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sage:
sage:
sage:
sage:
sage:
sage:
4*xx "2
sage:

sage:

7x.<x> = Z7Z|[]

+ H H #H #H

g
g

now Zx 1s a class
Zx objects are polys
in x with i1nt coeffs

= Zx([3,1,4])

x + 3

Zx([2,7,1])

X2 + [*xx + 2

sage: f+g

# built-in add

5kx"2 + 8*%xx + 5

sage:

sage:
4*xx~ 3
sage:
4xx~4
sage:

8*kxx"2

H 4+ H + H 4+ b

sage:
28*x"3 -
sage: 1

Axx~4 +

sage: 1
True

sage:
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sage:
sage:
sage:
sage:
sage:
sage:
4xx "2
sage:
sage:
Xx"2 +

sage:

7x.<x> = ZZ[]

+ H H = = =

g
g
7*x

f+g

now Zx 1s a class
ZX objects are polys

1n X with int coeffs

Zx([3,1,4])

+ 3
Zx([2,7,1])

+ 2
# built-in add

bkx"2 + 8*%xx + b

sage:

sage: f*x # bu
4*x~"3 + x72 + 3%
sage: f*xx"2
4xx"4 + x°3 + 3%
sage: f*2
3*x"2 + 2%x + 6
sage: f*x(7*x)
28*%x"3 + 7*x"2 +
sage: f*xg
4xx"4 + 29%x73 +
+ 6
sage: f*xg == fx*x2
True

sage:
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sage:
sage:
sage:
sage:
sage:
sage:
4xx~2
sage:
sage:
Xx"2 +
sage:
5*x” 2

sage:

7Zx.<x> = ZZ[]
# now Zx 1s a class
# Zx objects are polys

1n X with int coeffs

= Zx([3,1,4])

+ +H H 3

X + 3
g = zZx([2,7,1])

g

7*x + 2

f+g # built-in add

+ 8*xx + 5

sage: f*x # built-in mu

4*x"3 + x72 + 3*x

sage: f*x"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*%x"3 + 7T*x"2 + 21%*x
sage: f*xg

4*x~4 + 29%x"3 + 18*xx72 +
+ 6

sage: fxg == £x2+f*x(7*x)+

True

sage:



sage:
sage:
sage:
sage:
sage:
sage:
4xx"2
sage:
sage:
Xx"2 +
sage:
5*x”2

sage:

7Zx.<x> = ZZ[]
# now Zx 1s a class
# Zx objects are polys

1n X with int coeffs

= Zx([3,1,4])

+ H H =

X + 3
g = zx([2,7,1])

g

7*x + 2

f+g # built-in add

+ 8*xx + 5

sage: f*x # built-in mul

4*x~3 + x72 + 3*x

sage: f*xx"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*%x"3 + 7*x72 + 21*x

sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage: fxg == f*x2+f*x(7*x)+f*xx72

True

sage:



x.<x> = ZZI[]
now Zx 1s a class
Zx objects are polys

1n X with int coeffs

= Zx([3,1,4])

x + 3

= Zx([2,7,1])

kX + 2
tg # built-in add

3xx + b

sage: f*x # built-in mul

4*x~3 + x72 + 3*x

sage: f*x"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*xx"3 + T*x72 + 21%*x

sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage: fxg == f*2+fx(7*x)+f*x72

True

sage:

Ct
3:

Ct

Ct
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s a class
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1,4])

7,11)

uilt—-in add

sage: f*x # built-in mul

4*x~3 + x72 + 3*x

sage: f*xx"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*%x"3 + 7*x72 + 21*x

sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage: fxg == f*x2+f*x(7*x)+f*xx72

True

sage:

sage:

. # replace
. # x7(N+1)

: def convol

return (

: N=3 # g

convolutio
3*xx + 4
convolutio
+ 4xx + 1

convolutio

18*xx"2 + 27*x +

sage:



dd

sage: f*x # built-in mul
4*x~3 + x72 + 3*x

sage: f*x"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*xx"3 + T*x72 + 21%*x

sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage: f*xg == f*2+fx(7*x)+f*x72

True

sage:

sage:

: # replace x"N with
. # x"(N+1) with x, e

: def convolution(f,g

return (fxg) 7 (x

: N =3 # global var

convolution(f,hx)
3xx + 4
convolution(f,x"2)
+ 4xx + 1

convolution(f,g)

18*%x72 + 27*xx + 35

sage:



sage: f*x # built-in mul 7 sage: # replace x"N with 1,
4xx"3 + x72 + 3*x sage: # x"(N+1) with x, etc.
sage: f*x"2 sage: def convolution(f,g):
4xx"4 + x73 + 3%x72 ...t return (fxg) % (x"N-1)
sage: f*2 Cee

3xx"2 + 2*xx + 6 sage: N = 3 # global variable
sage: f*x(7*x) sage: convolution(f,x)

28*%x"3 + 7T*x"2 + 21%*x X"2 + 3xx + 4

sage: fx*xg sage: convolution(f,x"2)
4*xx"4 + 29%x"3 + 18*x"2 + 23*x 3xx"2 + 4*%x + 1

+ 6 sage: convolution(f,g)

sage: fxg == f*x2+fx(7*x)+f*x72 18*%x~2 + 27*x + 35
True sage:

sage:




kX # built-in mul

X"2 + 3%X

kX~ 2

Xx"3 + 3*%x72

k2

2%x + 6

¥ (7*x)

t 7Txx72 + 21%x

g

29%x73 + 18*%x72 + 23%X

kg == f*2+fx (7*xx)+f*x"2

sage: # replace x"N with 1,
sage: # x~(N+1) with x, etc.
sage: def convolution(f,g):
... return (fxg) % (x"N-1)
sage: N = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4%x + 1

sage: convolution(f,g)

18%x72 + 27*x + 35

sage:

sage: d
sage: N
sage: r
_X"B -
sage: r
X6 + X
sage: r
-X"6 +
x + 1



ilt-1in mul 7 sage: # replace x"N with 1, 8 sage: def random
X sage: # x"(N+1) with x, etc. c.o..: £ = 1list
sage: def convolution(f,g): Cee for j
X" 2 ...t return (fxg) % (x"N-1) ....: return Z
sage: N = 3 # global variable sage: N =7
sage: convolution(f,x) sage: randomsecr
21*x X"2 + 3xx + 4 -X"3 - x72 - x -
sage: convolution(f,x"2) sage: randomsecr
18*%x72 + 23%*x 3xx"2 + 4xx + 1 X"6 + x75 + x73
sage: convolution(f,g) sage: randomsecr
+Ex (7*x)+f*x72 18*%x~2 + 27*x + 35 -Xx"6 + x°5 + x74
sage: x + 1
sage:




1 7 sage: # replace x°N with 1, 8 sage: def randomsecret():
sage: # x"(N+1) with x, etc. ....: f = list(randrang
sage: def convolution(f,g): Cee for j in range(
....: return (fxg) % (x"N-1) ....: return Zx(f)
sage: N = 3 # global variable sage: N =7
sage: convolution(f,x) sage: randomsecret ()

X2 + 3xx + 4 -Xx"3 - x2-x-1
sage: convolution(f,x"2) sage: randomsecret ()

- 23%*X 3xx"2 + 4%x + 1 X6 + x5+ x"3 - x
sage: convolution(f,g) sage: randomsecret ()

Txx™2 18*%x72 + 27*x + 35 -Xx"6 + x5 + x74 - x"3 -
sage: x + 1

sage:




sage: # replace x"N with 1,
sage: # x~(N+1) with x, etc.
sage: def convolution(f,g):
...t return (fxg) % (x"N-1)
sage: N = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4*x + 1

sage: convolution(f,g)
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es weaker than Ring-L\WE;.
g-LWE> (using G1, Go)

es weaker than Ring-LWE;.

