Lattice-based cryptography,
part 2: efficiency

D. J. Bernstein

University of lllinois at Chicago;
Ruhr University Bochum

2016: Google runs "CECPQ1"
experiment, encrypting with
elliptic curves and NewHope.

2019: Google+Cloudflare
run “CECPQ2" experiment,

encrypting with elliptic curves
and NTRU HRSS.

2019: OpenSSH adds support for
Streamlined NTRU Prime. 2022:
OpenSSH enables this by default.

These lattice cryptosystems
nave ~1KB keys, ciphertexts;

nave ~100000 cycles enc, dec;
maybe resist quantum attacks.

ECC has much shorter keys anc

ciphertexts and similar speeds, but
doesn't resist quantum attacks.

Isogeny-based crypto has
shorter keys and ciphertexts, and
maybe resists quantum attacks,
but uses many more cycles.

based cryptography,
fficiency

rnstein

ty of lllinois at Chicago;
Iversity Bochum

oogle runs "CECPQ1"
ent, encrypting with
urves and NewHope.

oogle+Cloudflare
CPQ2" experiment,
ng with elliptic curves

U HRSS.

2019: OpenSSH adds support for
Streamlined NTRU Prime. 2022:
OpenSSH enables this by default.

These lattice cryptosystems
nave ~1KB keys, ciphertexts;

nave ~100000 cycles enc, dec;
maybe resist quantum attacks.

ECC has much shorter keys anc

ciphertexts and similar speeds, but
doesn't resist quantum attacks.

Isogeny-based crypto has

shorter keys and ciphertexts, and
maybe resists quantum attacks,
but uses many more cycles.

All of th
were Int
Hoffsteir
NTRU c

Announ
at Crypt
Patent

First ver
handed

finally p
https:,

Propose
for 280 ¢

tography,

is at Chicago;
ochum

; "CECPQLT”
oting with
NewHope.

udflare
periment,
iptic curves

2019: OpenSSH adds support for
Streamlined NTRU Prime. 2022:
OpenSSH enables this by default.

These lattice cryptosystems
nave ~1KB keys, ciphertexts;

nave ~100000 cycles enc, dec;
maybe resist quantum attacks.

ECC has much shorter keys anc

ciphertexts and similar speeds, but
doesn’t resist quantum attacks.

Isogeny-based crypto has
shorter keys and ciphertexts, and
maybe resists quantum attacks,
but uses many more cycles.

All of the critical ¢
were Introduced Ir
Hoffstein—Pipher—
NTRU cryptosyste

Announced 20 Au
at Crypto 1996 ru
Patent expired ir

First version of N°
handed out at Cry

finally put online |
https://ntru. o1

Proposed 104-byte
for 280 security.

1g0;

1"

S

2019: OpenSSH adds support for
Streamlined NTRU Prime. 2022:
OpenSSH enables this by default.

These lattice cryptosystems
nave ~1KB keys, ciphertexts;

nave ~100000 cycles enc, dec;
maybe resist quantum attacks.

ECC has much shorter keys anc

ciphertexts and similar speeds, but
doesn't resist quantum attacks.

Isogeny-based crypto has
shorter keys and ciphertexts, and
maybe resists quantum attacks,
but uses many more cycles.

All of the critical design ide:

WETrE

introduced In the origii

Hoffstein—Pipher—Silverman

NTRU cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump sessior
Patent expired in 2017.

First
hand

final

version of NTRU pape
ed out at Crypto 1996,
y put online in 2016:

https://ntru.org/f/hps!

Proposed 104-byte public ke
for 280 security.

2019: OpenSSH adds support for All of the critical design ideas
Streamlined NTRU Prime. 2022: were introduced in the original
OpenSSH enables this by default. Hoffstein—Pipher—Silverman

These lattice cryptosystems NTRU cryptosystem.

nave ~1KB keys, ciphertexts; Announced 20 August 1996
nave ~100000 cycles enc, dec; at Crypto 1996 rump session.
maybe resist quantum attacks. Patent expired in 2017.
ECC has much shorter keys anc First version of NTRU paper,

ciphertexts and similar speeds, but handed out at Crypto 1996,

doesn't resist quantum attacks. finally put online in 2016:

Isogeny-based crypto has https://ntru.org/f/hps96.pdf

shorter keys and ciphertexts, and Proposed 104-byte public keys
maybe resists quantum attacks, for 280 security.
but uses many more cycles.

penSSH adds support for
ned NTRU Prime. 2022:

H enables this by default.

ttice cryptosystems

KB keys, ciphertexts;
00000 cycles enc, dec;
resist quantum attacks.

> much shorter keys anc

xts and similar speeds, but
resist quantum attacks.

based crypto has

ceys and ciphertexts, and
esists quantum attacks,
“many more cycles.

All of the critical design ideas

were Introduced In the original

Hoffstein—Pipher—Silverman

NTRU cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.
Patent expired in 2017.

First version of NTRU paper,
handed out at Crypto 1996,

final

https://ntru.org/f/hps96.pdf

y put online in 2016:

Proposed 104-byte public keys

for 280 security.

1996 pa
attack p
problem
applied

to attac

1997 Co
Detter C

Detter a
No clear

(Often i
for first

NTRU g

Propose
keys for

dds support for
J Prime. 2022:

this by default.

tosystems
ciphertexts;

cles enc, dec;

ntum attacks.

orter keys anc

nilar speeds, but
1tum attacks.

bto has
Iphertexts, and
1tum attacks,
re cycles.

All of the critical design ideas
were introduced in the original
Hoffstein—Pipher—Silverman
NTRU cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.
Patent expired in 2017.

First version of NTRU paper,
handed out at Crypto 1996,

finally put online in 2016:
https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys
for 280 security.

1996 paper conver
attack problem int
problem (suboptin
applied LLL (not ¢
to attack the latti

1997 Coppersmith
netter conversion

vetter attacks tha
No clear quantific:

(Often incorrectly
for first NTRU lat

NTRU paper, AN
proposed 147-byte
keys for 277 or 21

rt for
2022:

fault.

XtSs;
dec:
acks.

dNnad

s, but
~ks.

~and
cks,

All of the critical design ideas
were Introduced In the original
Hoffstein—Pipher—Silverman
NTRU cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.
Patent expired in 2017.

First version of NTRU paper,
handed out at Crypto 1996,

finally put online in 2016:
https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys
for 280 security.

1996 paper converted NTRL
attack problem into a lattice

problem (suboptimally), anc
applied LLL (not state of th
to attack the lattice problen

1997 Coppersmith—Shamir:
petter conversion (rescaling
netter attacks than LLL.

No clear quantification.

(Often incorrectly credited
for first NTRU lattice attac}

NTRU paper, ANTS 1998:
proposed 147-byte or 503-by
keys for 277 or 2170 security.

All of the critical design ideas
were Introduced In the original
Hoffstein—Pipher—Silverman
NTRU cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.
Patent expired in 2017.

First version of NTRU paper,
handed out at Crypto 1996,

finally put online in 2016:
https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys
for 280 security.

1996 paper converted NTRU
attack problem into a lattice

problem (suboptimally), and then
applied LLL (not state of the art)
to attack the lattice problem.

