016: Google said it was ending the experiment.
Another example, 2015: “Patent troll claims
HTTPS websites infringe crypto patent, sues
everybody . . . Netflix and others are fighting back
while Scotttrade and others are settling”.

Daniel J. Bernstein, Software analysis of the KpqC candidates 25

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://blog.cr.yp.to/20220129-plagiarism.html
https://web.archive.org/web/20211101204106/https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://web.archive.org/web/20211101204106/https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://arstechnica.com/tech-policy/2015/12/patent-troll-claims-https-websites-infringe-crypto-patent-sues-everybody/


Myth: patents promote progress

The U.S. constitution gives the legislature the
power to “promote the Progress of Science and
useful Arts, by securing for limited Times to
Authors and Inventors the exclusive Right to their
respective Writings and Discoveries”.
Patents are granted only to “inventors”,
and expire after 20 years.

Daniel J. Bernstein, Software analysis of the KpqC candidates 26



Reality: patents damage progress

2012 Lemley “The myth of the sole inventor”:
“Surveys of hundreds of significant new technologies
show that almost all of them are invented
simultaneously or nearly simultaneously by two or
more teams working independently of each other.”

1978 Rabin: a “public-key system employing large
prime numbers was discovered by the author . . .
and independently by Rivest, Adleman and Shamir”.

Daniel J. Bernstein, Software analysis of the KpqC candidates 27

https://repository.law.umich.edu/mlr/vol110/iss5/1/
https://cr.yp.to/bib/1978/rabin.html


Reality: patents damage progress

2012 Lemley “The myth of the sole inventor”:
“Surveys of hundreds of significant new technologies
show that almost all of them are invented
simultaneously or nearly simultaneously by two or
more teams working independently of each other.”
1978 Rabin: a “public-key system employing large
prime numbers was discovered by the author . . .
and independently by Rivest, Adleman and Shamir”.

Daniel J. Bernstein, Software analysis of the KpqC candidates 27

https://repository.law.umich.edu/mlr/vol110/iss5/1/
https://cr.yp.to/bib/1978/rabin.html


The lack-of-novelty defense

You win if you can find one reference that
contains every element of the claim and was
published before the patent was filed.

Logical consequence of “every”: a patent doesn’t
stop subsequent patents on specializations.
e.g. The RSA patent doesn’t prevent a subsequent
patent on “RSA with p ≡ q ≡ 1 (mod 264)”.
If you then use RSA with p ≡ q ≡ 1 (mod 264),
you’re infringing both patents.

Daniel J. Bernstein, Software analysis of the KpqC candidates 28



The lack-of-novelty defense

You win if you can find one reference that
contains every element of the claim and was
published before the patent was filed.
Logical consequence of “every”: a patent doesn’t
stop subsequent patents on specializations.

e.g. The RSA patent doesn’t prevent a subsequent
patent on “RSA with p ≡ q ≡ 1 (mod 264)”.
If you then use RSA with p ≡ q ≡ 1 (mod 264),
you’re infringing both patents.

Daniel J. Bernstein, Software analysis of the KpqC candidates 28



The lack-of-novelty defense

You win if you can find one reference that
contains every element of the claim and was
published before the patent was filed.
Logical consequence of “every”: a patent doesn’t
stop subsequent patents on specializations.
e.g. The RSA patent doesn’t prevent a subsequent
patent on “RSA with p ≡ q ≡ 1 (mod 264)”.
If you then use RSA with p ≡ q ≡ 1 (mod 264),
you’re infringing both patents.

Daniel J. Bernstein, Software analysis of the KpqC candidates 28



The obviousness defense

You win if you can convince a court that,
before the patent was filed,
the “invention” was already obvious
to someone of “ordinary skill in the art”.

Your expert witnesses say it’s obvious. Expert
witnesses for the patent holder say it isn’t obvious.
You were sued in a court in Texas, and the decision
is made by a jury of random citizens of Texas,
usually concluding that it isn’t obvious.

Daniel J. Bernstein, Software analysis of the KpqC candidates 29

https://scholarship.law.tamu.edu/facscholar/523/


The obviousness defense

You win if you can convince a court that,
before the patent was filed,
the “invention” was already obvious
to someone of “ordinary skill in the art”.
Your expert witnesses say it’s obvious. Expert
witnesses for the patent holder say it isn’t obvious.
You were sued in a court in Texas, and the decision
is made by a jury of random citizens of Texas,
usually concluding that it isn’t obvious.

Daniel J. Bernstein, Software analysis of the KpqC candidates 29

https://scholarship.law.tamu.edu/facscholar/523/


The ensnarement defense

When patent holder says you’re using
something equivalent to the claimed “invention”,
you can respond that “equivalent” is too broad
since it covers pre-patent publications too.
e.g. argue that taking e = (p − 1)(q − 1)
includes something published previously.

Court then requires the patent holder to state a
“hypothetical” claim that literally covers what
you’re doing without covering those publications.
e.g. “gcd{e, lcm{p − 1, q − 1}} is below 1000”.

Daniel J. Bernstein, Software analysis of the KpqC candidates 30



The ensnarement defense

When patent holder says you’re using
something equivalent to the claimed “invention”,
you can respond that “equivalent” is too broad
since it covers pre-patent publications too.
e.g. argue that taking e = (p − 1)(q − 1)
includes something published previously.
Court then requires the patent holder to state a
“hypothetical” claim that literally covers what
you’re doing without covering those publications.
e.g. “gcd{e, lcm{p − 1, q − 1}} is below 1000”.

Daniel J. Bernstein, Software analysis of the KpqC candidates 30



Assessing post-quantum patents
A Google Patents search for “post-quantum” finds

• 100 results filed before 2017-06-29,
• 100 more results filed before 2018-07-27,
• 100 more results filed before 2019-03-18,
• 100 more results filed before 2019-04-17,
• etc.

Of course, a patent relevant to post-quantum
cryptography doesn’t have to say “post-quantum”.
Analyzing a patent threat can be difficult.
What a court will do is often clear, often not.
Critical to understand the rules: equivalents etc.

Daniel J. Bernstein, Software analysis of the KpqC candidates 31



Some patents that worry me
2010-02-18, US 9094189 (and corresponding
patents in other countries), GAM/LPR.
2011-02-09, US 8522033, secret-sharing signatures.
2012-04-12, US 9246675, smaller GAM/LPR ct.
2016-11-18, US 11329799, GAM/LPR + rounding.
2016-11-18, CN 107566121, GAM/LPR variants.
2017-02-15, US 11070367, GAM/LPR + rounding.
2017-06-09, US 9912479, QC-MDPC.
2018-09-12, US 11798435, anti-SCA poly mult.

Daniel J. Bernstein, Software analysis of the KpqC candidates 32