15

16
sage: def balancedmod(f,Q):

oo g=list (C((E[11+Q//72) %Q)
Ce -Q//2 for i in range(N))
....: return Zx(g)

sage: u = 314-159%x
sage: u /4 200

-159*%x + 114

sage: (u - 400) % 200
-159*%x - 86

sage: balancedmod(u,200)
41*x — 36

sage:

sage: d
sage: N
sage
sage: f
sage: C
6*xx"6 +
3*x"2
sage



tion

I/ secret a.
kﬂﬂein Rz%
e in R@.

e/ain Rp.

m: find a

;/3) — e =0.

= of Ring-LWE/
d bG + d).

ing-0LWE

than Ring-LWE;.
using Gi, Go)
than Ring-LWE;.

15

16
sage: def balancedmod(f,Q):

oo g=list (C((EL11+Q//2)%Q)
e -Q//2 for i in range(N))
....: return Zx(g)

sage:

sage: u = 314-159%x

sage: u /4 200

-1059*xx + 114

sage: (u - 400) % 200
-159*x - 36

sage: balancedmod(u,200)
41*%x - 86

sage:

sage: def invert
- Fp = Int
- Fpx = Zx
- T = Fpx.
- return Z
sage: N =7
sage: f = random
sage: £3 = inver
sage: convolutio
6*xx"6 + 6*%x"5 +
3*¥x"2 + 3xx + 4

sage:



15

16
sage: def balancedmod(f,Q):

oo g=list (C((E[11+Q//72) %Q)
Ce -Q//2 for i in range(N))
....: return Zx(g)

sage: u = 314-159%x
sage: u /4 200

-1059*xx + 114

sage: (u - 400) % 200
-159*%x - 86

sage: balancedmod(u,200)
41*%x - 386

sage:

sage:

: def invertmodprime(

Fp = Integers(p)

Fpx = Zx.change_r
T = Fpx.quotient(
return Zx(1lift(1/

. N =7
. f = randomsecret ()

: 3 = invertmodprime

convolution(f,£3)

6*xxXx"6 + 6%x"b + 3%xx74 + 3

3*x"2 + 3*%xx + 4

sage:



16 17

sage: def balancedmod(f,Q): sage: def invertmodprime(f,p):
coeot o g=list ((CEL1]+Q//2)%Q) ....: Fp = Integers(p)

Cee -Q//2 for i in range(N)) ....:  Fpx = Zx.change_ring(Fp)
....: return Zx(g) ....: T = Fpx.quotient (x"N-1)

e e return Zx(1ift(1/T(£f)))

sage: L
sage: u = 314-159%*x sage: N =7

sage: u /4 200 sage: f = randomsecret()

-159%x + 114 sage: f3 = invertmodprime(f,3)
sage: (u - 400) % 200 sage: convolution(f,f3)

-159%x - 86 6*xx"6 + 6*xx"5 + 3*x"4 + 3*x"3 +
sage: balancedmod(u,200) 3*%x72 + 3xx + 4

41*x — 86 sage:

sage:
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of balancedmod(f,Q):

g=1ist (((£[11+Q//2)%Q)
-Q//2 for i in range(N))
return Zx(g)

= 314-159%*x

% 200

+ 114

1 - 400) 7% 200

- 36
alancedmod (u, 200)
36

sage: def invertmodprime(f,p):
....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)
....: T = Fpx.quotient (x"N-1)
.e..: return Zx(lift(1/T(£)))
sage: N =7

sage: f = randomsecret ()

sage: f3 = invertmodprime(f,3)
sage: convolution(f,f3)

6*xx"6 + 6*xx"5 + 3*x"4 + 3*x"3 +
3*¥x72 + 3xx + 4

sage:

17

def 1inv
asser

g = 1I

M = b
conv
while

r =

if

g =

Exercise
invertn
Hint: H
divide fi



16
edmod (£,Q) :

(£[11+Q//72)7%Q)

or i in range(N))

x(g)

O%x

% 200

d(u,200)

sage: def invertmodprime(f,p):
..... Fp = Integers(p)

..... Fpx = Zx.change_ring(Fp)
..... T = Fpx.quotient(x~"N-1)
..... return Zx(1ift(1/T(£)))
sage: N =7

sage: f = randomsecret()

sage: f3 = invertmodprime(f,3)
sage: convolution(f,f3)

6*xx"6 + 6*%x"b + 3*xx"4 + 3*%xx"3 +
3xx"2 + 3*%xx + 4

sage:

17

def invertmodpow
assert (J.is_po

g:
M = balancedmo

invertmodp
conv = convolu
while True:
r = M(conv(g
1f r == 1: r

g = M(conv(g

Exercise: Figure o
invertmodpowerc«
Hint: How many |
divide first r-17 ¢



16 17

) sage: def invertmodprime(f,p): def invertmodpowerof2(f,Q
2)7%Q) ....: Fp = Integers(p) assert Q.is_power_of(2)
ange(N)) | ....: Fpx = Zx.change_ring(Fp) g = invertmodprime(f,2)
....: T = Fpx.quotient (x"N-1) M = balancedmod
... return Zx(1ift(1/T(£))) conv = convolution

. while True:

sage: N =7 r = M(conv(g,f),Q)
sage: f = randomsecret() if r == 1: return g
sage: f3 = invertmodprime(f,3) g = M(conv(g,2-r),Q)

sage: convolution(f,f3)
6*xx"6 + 6*xx"5 + 3*x"4 + 3*x"3 +

3*x"2 + 3*%xx + 4

Exercise: Figure out how
invertmodpowerof2 works
Hint: How many powers of

Sage: divide first r-17 Second r-




sage: def invertmodprime(f,p):
....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)
....: T = Fpx.quotient (x"N-1)
... return Zx(lift(1/T(£)))
sage: N =7

sage: f = randomsecret()

sage: f3 = invertmodprime(f,3)
sage: convolution(f,f3)

6*xx"6 + 6*xx”5 + 3*x"4 + 3*x"3 +
3*¥x"2 + 3xx + 4

sage:

17

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18



of invertmodprime(f,p):
Fp = Integers(p)