1997 Coppersmith—Shamir:
better conversion (rescaling) +
petter attacks than LLL.

No clear quantification.

(Often incorrectly credited
for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:
proposed 147-byte or 503-byte
keys for 277 or 2170 security.

e critical design ideas
roduced in the original
1—Pipher—Silverman
ryptosystem.

“ed 20 August 1996
0 1996 rump session.
expired in 2017.

sion of NTRU paper,

out at Crypto 1996,

ut online in 2016:
'/ntru.org/f/hps96.pdf

d 104-byte public keys
ecurity.

1996 paper converted NTRU
attack problem into a lattice

problem (suboptimally), and then
applied LLL (not state of the art)
to attack the lattice problem.

1997 Coppersmith—Shamir:
vetter conversion (rescaling) +
netter attacks than LLL.

No clear quantification.

(Often incorrectly credited
for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:
proposed 147-byte or 503-byte
keys for 277 or 2170 security.

NTRU s

Paramet

Z|x] is t
with Inte

R = Z|x
the ring
Integer «

(Variant

e.g. xN

NTRU s
R with e
(Variant

lesign ideas
 the original
Silverman

m.

oust 1996
mp session.

1 2017.

[RU paper,

pto 1996,

n 2016:
~g/f/hps96 . pdf

> public keys

1996 paper converted NTRU
attack problem into a lattice

problem (suboptimally), and then
applied LLL (not state of the art)
to attack the lattice problem.

1997 Coppersmith—Shamir:
better conversion (rescaling) +
netter attacks than LLL.

No clear quantification.

(Often incorrectly credited
for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:
proposed 147-byte or 503-byte
keys for 277 or 2170 security.

NTRU secrets

Parameter: positi\

Z|x]| is the ring of
with integer coeffs

R=2Z[x]/(x" —1
the ring of polyno
integer coeffs moc

(Variants use othe

eng—x—lm

N TRU secrets are
R with each coeff
(Variants: e.g., {-

1S
1al

)6 . pdf

V'S

1996 paper converted NTRU
attack problem into a lattice
problem (suboptimally), and then
applied LLL (not state of the art)
to attack the lattice problem.

1997 Coppersmith—Shamir:
better conversion (rescaling) +
netter attacks than LLL.

No clear quantification.

(Often incorrectly credited

for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:
proposed 147-byte or 503-byte
keys for 277 or 2170 security.

NTRU secrets

Parameter: positive integer

Z|x]| is the ring of polynomi
with integer coeffs.

R=2Z[x]/(xN —1)is
the ring of polynomials with

integer coeffs modulo xV —

(Variants use other moduli:
eg. xV —x—1in NTRUP

N TRU secrets are elements
R with each coeff in {—1, 0
(Variants: e.g., {—2,—1,0,

1996 paper converted NTRU
attack problem into a lattice
problem (suboptimally), and then
applied LLL (not state of the art)
to attack the lattice problem.

1997 Coppersmith—Shamir:
better conversion (rescaling) +
vetter attacks than LLL.

No clear quantification.

(Often incorrectly credited

for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:
proposed 147-byte or 503-byte
keys for 277 or 2170 security.

NTRU secrets

Parameter: positive integer N.

Z|x]| is the ring of polynomials
with integer coeffs.

R=2Z[x]/(xN —1)is
the ring of polynomials with

integer coeffs modulo xV — 1.

(Variants use other moduli:
e.g. X —x —1in NTRU Prime.)

NTRU secrets are elements of
R with each coeff in {—1,0,1}.
(Variants: e.g., {—2,-1,0,1,2}.)

per converted N TRU
roblem into a lattice

(suboptimally), and then
_LL (not state of the art)
K the lattice problem.

ppersmith—Shamir:
onversion (rescaling) +
ttacks than LLL.
“quantification.

ncorrectly credited
NTRU lattice attacks.)

aper, ANTS 1998:
1 147-byte or 503-byte
277 or 2170 security.

NTRU secrets

Parameter: positive integer N.

Z|x]| is the ring of polynomials
with integer coeffs.

R=2Z[x]/(xN —1)is
the ring of polynomials with

integer coeffs modulo xV — 1.

(Variants use other moduli:
e.g. X —x —1in NTRU Prime.)

NTRU secrets are elements of
R with each coeff in {—1,0, 1}.
(Variants: e.g., {—2,-1,0,1,2}.)

sage:
sage:
sage:
sage:
sage:
sage:
4xx~2
sage:
sage:
Xx"2 +
sage:
5*x” 2

sage:

+ H o+ H H N

ted NTRU
0 a lattice

1ally), and then
tate of the art)
ce problem.

—~Shamir:

(rescaling) +
n LLL.

tion.
credited
tice attacks.)

'S 1998:

or 503-byte

0 secu rity.

NTRU secrets

Parameter: positive integer N.

Z|x]| is the ring of polynomials
with integer coeffs.

R=2Z[x]/(xN —1)is
the ring of polynomials with

integer coeffs modulo xV — 1.

(Variants use other moduli:
e.g. X —x —1in NTRU Prime.)

NTRU secrets are elements of
R with each coeff in {—1,0,1}.
(Variants: e.g., {—2,-1,0,1,2}.)

sage:
sage:
sage:
sage:
sage:
sage:
4xx"2
sage:
sage:
Xx"2 +
sage:
5%x”2

sage:

/X .<x> = Z
now 4Zx 1
ZX objec
in X wit

= Zx([3,

+ H H = H® =

X + 3
g = Zx([2,
g

7*x + 2
f+g # b

+ 8*xx + 5

' then
e art)

s.)

te

NTRU secrets

Parameter: positive integer N.

Z|x]| is the ring of polynomials
with integer coeffs.

R=2Z[x]/(xN —1)is
the ring of polynomials with

integer coeffs modulo xV — 1.

(Variants use other moduli:
e.g. X —x —1in NTRU Prime.)

NTRU secrets are elements of
R with each coeff in {—1,0,1}.
(Variants: e.g., {—2,-1,0,1,2}.)

sage:
sage:
sage:
sage:
sage:
sage:
4xx”~2
sage:
sage:
Xx"2 +
sage:
5*x” 2

sage:

7x.<x> = Z7Z[]

now Zx 1s a class
Zx objects are po
1in x with 1nt coe
f = Zx([3,1,4])

f

+ x + 3

g = zZx([2,7,1])

g

7*x + 2

f+g # built-in a

+ 8*xx + 5

NTRU secrets

Parameter: positive integer N.

Z|x]| is the ring of polynomials
with integer coeffs.

R=2Z[x]/(xN —1)is
the ring of polynomials with

integer coeffs modulo xV — 1.

(Variants use other moduli:
e.g. X —x —1in NTRU Prime.)

NTRU secrets are elements of
R with each coeff in {—1,0,1}.
(Variants: e.g., {—2,-1,0,1,2}.)

sage:
sage:
sage:
sage:
sage:
sage:
4xx"2
sage:
sage:
Xx"2 +
sage:
5%x”2

sage:

Zx.<x> = ZZ[]
now Zx 1s a class
ZX objects are polys

1n X with int coeffs

= Zx([3,1,4])

+ H H = H® =

X + 3
g = zx([2,7,1])

g

7*x + 2

f+g # built-in add

+ 8*xx + 5

ecrets

er: positive integer .

he ring of polynomials
ger coeffs.