Fpx = Zx.change_ring(Fp)
T = Fpx.quotient(x“N-1)
return Zx(1ift(1/T(£)))

7

randomsecret ()

3 = invertmodprime(f,3)
onvolution(f,f3)
6*xx"5 + 3*%*x"4 + 3%xx"3 +

+ 3xx + 4

17

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1. return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage: N
sage: ({
sage: f
sage: f
-X"6 -
sage: g
sage: g
47*xX"6 -
37*xx"3
sage: C
—256*x "
sage: b
1

sage:



modprime (f,p) :
egers (p)
.change_ring(Fp)
quotient (x"N-1)
x(Lift (1/T(£)))

secret ()
tmodprime (f,3)
n(f,£3)

3*x"4 + 3*xx°3 +

17

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage: N =7
sage: = 256
sage: f = random
sage: f

-X"6 - x74 + x72
sage: g = 1nvert
sage: g
47*x"6 + 126*%x75
8r*x~3 — 36*%x72
sage: convolutio
—256*%x"5 — 256%*x
sage: balancedmo
1

sage:



ing (Fp)
x"N-1)
T(£)))

(£,3)

*x~3 +

17

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1. return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage: N =7

sage: = 256

sage: f = randomsecret ()
sage: f

-Xx"6 - x4 +x72+x -1
sage: g = 1nvertmodpowero
sage: g

47*x"6 + 126*%x"5 — bd*x"4
87*xx"3 — 36%x"2 - b8*x +
sage: convolution(f,g)
-256*%x"5 - 206*%x"4 + 2b6%
sage: balancedmod(_,Q)

1

sage:



def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

19

sage: N =7

sage: = 256

sage: f = randomsecret()
sage: f

-X"6 - x4 +x"2+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47xx"6 + 120%x"b5 - b4*xx"4 -
87*x"3 - 36*x"2 - b8*xx + 61
sage: convolution(f,g)

-256*%x"b5 - 2b6%x74 + 2b6*xx + 257
sage: balancedmod(_,Q)

1

sage:



ortmodpowerof2(f,Q) :

t Q.is_power_of (2)

nvertmodprime (f,2)

alancedmod

= convolution
True:
M(conv(g,f),Q)

r == 1: return g

M(conv(g,2-r),Q)

. Figure out how
1odpowerof2 works.
oW many powers of 2
st r-17 Second r-17

18

sage: N =7

sage: = 256

sage: f = randomsecret ()
sage: f

-Xx"6 - x4 +x72+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47*x"6 + 126*xx"5 - bd*x"4 -
87*xx"3 - 36*xx"2 - b8*x + 61

sage: convolution(f,g)

19

-256%x"5 - 256%x"4 + 256%x + 257

sage: balancedmod(_,Q)
1

sage:

def key;

while

Gl
S
T

exXC



erof2(£f,Q):
wer_of (2)
rime(£f,2)

d

tion

’f) ,Q)

eturn g

,2-1),Q)

ut how

f2 works.
yowers of 2
econd r—17

18

19

sage: N =7

sage: = 256

sage: f = randomsecret()
sage: f

-X"6 - x4 +x"2+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47xx"6 + 120%x"b5 - b4*xx"4 -
87*x"3 - 36*x"2 - b8*xx + 61
sage: convolution(f,g)

-256*%x"b - 2b6*%x74 + 2b6*xx + 257
sage: balancedmod(_,Q)

1

sage:

def keypair():
while True:

try:

a = random

a3

inver

aj = 1nver

random
G = balanc
con
GQ = 1inver
secretkey

return G,s

except:

pass



18

19

sage: N =7

sage: = 256

sage: f = randomsecret ()
sage: f

-Xx"6 - x4 +x"2+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47xx"6 + 1206%x"0 - b4*xx"4 -
87*x"3 — 36*xx"2 - b8*xx + 61
sage: convolution(f,g)

-256*%x"b5 - 2b6*x74 + 2b6*xx + 2b7
sage: balancedmod(_,Q)

1

sage:

def keypair():
while True:
try:
a = randomweightw()
a3 = 1nvertmodprime

al = invertmodpower

randomsecret ()
G = balancedmod(3 *
convolution(
GQ = invertmodpower
secretkey = a,ad,G(
return G,secretkey
except:

pass



sage: N =7

sage: = 256

sage: f = randomsecret()
sage: f

-Xx"6 - x4 + x2 +x -1

sage: g = invertmodpowerof2(f,Q)

sage: g
4'7xx"6 + 126*xx"5 - bd*xx"4 -

87T*x"3 — 36%x"2 - 58*%x + 61

sage: convolution(f,g)

19

-256%x"5 - 256%x74 + 2b56%x + 257

sage: balancedmod(_,Q)
1

sage:

20

def keypair():
while True:

try:

a = randomweightw()
a3 = invertmodprime(a,3)

a = invertmodpowerof2(a,Q)

randomsecret ()

G = balancedmod (3 x
convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,G(

return G,secretkey

except:

pass



19

-
256

randomsecret ()

x4 + x"2 +x -1

= invertmodpowerof2(f,Q)

+ 126*%x"b5 - bd*xx"4 -

- 36*%x72 - b8*x + 61
onvolution(f,g)

b — 2b6*%x74 + 2b6*xx + 2b7
vlancedmod (_, Q)

20

def keypair():
while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret ()

G = balancedmod(3 *
convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3d,G(Q

return G,secretkey

except:

pass

sage: G
sage: G
-126%x”1
33*x"3
sage: a
sage: a
-X"6 +
sage: C
-3*xX"6 -
253*x "
sage: Db:
-3*x76 -
— 3kyx -

sage:



: def keypair(): : sage: G,secretke
while True: sage: G
secret () try: -126*x"6 — 31*x"
a = randomweightw() 33%x"3 + 73*x"2
+ x -1 a3 = invertmodprime(a,3) sage: a,a3,GQ =
modpowerof2(£f,Q) aQ = invertmodpowerof2(a,Q) sage: a
e = randomsecret () -X"6 + x”5 - x74
- B4xx"4 - G = balancedmod(3 =* sage: convolutio
- B8*x + 61 convolution(e,aR),Q)  -3*x"6 + 253*x"5
n(f,g) GQ = invertmodpowerof2(G,Q) 253*%x"2 - 3%x -
“4 + 2b6*%x + 257 secretkey = a,a3,G( sage: balancedmo
d(_,Q) return G,secretkey -3%x"6 - 3*xx°5 -
except: - 3*xx - 3
pass sage:




19
f2(£,Q)
- 61
X + 257

20
def keypair():

while True:

try:
a = randomweightw()
a3 = invertmodprime(a,3)
aQ = invertmodpowerof2(a,Q)
e = randomsecret ()
G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)
secretkey = a,a3d,G(Q
return G,secretkey

except:

pass

sage: G,secretkey = keypa
sage: G

-126*%x"6 - 31*x"b - 118%*x
33*%x"3 + 73*x"2 - 16%x +
sage: a,a3,G = secretkey
sage: a

-X"6 + X0 - x4 + X3 -
sage: convolution(a,G)
-3*%x"6 + 2b3%x"5 + 2b3*x°
253*%x72 - 3*%x - 3

sage: balancedmod(_,Q)
-3*%x"6 - 3*%x"b - 3*%x"3 +
- 3*%x - 3

sage:



def keypair(): :
while True:
try:
a = randomweightw()
a3 = invertmodprime(a,3)
aQ = invertmodpowerof2(a,Q)

e = randomsecret ()
G = balancedmod (3 x
convolution(e,aQ),Q)
GQ = invertmodpowerof2(G,Q)
secretkey = a,a3,G(
return G,secretkey
except:

pass

sage: G,secretkey = keypair()
sage: G

33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a
-XxX6 + x’b - x4 +x°3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -

263*xx"2 - 3*x - 3
sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72

- 3%x - 3

sage:

21



20
pair () :

True:

= randomweightw()
3 =
) =

invertmodprime(a,3)

invertmodpowerof2(a, Q)

randomsecret ()

balancedmod (3

convolution(e,aQ),Q)
) =
acretkey = a,a3,G(

invertmodpowerof2(G,Q)

eturn G,secretkey

sage: G,secretkey = keypair()
sage: G

-126*%x"6 - 31*x"5 - 1138*x"4 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a

-Xx"6 + x’b-x"4+x"3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -
253*%x72 - 3%x - 3

sage: balancedmod(_,Q)

-3*%x"6 - 3*%x°b - 3%xx"3 + 3%x72

- 3%x - 3

sage:

21

sage: d
sage: G
sage: b
sage: d
sage: C
sage: C
120*x76
102*x~
sage



20

weightw ()
tmodprime (a, 3)
tmodpowerof2(a,Q)
secret ()

edmod (3 *
volution(e,aQ),q)
tmodpowerof2(G,Q)
= a,a3,Gq

ecretkey

sage: G,secretkey = keypair()
sage: G

33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,Gl = secretkey
sage: a
-XxX6 + x’b - x4 +x"3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -

263*xx"2 - 3*x - 3
sage: balancedmod(_,Q)

-3*%x"6 - 3*%x”b - 3*%x"3 + 3*x72

- 3%x - 3

sage:

21

sage:

: def encryp

b,d = bd
bG = con
C = bala

return C

,secretke
= random

= random

Q Q& T @

= encryp

C

120*%x"6 + 7*x"b
102*%x"3 + 86*x”

sage:



20

(a,3)
0f2(a,qQ)

e,aQ),q)
0f2(G,Q)

sage: G,secretkey = keypair()
sage: G

33*%x"3 + 73*x"2 - 16*xx + 7
sage: a,a3,G) = secretkey
sage: a
-Xx"6 + xb-x"4+x"3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -

263*xx"2 - 3*xx - 3
sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72

- 3*%x - 3

sage:

21

sage: def encrypt(bd,G):
- b,d = bd

....: bG = convolution(
....: C = balancedmod(kt
Cee return C

sage: G,secretkey = keypa

sage: b = randomweightw()

sage: d = randomsecret ()

sage: C = encrypt((b,d),G

sage: C

120*%x"6 + 7*x"b5 - 116*x74
102%x73 + 86*x72 - 74x%Xx

sage:



sage: G,secretkey = keypair()
sage: G

-126*%x"6 - 31*%x"5 - 118*x74 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a

-Xx6 + x’b - x4 +x°3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -
253%x72 - 3%xx - 3

sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72
- 3%x - 3

sage:

21

sage: def encrypt(bd,G): .
..... b,d = bd

..... bG = convolution(b,G)
..... C = balancedmod(bG+d,Q)
..... return C

sage: G,secretkey = keypair()
sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120%x76 + 7*x"b5 - 116*xx74 +
102*%x~3 + 86*xx72 - 74*x - 95

sage:



,secretkey = keypair()

5 — 31*xx"b - 118%xx"4 -
+ 73*%x"2 - 16%x + 7
,a3,G = secretkey

x"b - x4 + x°3 -1
onvolution(a,G)

+ 253*%x”"b + 2b63*%x"3 -

2 — 3*%x - 3
alancedmod (_, Q)

- 3*%x"b - 3%x"3 + 3*%x72
- 3

21

22
sage: def encrypt(bd,G):

- b,d = bd

Ce bG = convolution(b,G)
C C = balancedmod (bG+d, Q)
Cee return C

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret ()

sage: C = encrypt((b,d),G)

sage: C

120*%x7"6 + 7*x"b5 - 116*xx74 +
102%x"3 + 86*x"2 - 74*xx - 9b

sage:

NTRU c

Given ci
a(bG +
a, b, d,e
so 3be -
Assume
are betw

Then 3¢
3be + a
Reduce

Multiply
to recov

Coeffs 3
SO recov



y = keypair()

5 - 118xx"4 -
- 16%x + 7

secretkey

+ x°3 -1
n(a,G)

+ 2b3*%x73 -

3

d(_,Q)
3*%x"3 + 3*x"2

21

sage:

. G,
. b
. d
. C

C

: def encrypt(bd,G):

b,d = bd
bG = convolution(b,G)
C = balancedmod(bG+d,Q)

return C

secretkey = keypair ()
= randomweightw()
= randomsecret ()

= encrypt((b,d),G)

120%x76 + 7*x"b5 - 116*xx74 +
102*%x"3 + 86*xx"2 - 74*x - 95

sage:

22

N TRU decryption

Given ciphertext £
a(bG + d) = 3be
a, b, d, e have smz
so 3be + ad i1s nof
Assume that coef
are between —Q /-

Then 3be + ad In
3be+ ad in R =.
Reduce modulo 3:

Multiply by 1/a in
to recover d in R3
Coeffs are betweer
so recover d in R.



ir()

4 -

3%x"2

21

sage: def encrypt(bd,G):

- b,d = bd

Ce bG = convolution(b,G)
Ce C = balancedmod (bG+d, Q)
Cee return C

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret ()

sage: C = encrypt((b,d),G)

sage: C

120*%x"6 + 7*x"b - 116*xx74 +
102%x"3 + 86*x"2 - 74xx - 95

sage:

22

N TRU decryption

Given ciphertext bG + d, co
a(bG +d) =3be+ ad in R
a, b, d, e have small coeffs,

so 3be + ad i1s not very big.
Assume that coeffs of 3be -
are between —Q/2 and Q/2

Then 3be + ad in Rg revea
3be+ad in R =Z[x]/(xN -
Reduce modulo 3: ad in R3

Multiply by 1/a in R3

to recover d Iin R3.

Coeffs are between —1 and
so recover d in R.



sage: def encrypt(bd,G):

..... b,d = bd

..... bG = convolution(b,G)
..... C = balancedmod(bG+d,Q)
..... return C

sage: G,secretkey = keypair()
sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)
sage: C

120%x76 + 7*x"b5 - 116*xx74 +
102*%x"3 + 86*xx72 - 74*x - 95

sage:

22

23
N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
| coetfs,

a, b, d, e have sma
so 3be + ad is not very big.