1/(xVN —1) is
of polynomials with

-oeffs modulo xNV — 1.

s use other moduli:
— x — 1 in NTRU Prime.)

ecrets are elements of
ach coeff in {—1,0,1}.
s: eg.,{1—-2,—1,0,1,2}.)

sage:
sage:
sage:
sage:
sage:
sage:
4*xx "2
sage:

sage:

7x.<x> = Z7Z|[]

+ H H #H #H

g
g

now Zx 1s a class
Zx objects are polys
in x with i1nt coeffs

= Zx([3,1,4])

x + 3

Zx([2,7,1])

X2 + [*xx + 2

sage: f+g

built-in add

5kx"2 + 8*%xx + 5

sage:

sage:
4*xx~ 3
sage:
4xx~4
sage:

8*kxx"2

H 4+ H + H 4+ b

sage:
28*x"3 -
sage: 1

Axx~4 +

sage: 1
True

sage:

/e integer V.

polynomials

’I

) is
mials with

lulo xV — 1.

r moduli:

NTRU Prime.)

elements of
in{—1,0,1}.
-2,—-1,0,1,2}.)

sage:
sage:
sage:
sage:
sage:
sage:
4xx "2
sage:
sage:
Xx"2 +

sage:

7x.<x> = ZZ[]

+ H H = = =

g
g
7*x

f+g

now Zx 1s a class
ZX objects are polys

1n X with int coeffs

Zx([3,1,4])

+ 3
Zx([2,7,1])

+ 2
built-in add

bkx"2 + 8*%xx + b

sage:

sage: f*x # bu
4*x~"3 + x72 + 3%
sage: f*xx"2
4xx"4 + x°3 + 3%
sage: f*2
3*x"2 + 2%x + 6
sage: f*x(7*x)
28*%x"3 + 7*x"2 +
sage: f*xg
4xx"4 + 29%x73 +
+ 6
sage: f*xg == fx*x2
True

sage:

als

rime.)

of

1,2}.)

sage:
sage:
sage:
sage:
sage:
sage:
4xx~2
sage:
sage:
Xx"2 +
sage:
5*x” 2

sage:

7Zx.<x> = ZZ[]
now Zx 1s a class
Zx objects are polys

1n X with int coeffs

= Zx([3,1,4])

+ +H H 3

X + 3
g = zZx([2,7,1])

g

7*x + 2

f+g # built-in add

+ 8*xx + 5

sage: f*x # built-in mu

4*x"3 + x72 + 3*x

sage: f*x"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*%x"3 + 7T*x"2 + 21%*x
sage: f*xg

4*x~4 + 29%x"3 + 18*xx72 +
+ 6

sage: fxg == £x2+f*x(7*x)+

True

sage:

sage:
sage:
sage:
sage:
sage:
sage:
4xx"2
sage:
sage:
Xx"2 +
sage:
5*x”2

sage:

7Zx.<x> = ZZ[]
now Zx 1s a class
Zx objects are polys

1n X with int coeffs

= Zx([3,1,4])

+ H H =

X + 3
g = zx([2,7,1])

g

7*x + 2

f+g # built-in add

+ 8*xx + 5

sage: f*x # built-in mul

4*x~3 + x72 + 3*x

sage: f*xx"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*%x"3 + 7*x72 + 21*x

sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage: fxg == f*x2+f*x(7*x)+f*xx72

True

sage:

x.<x> = ZZI[]
now Zx 1s a class
Zx objects are polys

1n X with int coeffs

= Zx([3,1,4])

x + 3

= Zx([2,7,1])

kX + 2
tg # built-in add

3xx + b

sage: f*x # built-in mul

4*x~3 + x72 + 3*x

sage: f*x"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*xx"3 + T*x72 + 21%*x

sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage: fxg == f*2+fx(7*x)+f*x72

True

sage:

Ct
3:

Ct

Ct

Z[]

s a class
ts are polys

h int coeffs

1,4])

7,11)

uilt—-in add

sage: f*x # built-in mul

4*x~3 + x72 + 3*x

sage: f*xx"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*%x"3 + 7*x72 + 21*x

sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage: fxg == f*x2+f*x(7*x)+f*xx72

True

sage:

sage:

. # replace
. # x7(N+1)

: def convol

return (

: N=3 # g

convolutio
3*xx + 4
convolutio
+ 4xx + 1

convolutio

18*xx"2 + 27*x +

sage:

dd

sage: f*x # built-in mul
4*x~3 + x72 + 3*x

sage: f*x"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*xx"3 + T*x72 + 21%*x

sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage: f*xg == f*2+fx(7*x)+f*x72

True

sage:

sage:

: # replace x"N with
. # x"(N+1) with x, e

: def convolution(f,g

return (fxg) 7 (x

: N =3 # global var

convolution(f,hx)
3xx + 4
convolution(f,x"2)
+ 4xx + 1

convolution(f,g)

18*%x72 + 27*xx + 35

sage:

sage: f*x # built-in mul 7 sage: # replace x"N with 1,
4xx"3 + x72 + 3*x sage: # x"(N+1) with x, etc.
sage: f*x"2 sage: def convolution(f,g):
4xx"4 + x73 + 3%x72 ...t return (fxg) % (x"N-1)
sage: f*2 Cee

3xx"2 + 2*xx + 6 sage: N = 3 # global variable
sage: f*x(7*x) sage: convolution(f,x)

28*%x"3 + 7T*x"2 + 21%*x X"2 + 3xx + 4

sage: fx*xg sage: convolution(f,x"2)
4*xx"4 + 29%x"3 + 18*x"2 + 23*x 3xx"2 + 4*%x + 1

+ 6 sage: convolution(f,g)

sage: fxg == f*x2+fx(7*x)+f*x72 18*%x~2 + 27*x + 35
True sage:

sage:

kX # built-in mul

X"2 + 3%X

kX~ 2

Xx"3 + 3*%x72

k2

2%x + 6

¥ (7*x)

t 7Txx72 + 21%x

g

29%x73 + 18*%x72 + 23%X

kg == f*2+fx (7*xx)+f*x"2

sage: # replace x"N with 1,
sage: # x~(N+1) with x, etc.
sage: def convolution(f,g):
... return (fxg) % (x"N-1)
sage: N = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4%x + 1

sage: convolution(f,g)

18%x72 + 27*x + 35

sage:

sage: d
sage: N
sage: r
_X"B -
sage: r
X6 + X
sage: r
-X"6 +
x + 1

ilt-1in mul 7 sage: # replace x"N with 1, 8 sage: def random
X sage: # x"(N+1) with x, etc. c.o..: £ = 1list
sage: def convolution(f,g): Cee for j
X" 2 ...t return (fxg) % (x"N-1): return Z
sage: N = 3 # global variable sage: N =7
sage: convolution(f,x) sage: randomsecr
21*x X"2 + 3xx + 4 -X"3 - x72 - x -
sage: convolution(f,x"2) sage: randomsecr
18*%x72 + 23%*x 3xx"2 + 4xx + 1 X"6 + x75 + x73
sage: convolution(f,g) sage: randomsecr
+Ex (7*x)+f*x72 18*%x~2 + 27*x + 35 -Xx"6 + x°5 + x74
sage: x + 1
sage:

1 7 sage: # replace x°N with 1, 8 sage: def randomsecret():
sage: # x"(N+1) with x, etc.: f = list(randrang
sage: def convolution(f,g): Cee for j in range(
....: return (fxg) % (x"N-1): return Zx(f)
sage: N = 3 # global variable sage: N =7
sage: convolution(f,x) sage: randomsecret ()

X2 + 3xx + 4 -Xx"3 - x2-x-1
sage: convolution(f,x"2) sage: randomsecret ()

- 23%*X 3xx"2 + 4%x + 1 X6 + x5+ x"3 - x
sage: convolution(f,g) sage: randomsecret ()

Txx™2 18*%x72 + 27*x + 35 -Xx"6 + x5 + x74 - x"3 -
sage: x + 1

sage:

sage: # replace x"N with 1,
sage: # x~(N+1) with x, etc.
sage: def convolution(f,g):
...t return (fxg) % (x"N-1)
sage: N = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4*x + 1

sage: convolution(f,g)

18*%x"2 + 27*x + 35

sage:

sage: def randomsecret():
....: f = list(randrange(3)-1
Cee for j in range(N))

e return Zx(f)

sage: randomsecret ()

-Xx"3 - x2-x-1

sage: randomsecret ()

X6 + x5+ x"3 - x

sage: randomsecret ()

-Xx"6 + x5 + x4 - x"3 - x"2 +
x + 1

sage:

replace x"N with 1,
x~(N+1) with x, etc.
ef convolution(f,g):

return (f*xg) % (x"N-1)

= 3 # global variable
onvolution(f,x)

kx + 4
onvolution(f,x~2)

4dxx + 1
onvolution(f,g)

+ 27*x + 35

sage: def randomsecret():
....: f = list(randrange(3)-1
Cee for j in range(N))

e return Zx(f)

sage: randomsecret ()

-Xx"3 - x2-x-1

sage: randomsecret ()

X6 + x5 +x"3 - x

sage: randomsecret ()

-Xx"6 + x5+ x4 - x"3 - x"2 +
x + 1

sage:

Will use
1998 N

Some ct
in NIST

e.g. N =
e.g. N =
e.g. N =

Overkill
known t

attacker

Maybe t
Claimed

x"N with 1, sage: def randomsecret(): Wil use bigger N
with x, etc.: f = list(randrange(3)-1 1998 NTRU pape!
ution(f,g): - for j in range(N))
fxg) % (x"N-1): return Zx(f) Some choices of A
..... in NISTPQC subn
lobal variable sage: N =7 e.g. N =701 for |
n(f,x) sage: randomsecret () e.g. N = 743 for |
X3 - xrz - x - e.g. N =761 for |
n(f,x"2) sage: randomsecret ()

<6 + %°B + x°3 - x Overkill against at

known today, ever

n(f,g) sage: randomsecret ()
35 "6 + x°5 + %x°4 — x°3 — x°0 + attacker with quai
x + 1 Maybe there are f:

sage: Claimed “guarante

“N-1)

1able

sage: def randomsecret():
....: f = list(randrange(3)-1
Ceel for j in range(N))

e return Zx(f)

sage: randomsecret ()

-Xx"3 - x2-x-1

sage: randomsecret ()

X6 + x5 +x"3 - x

sage: randomsecret()

-Xx"6 + x5+ x4 - x"3 - x"2 +
x + 1

sage:

Will use bigger N for securit
1998 NTRU paper took N =

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HR
e.g. N =743 for NTRUEnct
e.g. N =761 for NTRU Prit

Overkill against attack algor
known today, even for future
attacker with quantum com

Maybe there are faster attac
Claimed “guarantees’ are fa

sage: def randomsecret():

....: f = list(randrange(3)-1
Cee for j in range(N))
....: return Zx(f)

sage: N =7

sage: randomsecret ()

-x"3 - x2-x-1

sage: randomsecret ()

sage: randomsecret ()
-Xx"6 + x5 + x4 - x"3 - x72 +
x + 1

sage:

10
Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HRSS.
e.g. N =743 for NTRUEncrypt.
e.g. N =761 for NTRU Prime.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Maybe there are faster attacks!
Claimed “guarantees” are fake.

of randomsecret():
f = list(randrange(3)-1
for j in range(N))

return Zx(f)

=7
andomsecret ()
x"2 - x - 1
andomsecret ()
b+ x"3 - X
andomsecret ()

x"b + x4 - x3 - x72 +

Will use bigger N for security.
1998 NTRU paper took N = 503.

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HRSS.
e.g. N =743 for NTRUEncrypt.
e.g. N =761 for NTRU Prime.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Maybe there are faster attacks!
Claimed “guarantees” are fake.

10

NTRU g

Paramet
e.g., 40¢€

RQ — (2
IS the rir

with 1nte

dNd MOC

Public k

(Variant
NTRU F
(Z/4591

secret () :
(randrange(3)-1
in range(N))

Will use bigger N for security.
1998 NTRU paper took N = 503.

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HRSS.
e.g. N =743 for NTRUEncrypt.
e.g. N =761 for NTRU Prime.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Maybe there are faster attacks!
Claimed “guarantees” are fake.

10

N TRU public keys

Parameter @), pow
e.g., 4096 for NTI

RQ
Is t

wit

= (Z/Q)[x]/(:
ne ring of poly

N integer coeffs
N

dNcG

modulo x"' —

Public key is an el

(Variants: e.g., pr

NT

RU Prime has

(Z/4591)[x]/(x"®’

e(3)-1
N))

X"2 +

Will use bigger N for security.
1998 NTRU paper took N = 503.

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HRSS.
e.g. N =743 for NTRUEncrypt.
e.g. N =761 for NTRU Prime.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Maybe there are faster attacks!
Claimed “guarantees” are fake.

10

NT

RU public keys

Parameter (), power of 2:

e.g.

RQ
Is t

wit

, 4096 for NTRU HRSS.
=(Z/Q)Ix]/(x" — 1)

ne ring of polynomials
n integer coeffs modulo (

dNnad

modulo xV — 1.

Public key is an element of

(Variants: e.g., prime Q.

NT

RU Prime has field Rp:

(Z/4591)[x]/(x %! — x — 1)

Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HRSS.
e.g. N =743 for NTRUEncrypt.
e.g. N =761 for NTRU Prime.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Maybe there are faster attacks!
Claimed “guarantees” are fake.

10

11

N TRU public keys

Parameter (), power of 2:
e.g., 4096 for NTRU HRSS.

RQ
Is t

wit

=(Z/Q)Ix]/(x" = 1)
ne ring of polynomials
n integer coeffs modulo @

dNcG

modulo xV — 1.

Public key is an element of Ry.

(Variants: e.g., prime Q.

NT

RU Prime has field Rp: e.g.,

(Z/4591)[x]/(x"®! — x —1).)

bigger N for security.

"RU paper took N = 503.

oices of

PQC submissions:

- 701 for
- 743 for
- 761 for

NTRU HRSS.
NTRUEncrypt.
NTRU

Prime.

against attack algorithms

oday, even for future

with quantum computer.

here are faster attacks!

“guarantees’ are fake.

10

NT

RU public keys

Parameter (), power of 2:

e.g.