Assume that coeffs of 3be + ad
are between —Q/2 and Q/2 — 1.

Then 3be + ad in Rp reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d in R3.

Coeffs are between —1 and 1,
so recover d in R.



ef encrypt(bd,G):

b,d = bd

bG = convolution(b,G)

C = balancedmod (bG+d, Q)

return C

,secretkey = keypair ()
= randomweightw()
= randomsecret ()

= encrypt((b,d),G)

+ 7xx"b - 116*x"4 +
3 + 86*%x"2 - T4*x - 95

22

N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

so 3be + ad Is not very big.
Assume that coeffs of 3be + ad
are between —@/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d In R3.

Coeffs are between —1 and 1,
so recover d in R.

23

sage:



t(bd,G):

volution(b,G)
ncedmod (bG+d, Q)

y = keypair ()
weightw()
secret ()

t ((b,d),G)

- 1ll6*x"4 +
2 - 74xx - 95

22 23
N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

so 3be + ad is not very big.
Assume that coeffs of 3be + ad
are between —@Q/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R = Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d in R3.

Coeffs are between —1 and 1,
so recover d in R.

sage: def decryp

Cee et M = bala
..... conv = C
..... a,ald, Gy

..... u = M(co
..... d = M(co
..... b = M(co
..... return b

sage: decrypt(C,
(x"6 - x”b - x72
x4 + x°3 + x72
sage: b,d

(x"6 - x”b - x72

x4 + x°3 + x72



b,G)
G+d, Q)

ir()

22

23
N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

so 3be + ad is not very big.
Assume that coeffs of 3be + ad
are between —@/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d In R3.

Coeffs are between —1 and 1,
so recover d in R.

sage: def decrypt(C,secre
- M = balancedmod
- conv = convolutio
Ce et a,a3,Gl = secretk
Ce u = M(conv(C,a),Q
Ce d = M(conv(u,a3),
Ce b = M(conv(C-d,GQ
C et return b,d

sage: decrypt(C,secretkey
(x"6 - xb - x"2 -x -1,
Xx"4 + x"3 + x"2 - x)
sage: b,d

(x"6 - xb - x"2 -x -1,

x4 + x°3 + x°2 - x)



N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
| coetfs,

a, b, d, e have sma
so 3be + ad is not very big.

Assume that coeffs of 3be + ad
are between —Q/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d Iin R3.

Coeffs are between —1 and 1,
so recover d in R.

23

sage: def decrypt(C,secretkey):

M = balancedmod

conv = convolution

a,a3,GQ = secretkey

... u = M(conv(C,a),Q)
C d = M(conv(u,a3),3)
..... b = M(conv(C-d,GQR),Q)

return b,d

sage: decrypt(C,secretkey)

(x"6 - xbh-x"2-x-1, x5 +
x"4 + x°3 + x72 - x)

sage: b,d

(x"6 - xb-x"2-x-1, x5 +

x4 + x°3 + x72 - x)

24



lecryption

phertext bG + d, compute
d) = 3be + ad in Ryp.
| coetfs,

"have sma
- ad Is not very big.

' that coeffs of 3be + ad
een —Q/2 and Q/2 — 1.

e + ad in Rp reveals
din R =Z[x]/(xN —1).
modulo 3: ad in R3.

by 1/3 In R3

er d In Rb.

re between —1 and 1,
er d in R.

23

sage:

sage:

(x~6
x~4

def decrypt(C,secretkey):
M = balancedmod
conv = convolution
a,a3,GQ = secretkey
M(conv(C,a),Q)
M(conv(u,a3),3)
M(conv(C-d,GQ),Q)

return b,d

u =
d =
b =

: decrypt(C,secretkey)

- X'b - x72 -

+ X3 + x72 -
b,d

- X"b - x72 -

+ X3 + x72 -

x - 1, x5 +

24

sage: N
sage: G
sage: G
44*xx"6 -
126%x~.
sage: a
sage: a
-X"6 - :
sage: C
sage: M
sage: e.
sage: e
-3*xX"6 -
+ 3*X
sage:



G + d, compute
——eufin Rz}
|l coeffs,

- very big.
fs of 3be + ad
> and Q/2 — 1.

Ro reveals
Z[x]/(xN —1).
ad In R@.

R3

1 —1 and 1,

23

sage: def decrypt(C,secretkey):
- M = balancedmod

- conv = convolution

Ce et a,a3,GQ = secretkey

C u = M(conv(C,a),Q)

C d = M(conv(u,a3),3)

Ce b = M(conv(C-d,GQ),Q)
- return b,d

sage: decrypt(C,secretkey)

(x6 - xb-x"2-x-1, x°b +
Xx"4 + x”3 + x"2 - x)

sage: b,d

(x6 - xb-x"2-x-1, xb +

x4 + x°3 + x72 - x)

24

sage: N,Q,W = 7,
sage: G,secretke
sage: G

44*xx"6 — 97*x"5
126*xx"3 - 10*x~
sage: a,a3,GQ =
sage: a

-x"6 - x5 + x73
sage: conv = con
sage: M = balanc
sage: e3 = M(con
sage: ed

-3*x"6 + 3*%x"5 +
+ 3*X

sage:



mpute

23

sage: def decrypt(C,secretkey):
- M = balancedmod

- conv = convolution

Ce e a,a3,G = secretkey

Ce u = M(conv(C,a),Q)

Ce d = M(conv(u,a3),3)

Ce b = M(conv(C-d,GQ),Q)

C et return b,d

sage: decrypt(C,secretkey)

(x6 - xbh-x"2-x-1, x5 +
Xx"4 + x"3 + x"2 - x)

sage: b,d

(x6 - xbh-x"2-x-1, x5 +

x4 + x°3 + x°2 - x)

24

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypa

sage: G

44xx"6 — 97*x"b - 62*%x"4
126*%x~3 - 10*x72 + 14x*x

sage: a,a3,G) = secretkey

sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*%x"6 + 3*x"5 + 3*x"4 -
+ 3*X

sage:



sage: def decrypt(C,secretkey):
- M = balancedmod

- conv = convolution

Ce et a,a3,GQ = secretkey

C u = M(conv(C,a),Q)

C d = M(conv(u,a3),3)

Ce b = M(conv(C-d,GQ),Q)
- return b,d

sage: decrypt(C,secretkey)

(x6 - xbh-x"2-x-1, x°b +
Xx"4 + x"3 + x"2 - x)

sage: b,d

(x6 - xbh-x"2-x-1, x°b +

x4 + x°3 + x72 - x)

24

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()
sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22
sage: a,a3,G) = secretkey
sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*x"6 + 3*%x"b + 3*x"4 - 3*x”3
+ 3*X

sage:

25



o f decrypt(C,secretkey):24 sage: N,Q,W = 7,256,5 B sage: b
M = balancedmod sage: G,secretkey = keypair() sage: d
conv = convolution sage: G sage: C
a,ad,GQ = secretkey 44xx"6 — 97*xx"b - 62*%x"4 - sage: C
u = M(conv(C,a),Q) 126%x"3 - 10*x"2 + 14*xx - 22 -120%x~
d = M(conv(u,a3),3) sage: a,a3,GQ = secretkey + 56*x
b = M(conv(C-4d,GQ),Q) sage: a sage: u
return b,d -X"6 - x5 +x3+x-1 sage: u

sage: conv = convolution 3*xx"6 -
ecrypt (C,secretkey) sage: M = balancedmod 6*x —

x"b - x"2-x -1, x°5 + sage: e3 = M(conv(a,G),Q) sage: C

x"3 + x72 - Xx) sage: e3 8*x"6 -
,d -3*%x"6 + 3*%x"b + 3*xx"4 - 3%x”3 6xx —

X" - x2-x-1, x5 + + 3*Xx sage:

Xx"3 + x72 - x) sage:




t (C,secretkey) :

ncedmod
onvolution

= secretkey
nv(C,a),Q)
nv(u,a3),3)
nv(C-d,GQ),Q)
,d

secretkey)

-x -1, x5 +

_X)

24

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*%x"2 + 14*xx - 22

sage: a,a3,G) = secretkey
sage: a

-Xx"6 - x5 +x"3+x -1
sage: conv = convolution
sage: M = balancedmod
sage: e3 = M(conv(a,G),Q)
sage: ed

-3*%x"6 + 3*%x°5 + 3*%xx"4 - 3%xx~3
+ 3*x

sage:

25

sage:
sage:
sage:

sage:

b
d
C
C

random
random

M(conv

-120*%x"6 - x5 +
+ 56%x"2 - 98%*x

sage: u = M(conv

sage:

u

8xx"6 — 2%xx°bH -

6xx — 1

sage: conv(b,e3)

3*x"6 — 2*%x"bH -

6*xx — 1

sage:



tkey) :

x"5 +

x"b5 +

24

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44xx"6 — 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22

sage: a,a3,G) = secretkey

sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*x"6 + 3*%x°b + 3*x"4 - 3*%x”3
+ 3*X

sage:

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q
sage: C

-120%x"6 - x°b + 6*%x74 -
+ B6*xx"2 - 98*%x - 71
sage: u = M(conv(a,C),Q)
sage: u

3*xX"6 - 2%x°b - T*x"4 + 4
6*x - 1

sage: conv(b,e3)+conv(a,d
3*xX"6 - 2%x"b - T*xx"4 + 4
6*x - 1

sage:



sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()
sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22
sage: a,a3,G) = secretkey
sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*x"6 + 3*%x"b + 3*x"4 - 3*x”3
+ 3*X

sage:

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q)
sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ B6*xx"2 - 98*%x - 71

sage: u = M(conv(a,C),Q)

sage: u

3*X"6 - 2%x"b - T*xx"4 + 4*xx"3 -
6*x - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*x - 1

sage:

26



,Q,W = 7,256,5
,secretkey = keypair ()

- O7xx"b5 - 62%x"4 -
3 — 10xx"2 + 14%x - 22
,a3,G = secretkey

x"b + x°3 +x -1

onv = convolution

= balancedmod

3 = M(conv(a,G),Q)

3

t 3*%x°b + 3*%x74 - 3*x”3

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q)
sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ B6*xx"2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

S*X"6 - 2%x"b - T*x"4 + 4*xx"3 -
6*x - 1

sage: conv(b,e3)+conv(a,d)
3*X"6 — 2%x"b - T*xx"4 + 4*%x"3 -
6*x - 1

sage:

26

sage: #
sage: M
-X"6 +
sage: M
-X"6 +
sage: C
-3*x"b -
sage: M
x4 + x
sage: d
x4 + x
sage:



256,5
y = keypair()

- 62%x74 -
2 + 14%xx - 22

secretkey

+ x -1
volution

edmod

v(a,G),Q)

3*%x"4 - 3*%x~3

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q)
sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24*%x”3
+ B6*xx"2 - 98*%x - 71

sage: u = M(conv(a,C),Q)

sage: u

S*X"6 — 2%x"b - T*x"4 + 4*%x"3 -
6*xx - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*x - 1

sage:

26

sage: # u 1s 3be
sage: M(u,3)
-X"6 + x°5 - x74
sage: M(conv(a,d
-X"6 + x°5 - x74
sage: conv(M(u,3
-3*x"5 + x4 + x
sage: M(_,3)

x4 + x°3 - X
sage: d

x4 + x°3 - X

sage:



ir()

3*xx~3

25

sage: b
sage: d
sage: C
sage: C

-120*%x"6 - x5 + 6%x74 - 24%x"3

+ b6*xx”
sage: u
sage: u
3*xX"6 -

6*x - 1

= randomweightw()

= randomsecret ()

= M(conv(b,G)+d,Q)

2 - 98%xx - 71
= M(conv(a,C),Q)

2%x"5 = T*x"4 + 4%x°3 -

sage: conv(b,e3)+conv(a,d)

3*x"6 -
6kxx - 1

sage:

2*%x"h - T*x"4 + 4%x"3 -

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x50 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + x°3 - X
sage: M(_,3)

x4 + xX°3 - X

sage: d

x4 + X3 - X

sage:

R



sage: b = randomweightw()

sage: C = M(conv(b,G)+d,Q)

b

sage: d = randomsecret ()

C

sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ 56%x72 - 98%x - 71

sage: u = M(conv(a,C),Q)

sage: u

3*X"6 - 2%x"b - T*x"4 + 4*%x"3 -
6*xx - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*%x - 1

sage:

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage: d

x4 + x°3 - X

sage:

R

27



~

O

~

1

= randomweightw()

= randomsecret ()

= M(conv(b,G)+d,Q)
- x°5 + 6%xx"4 - 24%x"3
2 - 98xx - 71

= M(conv(a,C),Q)

2%x"5 = T*x"4 + 4%x°3 -

onv(b,e3)+conv(a,d)

1

2*%x"h - T*x"4 + 4%x"3 -

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x50 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + x°3 - X
sage: M(_,3)

x4 + xX°3 - X

sage: d

x4 + X3 - X

sage:

R

27

Does de

All coefl
All coefl

and exa

Each co
has absc
(Same a
a of any

Similar ¢
Each co
has absc

e.g. W -
Decrypti



weightw()
secret ()

(b,G)+d,Q)
6xx"4 - 24%x"3
- 71

(2,C),Q)

T*x"4 + 4%xx~3 -

+conv(a,d)

T*x"4 + 4%x~3 -

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage: d

x4 + X3 - X

sage:

R

21

Does decryption a

All coeffs of d are

All coeffs of a are
and exactly W are

Each coeff of ad i

has absolute value
(Same argument v
a of any weight, a

Similar comments
Each coeff of 3be
has absolute value

e.g. W =467 at
Decryption works



24%x”"3

:*XAB -

:*XAS -

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x50 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX°3 - X
sage: M(_,3)

x4 + xX°3 - X

sage: d

x4 + X3 - X

sage:

R

27

Does decryption always worl

All coeffs of d are in {—1,0
All coeffs of a are in {—1, 0,
and exactly W are nonzero.