RQ
Is t

wit

, 4096 for NTRU HRSS.
=(Z/Q)Ix]/(x" — 1)

ne ring of polynomials
n integer coeffs modulo @

dNnad

Public key is an element of Ry.

modulo xV — 1.

(Variants: e.g., prime Q.

NT

RU Prime has field Rp: e.g.,

(Z/4591)[x]/(x"®! — x —1).)

11

NTRU e

Cipherte
where G
and b, d

Usually
Easy to
e.g., line
bG + d

Problem
G, bG +
Go, bGo
"Ring-L\
Lyubash
without

for security.
- took N = 503.

/
11SSIONS:

NTRU HRSS.
N TRUEncrypt.
N TRU Prime.

tack algorithms
 for future
1tum computer.

yster attacks!
es’ are fake.

10

NT

RU public keys

Parameter (), power of 2:

e.g.

RQ
Is t

wit

, 4096 for NTRU HRSS.
= (Z/Q)Ix]/(x" — 1)

ne ring of polynomials
n integer coeffs modulo @

dNd

Public key is an element of Ry.

modulo xV — 1.

(Variants: e.g., prime Q.

NTRU Prime has field Rg: e.g.,
(Z/4591)[x]/(x"®! — x —1).)

11

N TRU encryption

Ciphertext: bG +
where G € R Is |
and b,d € R are s

Usually G is invert
Easy to recover b
e.g., linear algebra
bG + d spoils line

Problem of finding
G, bG + d (or give
Go, bGy + db, ..)
"Ring-LWE proble
Lyubashevsky—Pel

without credit to

= 503.

SS.

ypt.
ne.

1thms

v

puter.

ks
|ke.

10

NT

RU public keys

Parameter (), power of 2:

e.g.

RQ
Is t

wit

, 4096 for NTRU HRSS.
= (Z/Q)Ix]/(x" — 1)

ne ring of polynomials
n integer coeffs modulo @

dNnad

modulo xV — 1.

Public key is an element of Ry.

(Variants: e.g., prime Q.

NT

RU Prime has field Rp: e.g.,

(Z/4591)[x]/(x"®! — x —1).)

11

N TRU encryption

Ciphertext: bG + d € R
where G € Rg is public key
and b, d € R are secrets.

Usually G is invertible in R
Easy to recover b from bG |
e.g., linear algebra. But noi

bG + d spoils linear algebra

Problem of finding b given
G, bG + d (or given Gy, bGy
Go, bGy + db, ...) was renat
"Ring-LWE problem™ by 20:
Lyubashevsky—Peikert—Rege:
without credit to NTRU.

NT

RU public keys

Parameter (), power of 2:

e.g.

RQ
Is t

wit

, 4096 for NTRU HRSS.
= (Z/Q)Ix]/(x" — 1)

ne ring of polynomials
n integer coeffs modulo @

dNd

Public key is an element of Ry.

modulo xV — 1.

(Variants: e.g., prime Q.

NTRU Prime has field Rp: e.g.,
(Z/4591)[x]/(x"®! — x —1).)

11

12
N TRU encryption

Ciphertext: bG + d € R
where G € Rg is public key
and b, d € R are secrets.

Usually G is invertible in Rg.
Easy to recover b from bG by,
e.g., linear algebra. But noise In

bG + d spoils linear algebra.

Problem of finding b given

G, bG + d (or given Gy, bGy + di,
Go, bGy + db, ...) was renamed
"Ring-LWE problem™ by 2010
Lyubashevsky—Peikert—Regev,
without credit to NTRU.

ublic keys

er Q, power of 2:
)6 for NTRU HRSS.

Z/Q)[x]/(xN — 1)
g of polynomials
sger coeffs modulo @

julo xN — 1.

ey 1s an element of Rp.

s: e.g., prime Q.
’rime has field Rg: e.g.,

Jx]/(x™ = x = 1).)

11

N TRU encryption

Ciphertext: bG + d € R
where G € Rg is public key
and b, d € R are secrets.

Usually G is invertible in Rg.
Easy to recover b from bG by,
e.g., linear algebra. But noise In

bG + d spoils linear algebra.

Problem of finding b given

G, bG + d (or given Gy, bGy + di,

Go, bGy + db, ...) was renamed
"Ring-LWE problem™ by 2010
Lyubashevsky—Peikert—Regev,
without credit to NTRU.

12

Variant:
“weight
N—W
In const;

W 1s an
e.g., 467

More tr:
W /2 coe

Variant
choose |

Another
round b

each coe

er of 2:
RU HRSS.

N —1)
romials

, modulo @
1.

ement of Ry.

ime Q.
field Rp: e.g.,

—x—1).)

11

N TRU encryption

Ciphertext: bG + d € R
where G € Rg is public key
and b, d € R are secrets.

Usually G is invertible in Rg.
Easy to recover b from bG by,
e.g., linear algebra. But noise In

bG + d spoils linear algebra.

Problem of finding b given

G, bG + d (or given Gy, bGy + di,
Go, bGy + db, ...) was renamed
"Ring-LWE problem™ by 2010
Lyubashevsky—Peikert—Regev,
without credit to NTRU.

12

Variant: require d
“weight W": W n
N — W zero coeff:
In constant time v

W s another para
e.g., 467 for NTR

More traditional v
W /2 coeffs 1 and

Variant I'll use in
choose b to have

Another variant:
round bG to bG +
each coeff to mult

11

N TRU encryption

Ciphertext: bG + d € R
where G € Rg is public key
and b, d € R are secrets.

Usually G is invertible in Rg.
Easy to recover b from bG by,
e.g., linear algebra. But noise In

bG + d spoils linear algebra.

Problem of finding b given

G, bG + d (or given Gy, bGy + di,

Go, bGy + db, ...) was renamed
"Ring-LWE problem™ by 2010
Lyubashevsky—Peikert—Regev,
without credit to NTRU.

12

Variant: require d to have

“weight W": W nonzero co
N — W zero coeffs. (Generz
In constant time via sorting.

W Is another parameter:
e.g., 467 for NTRU HRSS.

More traditional variant: rec
W /2 coeffs 1 and W/2 coef

Variant |I'll use in these slide
choose b to have weight W'.

Another variant: determinis
round bG to bG + d by rou
each coeff to multiple of 3.

N TRU encryption

Ciphertext: bG + d € R
where G € Rg is public key
and b, d € R are secrets.

Usually G is invertible in Rg.
Easy to recover b from bG by,
e.g., linear algebra. But noise In

bG + d spoils linear algebra.

Problem of finding b given

G, bG + d (or given Gy, bGy + di,
Go, bGy + db, ...) was renamed
"Ring-LWE problem™ by 2010
Lyubashevsky—Peikert—Regev,
without credit to NTRU.

12

Variant: require d to have
“weight W": W nonzero coeffs,
N — W zero coeffs. (Generate
in constant time via sorting.)

W Is another parameter:
e.g., 467 for NTRU HRSS.

More traditional variant: require

W /2 coeffs 1 and W /2 coeffs —1.

Variant I'll use in these slides:
choose b to have weight W.

Another variant: deterministically
round bG to bG + d by rounding
each coeff to multiple of 3.