Each coeff of ad iIn R

has absolute value at most |
(Same argument would worl
a of any weight, d of weigh?

Similar comments for e, b.
Each coeff of 3be 4+ ad in R
has absolute value at most -

e.g. W = 467: at most 186¢
Decryption works for Q = 4



sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + xb - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage: d

x4 + x°3 - X

sage:

R

21

28
Does decryption always work?

All coeffs of d are in {—1,0,1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad iIn R

has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W.)

Similar comments for e, b.
Each coeff of 3be + ad in R
has absolute value at most 4.

e.g. W =467: at most 1868.
Decryption works for Q = 4096.



u is 3bet+ad 1in
(u,3)

x5 - x74 + x73
(conv(a,d),3)
x5 - x4 + x~3
onv(M(u,3) ,a3)

t x74 + x°3 - X
(_,3)

"3 - X

"3 - X

R

27

Does decryption always work?

All coeffs of d are in {—1,0, 1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad In R

has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W .)

Similar comments for e, b.
Each coeff of 3be + ad in R
has absolute value at most 4.

e.g. W =467: at most 1868.
Decryption works for Q = 4096.
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Does decryption always work?

All coeffs of d are in {—1,0,1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W.)

Similar comments for e, b.
Each coeff of 3be + ad in R
has absolute value at most 4.

e.g. W =467: at most 1868.
Decryption works for Q = 4096.
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Does decryption always work?

All coeffs of d are in {—1,0, 1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W.
(Same argument would work for
a of any weight, d of weight W .)

Similar comments for e, b.
Each coeff of 3be 4+ ad in R
has absolute value at most 4.

e.g. W =467: at most 1868.
Decryption works for Q = 4096.
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Does decryption always work?

All coeffs of d are in {—1,0,1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W .)

Similar comments for e, b.
Each coeff of 3be + ad in R
has absolute value at most 4.

e.g. W =467: at most 1868.
Decryption works for Q = 4096.
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What about W = 467, QQ = 20487

Same argument doesn't work.
a=b=d=e=

14+ x+x2+---+xV-1

3be + ad has a coeff 4W > Q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 N TRU handout mentioned
no-decryption-failure option,
but recommended smaller Q
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
It can be ignored In practice”.
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What about W = 467, Q) = 20487

Same argument doesn't work.
a=b=d=e=

14+ x+x2+--+xV-1

3be + ad has a coeff 4W > Q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 NTRU handout mentioned
no-decryption-failure option,
but recommended smaller Q
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
it can be ignored In practice”.
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What about W = 467, QQ = 20487

Same argument doesn't work.
a=b=d=e=

14+ x+x2+---+xV-1

3be + ad has a coeff 4W > Q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 N TRU handout mentioned
no-decryption-failure option,
but recommended smaller Q
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
it can be ignored In practice”.
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Same argument doesn't work.
a=b=d=e=

14+ x+x2+---+xV-1

3be + ad has a coeff 4W > Q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 NTRU handout mentioned
no-decryption-failure option,
but recommended smaller Q
with some chance of failures.
1998 NTRU paper: decryption
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What about W = 467, QQ = 20487

Same argument doesn't work.
a=b=d=e=

14+ x+x2+---+xV-1

3be + ad has a coeff 4W > Q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 N TRU handout mentioned
no-decryption-failure option,
but recommended smaller Q
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
It can be ignored In practice”.
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Crypto 2003 Howgrave-Graham-—
Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte
“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that
“all the security proofs known . ..
for various NTRU paddings
may not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!
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“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that

“all the security proofs known . ..

for various NTRU paddings
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Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!
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Crypto 2003 Howgrave-Graham-—
Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte

“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that

“all the security proofs known . ..

for various NTRU paddings
may not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!
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Crypto 2003 Howgrave-Graham-—
Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte

“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that

“all the security proofs known . ..

for various NTRU paddings
may not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!

30

Coeff of xN=1 in ad is
apdn_1+ a1dy_o + - -+ a

This coeff is large <
ap, a1,...,ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <
apg, a1, ..., an_1 has high
correlation with some rotati

of d/\/_l, d/\/_z, Cee do.

l.e. a Is correlated with
x! rev(d) for some i, where
rev(d) = do+dixV 144



Crypto 2003 Howgrave-Graham-—
Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte

“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that

“all the security proofs known . ..

for various NTRU paddings
may not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!
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31
Coeff of xN=1 in ad is

aody_1 +aidy_o+ -+ an_1do.

This coeff is large <
ap, a1, ..., ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <

ap, a1, ..., an_1 has high
correlation with some rotation
of dN—11 d/\/_z, C e do.

l.e. a Is correlated with
x! rev(d) for some i, where
rev(d) = dp+dixV 14+ +dy_1x.
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Coeff of xN=1 in ad is

aody_1+ ar1dy_o+ -+ any_1do.

This coeff is large <
ap, a1,...,ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <
apg, a1, ..., an_1 has high
correlation with some rotation

of d/\/_l, d/\/_z, Ce e do.

l.e. a Is correlated with
x! rev(d) for some i, where
rev(d) = do+dixVN 14 +dy_1x.
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Coeff of xN=1 in ad is

aody_1 +aidy_o+ -+ an_1do.

This coeff is large <
ap, a1,...,ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <

ap, a1, ..., an_1 has high
correlation with some rotation
of dN—11 d/\/_z, C e do.

l.e. a Is correlated with
x! rev(d) for some i, where
rev(d) = dp+dixVN 14+ +dy_1x.
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31
Coeff of xN=1 in ad is

aody_1+ar1dy_o+ -+ any_1do.

This coeff is large <
ap, a1,...,anN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <

ap, a1, ..., an_1 has high
correlation with some rotation
of d/\/_l, d/\/_z, C e do.

l.e. a Is correlated with
x! rev(d) for some i, where
rev(d) = do+dixVN 14 +dy_1x.

Reasonable guesses given a
random decryption failure:
a correlated with some x' re
rev(a) correlated with x~'d.
arev(a) correlated with dre

Experimentally confirmed:
Average of drev(d)

over some decryption failure
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—Szy«
algorithm then finds a.



Coeff of xN=1 in ad is

aody_1 +airdy_o+ -+ an_1do.

This coeff is large <
ap, a1, ..., ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <
ap, a1, ..., an_1 has high
correlation with some rotation

of dN—11 d/\/_z, Cee do.

l.e. a is correlated with
x' rev(d) for some i, where

31

rev(d) = do+dixVN 14+ +dy_1x.

Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x™'d.

arev(a) correlated with drev(d).

Experimentally confirmed:
Average of drev(d)

over some decryption failures
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds a.
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Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x™'d.

arev(a) correlated with drev(d).