13

ncryption

xt: bG + d € RQ
€ Ro 1s public key
€ R are secrets.

G is invertible in Rg.
recover b from bG by,
ar algebra. But noise In

spoils linear algebra.

of finding b given

d (or given G, bGy + di,
+ db, ...) was renamed
NE problem™ by 2010
evsky—Peikert—Regev,
credit to NTRU.

12

Variant: require d to have
“weight W": W nonzero coeffs,
N — W zero coeffs. (Generate
in constant time via sorting.)

W Is another parameter:
e.g., 467 for NTRU HRSS.

More traditional variant: require

W /2 coeffs 1 and W/2 coeffs —1.

Variant I'll use in these slides:
choose b to have weight W'.

Another variant: deterministically
round bG to bG + d by rounding
each coeff to multiple of 3.

13

(jéfl?Q
yublic key
ecrets.

ible in Rp.
from bG by,

. But noise In
ar algebra.

- b given

n G, bG1 + df,
was renamed
m~ by 2010
kert—Regev,

N TRU.

12

Variant: require d to have
“weight W": W nonzero coeffs,
N — W zero coeffs. (Generate
in constant time via sorting.)

W Is another parameter:
e.g., 467 for NTRU HRSS.

More traditional variant: require

W /2 coeffs 1 and W /2 coeffs —1.

Variant I'll use in these slides:
choose b to have weight W.

Another variant: deterministically
round bG to bG + d by rounding
each coeff to multiple of 3.

13

sage:

-X~6

def random

s [r]

return Z

. randomwelg

- xX°h + x74

Y,
e 1N

12

Variant: require d to have
“weight W": W nonzero coeffs,
N — W zero coeffs. (Generate
in constant time via sorting.)

W Is another parameter:
e.g., 467 for NTRU HRSS.

More traditional variant: require

W /2 coeffs 1 and W/2 coeffs —1.

Variant I'll use in these slides:
choose b to have weight W'.

Another variant: deterministically
round bG to bG + d by rounding
each coeff to multiple of 3.

13

-X~6

: def randomweightw()

R = randrange
assert W <= N
s = Nx[0]

for j in range(W)
while True:
r = R(N)
if not slr]:
s[r] = 1-2%R(2)

return Zx(s)

: W =05
: randomweightw()

- x5+ x4 + x3 -

Variant: require d to have
“weight W": W nonzero coeffs,
N — W zero coeffs. (Generate
in constant time via sorting.)

W Is another parameter:
e.g., 467 for NTRU HRSS.

More traditional variant: require

W /2 coeffs 1 and W /2 coeffs —1.

Variant I'll use in these slides:
choose b to have weight W.

Another variant: deterministically
round bG to bG + d by rounding
each coeff to multiple of 3.

13

sage:

-X~6

def randomweightw() :
R =
assert W <= N
s = Nx[0]

randrange

for j in range(W):
while True:
r = R(N)
if not sl[r]: break
s[r] = 1-2%R(2)

return Zx(s)

: randomweightw()

- X5+ x4 + x3 - x72

14

require d to have

W": W nonzero coeffs,
zero coeffs. (Generate
ant time via sorting.)

other parameter:
" for NTRU HRSS.

yditional variant: require

ffs 1 and W /2 coeffs —1.

I'll use in these slides:
) to have weight W/.

variant: deterministically
G to bG + d by rounding
ff to multiple of 3.

13

sage: def randomweightw() :

Cee et R = randrange

Cee assert W <= N

s = Nx[0]

....: for j in range(W):
- while True:

- r = R(N)

Cee if not s[r]: break
e s[r] = 1-2%xR(2)

el return Zx(s)

sage: randomweightw()

-Xx"6 - xb+ x4 + x3 - x72

14

NTRU k

Secret e
Require

Require

Public k

Ring-0L\
given G,

Homoge
(find b ¢

Known :
sometim
Also, Ri

sometim

to have
onzero coeffs,
5. (Generate
ia sorting.)

meter:

U HRSS.

arlant: require

W /2 coeffs —1.

these slides:
weight W'

leterministically
- d by rounding
iple of 3.

13

: def randomweightw() :

R = randrange
assert W <= N
s = Nx[0]
for j in range(W):
while True:
r = R(N)
if not s[r]: break
s[r] = 1-2%R(2)

return Zx(s)

- W =25

: randomweightw()

- X5+ x4 + x3 - x72

14

NTRU key genera

Secret e, weight-V
Require e, a invert

Require a invertibl
Public key: G = 3

Ring-0LWE proble
given G /3 and a((

Homogeneous slic
(find b given G ar

Known attacks: R
sometimes weaker
Also, Ring-LWE> |

sometimes weaker

effs,
te

juire

fs —1.

tically
nding

13

sage:

def randomweightw() :
R =
assert W <= N
s = Nx[0O]

randrange

for j in range(W):
while True:
r = R(N)
if not sl[r]: break
s[r] = 1-2%R(2)

return Zx(s)

: randomweightw()

- x5+ x4 + x3 - x72

14

NTRU key generation

Secret e, weight-W secret a
Require e, a invertible in R

Require a invertible in R3.

Public key: G =3e/a in R¢
Ring-OLWE problem: find a
given G/3 and a(G/3) — e -

Homogeneous slice of Ring-|
(find b given G and bG + d

Known attacks: Ring-OLWE
sometimes weaker than Ring
Also, Ring-LWE> (using Gy,
sometimes weaker than Ring

sage: def randomweightw() :
- R = randrange

Cee assert W <= N

....: s = Nx[0]

....: for j in range(W):
- while True:

Cee r = R(N)

Cee if not sl[r]: break
Ceet s[r] = 1-2*%R(2)

el return Zx(s)

sage: randomweightw()

-Xx"6 - xXb+ x4 + x3 - x72

14

N TRU key generation

Secret e, weight-W secret a.
Require e, a invertible in R.

Require a invertible in R3.
Public key: G =3e/a in Rp.

Ring-OLWE problem: find a
given G/3 and a(G/3) — e = 0.
Homogeneous slice of Ring-LWE/
(find b given G and bG + d).

Known attacks: Ring-OLWE

sometimes weaker than Ring-LWE;.

Also, Ring-LWE> (using G1, G)

sometimes weaker than Ring-LWE;.

15

14 15
of randomweightw() : N TRU key generation sage:

R = randrange

Secret e, weight-W secret a.
assert W <= N Cee el

Require e, a invertible in Rg.
s = N[0l Require a invertible in R3.
for j in range(W): -
while True: Public key: G = 36/3 N RQ. sage:
r = RN Ring-OLWE problem: find a sage:
if not slr]: break given G/3 and a(G/3) — e = 0. sage:
slr] = 1-2+R(2) Homogeneous slice of Ring-LWE; ~159*x
return Zx(s) (find b given G and bG + d). Sage
-159%x
_c Known attacks: Ring-OLWE sage
ndomweightw () sometimes weaker than Ring-LWE;. ., _
~E 4 x4 4 % 3 — %O Also, Ring-LWE> (using G1, G») sage

sometimes weaker than Ring-LWE;.

ot s[r]: break
1-2%R(2)
x(s)

htw ()

+ x°3 - x72

14

N TRU key generation

Secret e, weight-W secret a.
Require e, a invertible in R.