Experimentally confirmed:
Average of drev(d)

over some decryption failures
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds a.

32

1999 Ha
2000 Ja
Hoffsteir
Fluhrer,

using 1n

Attacker
d+1, a
d+2 a
d+ 3, e

This che
T—a, I-X¢
::23, y

+3a, et




d IS
+ -+ ay_1dp.

as
ith

b.
SR
as high

yme rotation
. dp.

with
I, where
V—1
+ - Fdy_1x.

31

Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x™'d.

arev(a) correlated with drev(d).

Experimentally confirmed:
Average of drev(d)

over some decryption failures
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds a.
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1999 Hall-Goldbel
2000 Jaulmes—Jou
Hoffstein—=Silverm:

Fluhrer, etc.: Evel
using invalid mess

Attacker changes

d::l,d::X, C ey
d::2, d::2X,
d + 3, etc.

This changes 3be

1T—d, = Xa, ..., X

::23, ::2X3, c ey Z

+3a, etc.
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-d/\/_lx.

Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x~'d.

arev(a) correlated with drev(d).

Experimentally confirmed:
Average of drev(d)

over some decryption failures
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—-Szydlo
algorithm then finds a.
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1999 Hal

2000 Jau

—Goldberg—Schneie
mes—Joux, 2000

Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier at

using invalid messages.

Attacker changes d to
d+1 d=+x, ..., d::XN_]
d::2, d::2X, C ey d::2X/\

d + 3, etc.

This changes 3be + ad: adc
T—a, rXa, ... ::XN_la;
+2a, +2xa, ..., ::2XN_13;
+3a, etc.




Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x™'d.

arev(a) correlated with drev(d).

Experimentally confirmed:
Average of drev(d)

over some decryption failures
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds a.
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1999 Hal

2000 J

Fluhrer, etc.: Even easier attacks

—Goldberg—Schneier,

aulmes—Joux, 2000
Hoffstein—Silverman, 2016

using invalid messages.

Attacker changes d to
d X,”.,d::XN_%
d+2x, ..., d::2XN_1;

d—+1,
d+ 2
d + 3,

etc.

This changes 3be + ad: adds

T—d, Xa, ...

::23,:

:2X3,...

+34a, etc.

, X

N—la;

:ZXN_la;

33
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1999 Hal
2000 Jau
Hoffstein—Silverman, 2016

Fluhrer, etc.: Even easier attacks

-3a, etc.

—Goldberg—Schneier,
mes—Joux, 2000

using invalid messages.

Attacker changes d to

d+1 d+x, ..., d::XN_l;
d+2, d=+2x,...,d 2XN_1;
d + 3, etc.

This changes 3be + ad: adds
—a, TXa, ... ::XN_la;

-2a, t2xa, ..., ::2XN_13;

33
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1999 Hal
2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d+1 d+x, ..., d::XN_l;
d+2 d=+2x, ..., d::2XN_1;
d + 3, etc.

This changes 3be 4+ ad: adds
T—a, T—Xa, ... ::XN_la;

+2a, +2xa, ..., ::2XN_13;

+34a, etc.

33

e.g. 3be+ad = --
all other coeffs in
and a = - - - + x*"

Then 3be + ad +
-+ (390 + k)x*
Decryption fails fc

Search for smalles

Does 3be + ad +
Yes if xa=---+
le., ifa=---+x

Try kx?, kx3, etc.
See pattern of a c
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1999 Hal
2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d+1 d+x, ..., d::XN_l;
d+2, d=+2x, ..., d::2XN_1;
d + 3, etc.

This changes 3be + ad: adds
T—a, rXa, ... ::XN_la;

+2a, +2xa, ..., ::2XN_13;

+3a, etc.

33

e.g. 3be+ad = - -+390x*
all other coeffs in [—389, 38

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that f:

Does 3be + ad + kxa also f
Yes if xa—=---4+ x*8 4 ...
i.e., ifa:---—|—x477_|_..._

Try kx2, kx3, etc.
See pattern of a coeffs.



1999 Hal
2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d

d

d

1, d-

:X,...,d::

2, d -

:2X,...,d:

XN_l;

B 2XN—1.

3, etc.

This changes 3be 4+ ad: adds

1Td,
::23, -

T—Xa, ...

:XN_la

-2xa, ..., ::2XN_13;
+3a, etc.

33

34
e.g. 3betad = ---+390x48+. ..

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa = --- 4+ x478
e fa=- .-+ x4 1+ ...

Try kx2, kx3, etc.
See pattern of a coeffs.



|l-Goldberg—Schneier,

Jlmes—Joux, 2000
1-Silverman, 2016
etc.: Even easier attacks

/alid messages.

- changes d to

'+ x, ..., d::XN_l;
'+ 2x, ..., d::2XN_1;
{C.

nges 3be + ad: adds
3, ..., ::XN_la;

'Xa, ..., ::2XN_13;

33

e.g. 3be+ad = -+390x48 ...

all other coeffs in [—389, 389];

and a=---+ x*% ..

Then 3be + ad + ka =
-+ (390 + k)x*78 .

Decryption fails for big k.

Search for smallest k that fails.

so fail?

Does 3be + ad + kxa a
Yes if xa = --- 4 x*8 _
e ifa= . - +x%" 4+

Try kx2, kx3, etc.
See pattern of a coeffs.
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33

e.g. 3be+ad = - -+390x48 ...

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa=---+x*8 ...
i.e., ifa:---+x477+..._

Try kx2, kx3, etc.
See pattern of a coeffs.
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Attacker Is given
G = 3e/a, ciphert
Can attacker find

Search (%)QW chi
It d = C — bG is ¢
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33

e.g. 3be+ad = -+390x48 4. ..

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa—=---4+ x*8 4 ...
i.e., ifa:---—|—x477_|_..._

Try kx2, kx3, etc.
See pattern of a coeffs.

34

Brute-force search

Attacker is given public key
G = 3e/a, ciphertext C = b
Can attacker find b?

Search (VA&) oW choices of b.
If d = C — bG is small: don

(Can this find two different
secrets d? Unlikely. This wc
also stop legitimate decrypti

Or search through choices o
If e = aG/3 is small, use (a,
to decrypt. Advantage: can
attack for many ciphertexts.



e.g. 3be+ad = ---+390x*8 4. ..

all other coeffs in [—389, 389];

and a=---+ x*% 1 ..

Then 3be + ad + ka =
-+ (390 + k)x*78 .

Decryption fails for big k.

Search for smallest k th

Does 3be + ad + kxa a

at fails.

so fail?

Yes if xa = --- 4+ x*8 _
e ifa= .- - +x%" 4+

Try kx2, kx3, etc.
See pattern of a coeffs.
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Brute-force search

Attacker is given public key

G = 3e/a, ciphertext C = bG + d.

Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different
secrets d? Unlikely. This would
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If e = aG/3 is small, use (a, e)

to decrypt. Advantage: can reuse
attack for many ciphertexts.
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