Require a invertible in R3.
Public key: G =3e/a in Rp.

Ring-OLWE problem: find a
given G/3 and a(G/3) — e = 0.
Homogeneous slice of Ring-LWE/
(find b given G and bG + d).

Known attacks: Ring-OLWE

sometimes weaker than Ring-LWE;.

Also, Ring-LWE> (using G1, G>)

sometimes weaker than Ring-LWE;.

15

sage: def balanc
st g=list ((
el -Q//2 £

Cee return Z
sage:

sage: u = 314-15
sage: u /4 200

-1659xx + 114
sage: (u - 400)
-159*%x - 86
sage: balancedmo
41*%x - 86

sage:

break

x~2

14

NTRU key generation

Secret e, weight-W secret a.
Require e, a invertible in Rg.

Require a invertible in R3.
Public key: G =3e/a in Rp.

Ring-OLWE problem: find a
given G/3 and a(G/3) — e = 0.
Homogeneous slice of Ring-LWE/
(find b given G and bG + d).

Known attacks: Ring-OLWE

sometimes weaker than Ring-LWE;.

Also, Ring-LWE> (using G1, G»)

sometimes weaker than Ring-LWE;.

15

sage: def balancedmod(f,Q
ce.or g=list (((£[1]1+Q//
R -Q//2 for i in 1
....: return Zx(g)

sage: u = 314-159%x
sage: u /% 200

-159*%x + 114

sage: (u - 400) % 200
-159*%x - 86

sage: balancedmod(u,200)
41*x — 36

sage:

NTRU key generation

Secret e, weight-W secret a.
Require e, a invertible in R.

Require a invertible in R3.
Public key: G =3e/a in Rp.
Ring-OLWE problem: find a
given G/3 and a(G/3) — e = 0.

Homogeneous slice of Ring-LWE/
(find b given G and bG + d).

Known attacks: Ring-OLWE
sometimes weaker than Ring-LWE;.
Also, Ring-LWE> (using Gi, G)
sometimes weaker than Ring-LWE;.

15

16
. def balancedmod(f,Q):

g=list (((£[1]1+Q//2)%Q)
-Q//2 for i in range(N))

return Zx(g)

sage
sage: u = 314-159%x
sage: u /4 200

-159*%x + 114

sage: (u - 400) % 200
-159*%x - 86

sage: balancedmod(u,200)
41*%x — 86

sage:

ey generation

, weight-W secret a.
e, a invertible in Rp.
a invertible in R3.

ey: G =3e/ain Rp.

NE problem: find a

/3 and a(G/3) — e =0.
neous slice of Ring-LWE;
riven G and bG + d).

ttacks: Ring-0LWE

es weaker than Ring-L\WE;.
g-LWE> (using G1, Go)

es weaker than Ring-LWE;.

15

16
sage: def balancedmod(f,Q):

oo g=list (C((E[11+Q//72) %Q)
Ce -Q//2 for i in range(N))
....: return Zx(g)

sage: u = 314-159%x
sage: u /4 200

-159*%x + 114

sage: (u - 400) % 200
-159*%x - 86

sage: balancedmod(u,200)
41*x — 36

sage:

sage: d
sage: N
sage
sage: f
sage: C
6*xx"6 +
3*x"2
sage

tion

I/ secret a.
kﬂﬂein Rz%
e in R@.

e/ain Rp.

m: find a

;/3) — e =0.

= of Ring-LWE/
d bG + d).

ing-0LWE

than Ring-LWE;.
using Gi, Go)
than Ring-LWE;.

15

16
sage: def balancedmod(f,Q):

oo g=list (C((EL11+Q//2)%Q)
e -Q//2 for i in range(N))
....: return Zx(g)

sage:

sage: u = 314-159%x

sage: u /4 200

-1059*xx + 114

sage: (u - 400) % 200
-159*x - 36

sage: balancedmod(u,200)
41*%x - 86

sage:

sage: def invert
- Fp = Int
- Fpx = Zx
- T = Fpx.
- return Z
sage: N =7
sage: f = random
sage: £3 = inver
sage: convolutio
6*xx"6 + 6*%x"5 +
3*¥x"2 + 3xx + 4

sage:

15

16
sage: def balancedmod(f,Q):

oo g=list (C((E[11+Q//72) %Q)
Ce -Q//2 for i in range(N))
....: return Zx(g)

sage: u = 314-159%x
sage: u /4 200

-1059*xx + 114

sage: (u - 400) % 200
-159*%x - 86

sage: balancedmod(u,200)
41*%x - 386

sage:

sage:

: def invertmodprime(

Fp = Integers(p)

Fpx = Zx.change_r
T = Fpx.quotient(
return Zx(1lift(1/

. N =7
. f = randomsecret ()

: 3 = invertmodprime

convolution(f,£3)

6*xxXx"6 + 6%x"b + 3%xx74 + 3

3*x"2 + 3*%xx + 4

sage:

16 17

sage: def balancedmod(f,Q): sage: def invertmodprime(f,p):
coeot o g=list ((CEL1]+Q//2)%Q): Fp = Integers(p)

Cee -Q//2 for i in range(N)): Fpx = Zx.change_ring(Fp)
....: return Zx(g): T = Fpx.quotient (x"N-1)

e e return Zx(1ift(1/T(£f)))

sage: L
sage: u = 314-159%*x sage: N =7

sage: u /4 200 sage: f = randomsecret()

-159%x + 114 sage: f3 = invertmodprime(f,3)
sage: (u - 400) % 200 sage: convolution(f,f3)

-159%x - 86 6*xx"6 + 6*xx"5 + 3*x"4 + 3*x"3 +
sage: balancedmod(u,200) 3*%x72 + 3xx + 4

41*x — 86 sage:

sage:

16
of balancedmod(f,Q):

g=1ist (((£[11+Q//2)%Q)
-Q//2 for i in range(N))
return Zx(g)

= 314-159%*x

% 200

+ 114

1 - 400) 7% 200

- 36
alancedmod (u, 200)
36

sage: def invertmodprime(f,p):
....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)
....: T = Fpx.quotient (x"N-1)
.e..: return Zx(lift(1/T(£)))
sage: N =7

sage: f = randomsecret ()

sage: f3 = invertmodprime(f,3)
sage: convolution(f,f3)

6*xx"6 + 6*xx"5 + 3*x"4 + 3*x"3 +
3*¥x72 + 3xx + 4

sage:

17

def 1inv
asser

g = 1I

M = b
conv
while

r =

if

g =

Exercise
invertn
Hint: H
divide fi

16
edmod (£,Q) :

(£[11+Q//72)7%Q)

or i in range(N))

x(g)

O%x

% 200

d(u,200)

sage: def invertmodprime(f,p):
..... Fp = Integers(p)

..... Fpx = Zx.change_ring(Fp)
..... T = Fpx.quotient(x~"N-1)
..... return Zx(1ift(1/T(£)))
sage: N =7

sage: f = randomsecret()

sage: f3 = invertmodprime(f,3)
sage: convolution(f,f3)

6*xx"6 + 6*%x"b + 3*xx"4 + 3*%xx"3 +
3xx"2 + 3*%xx + 4

sage:

17

def invertmodpow
assert (J.is_po

g:
M = balancedmo

invertmodp
conv = convolu
while True:
r = M(conv(g
1f r == 1: r

g = M(conv(g

Exercise: Figure o
invertmodpowerc«
Hint: How many |
divide first r-17 ¢

16 17

) sage: def invertmodprime(f,p): def invertmodpowerof2(f,Q
2)7%Q): Fp = Integers(p) assert Q.is_power_of(2)
ange(N)) |: Fpx = Zx.change_ring(Fp) g = invertmodprime(f,2)
....: T = Fpx.quotient (x"N-1) M = balancedmod
... return Zx(1ift(1/T(£))) conv = convolution

. while True:

sage: N =7 r = M(conv(g,f),Q)
sage: f = randomsecret() if r == 1: return g
sage: f3 = invertmodprime(f,3) g = M(conv(g,2-r),Q)

sage: convolution(f,f3)
6*xx"6 + 6*xx"5 + 3*x"4 + 3*x"3 +

3*x"2 + 3*%xx + 4

Exercise: Figure out how
invertmodpowerof2 works
Hint: How many powers of

Sage: divide first r-17 Second r-

sage: def invertmodprime(f,p):
....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)
....: T = Fpx.quotient (x"N-1)
... return Zx(lift(1/T(£)))
sage: N =7

sage: f = randomsecret()

sage: f3 = invertmodprime(f,3)
sage: convolution(f,f3)

6*xx"6 + 6*xx”5 + 3*x"4 + 3*x"3 +
3*¥x"2 + 3xx + 4

sage:

17

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

of invertmodprime(f,p):
Fp = Integers(p)

Fpx = Zx.change_ring(Fp)
T = Fpx.quotient(x“N-1)
return Zx(1ift(1/T(£)))

7

randomsecret ()

3 = invertmodprime(f,3)
onvolution(f,f3)
6*xx"5 + 3*%*x"4 + 3%xx"3 +

+ 3xx + 4

17

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1. return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage: N
sage: ({
sage: f
sage: f
-X"6 -
sage: g
sage: g
47*xX"6 -
37*xx"3
sage: C
—256*x "
sage: b
1

sage:

modprime (f,p) :
egers (p)
.change_ring(Fp)
quotient (x"N-1)
x(Lift (1/T(£)))

secret ()
tmodprime (f,3)
n(f,£3)

3*x"4 + 3*xx°3 +

17

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage: N =7
sage: = 256
sage: f = random
sage: f

-X"6 - x74 + x72
sage: g = 1nvert
sage: g
47*x"6 + 126*%x75
8r*x~3 — 36*%x72
sage: convolutio
—256*%x"5 — 256%*x
sage: balancedmo
1

sage:

ing (Fp)
x"N-1)
T(£)))

(£,3)

*x~3 +

17

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1. return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage: N =7

sage: = 256

sage: f = randomsecret ()
sage: f

-Xx"6 - x4 +x72+x -1
sage: g = 1nvertmodpowero
sage: g

47*x"6 + 126*%x"5 — bd*x"4
87*xx"3 — 36%x"2 - b8*x +
sage: convolution(f,g)
-256*%x"5 - 206*%x"4 + 2b6%
sage: balancedmod(_,Q)

1

sage:

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

19

sage: N =7

sage: = 256

sage: f = randomsecret()
sage: f

-X"6 - x4 +x"2+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47xx"6 + 120%x"b5 - b4*xx"4 -
87*x"3 - 36*x"2 - b8*xx + 61
sage: convolution(f,g)

-256*%x"b5 - 2b6%x74 + 2b6*xx + 257
sage: balancedmod(_,Q)

1

sage:

ortmodpowerof2(f,Q) :

t Q.is_power_of (2)

nvertmodprime (f,2)

alancedmod

= convolution
True:
M(conv(g,f),Q)

r == 1: return g

M(conv(g,2-r),Q)

. Figure out how
1odpowerof2 works.
oW many powers of 2
st r-17 Second r-17

18

sage: N =7

sage: = 256

sage: f = randomsecret ()
sage: f

-Xx"6 - x4 +x72+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47*x"6 + 126*xx"5 - bd*x"4 -
87*xx"3 - 36*xx"2 - b8*x + 61

sage: convolution(f,g)

19

-256%x"5 - 256%x"4 + 256%x + 257

sage: balancedmod(_,Q)
1

sage:

def key;

while

Gl
S
T

exXC

erof2(£f,Q):
wer_of (2)
rime(£f,2)

d

tion

’f) ,Q)

eturn g

,2-1),Q)

ut how

f2 works.
yowers of 2
econd r—17

18

19

sage: N =7

sage: = 256

sage: f = randomsecret()
sage: f

-X"6 - x4 +x"2+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47xx"6 + 120%x"b5 - b4*xx"4 -
87*x"3 - 36*x"2 - b8*xx + 61
sage: convolution(f,g)

-256*%x"b - 2b6*%x74 + 2b6*xx + 257
sage: balancedmod(_,Q)

1

sage:

def keypair():
while True:

try:

a = random

a3

inver

aj = 1nver

random
G = balanc
con
GQ = 1inver
secretkey

return G,s

except:

pass

18

19

sage: N =7

sage: = 256

sage: f = randomsecret ()
sage: f

-Xx"6 - x4 +x"2+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47xx"6 + 1206%x"0 - b4*xx"4 -
87*x"3 — 36*xx"2 - b8*xx + 61
sage: convolution(f,g)

-256*%x"b5 - 2b6*x74 + 2b6*xx + 2b7
sage: balancedmod(_,Q)

1

sage:

def keypair():
while True:
try:
a = randomweightw()
a3 = 1nvertmodprime

al = invertmodpower

randomsecret ()
G = balancedmod(3 *
convolution(
GQ = invertmodpower
secretkey = a,ad,G(
return G,secretkey
except:

pass

sage: N =7

sage: = 256

sage: f = randomsecret()
sage: f

-Xx"6 - x4 + x2 +x -1

sage: g = invertmodpowerof2(f,Q)

sage: g
4'7xx"6 + 126*xx"5 - bd*xx"4 -

87T*x"3 — 36%x"2 - 58*%x + 61

sage: convolution(f,g)

19

-256%x"5 - 256%x74 + 2b56%x + 257

sage: balancedmod(_,Q)
1

sage:

20

def keypair():
while True:

try:

a = randomweightw()
a3 = invertmodprime(a,3)

a = invertmodpowerof2(a,Q)

randomsecret ()

G = balancedmod (3 x
convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,G(

return G,secretkey

except:

pass

19

-
256

randomsecret ()

x4 + x"2 +x -1

= invertmodpowerof2(f,Q)

+ 126*%x"b5 - bd*xx"4 -

- 36*%x72 - b8*x + 61
onvolution(f,g)

b — 2b6*%x74 + 2b6*xx + 2b7
vlancedmod (_, Q)

20

def keypair():
while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret ()

G = balancedmod(3 *
convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3d,G(Q

return G,secretkey

except:

pass

sage: G
sage: G
-126%x”1
33*x"3
sage: a
sage: a
-X"6 +
sage: C
-3*xX"6 -
253*x "
sage: Db:
-3*x76 -
— 3kyx -

sage:

: def keypair(): : sage: G,secretke
while True: sage: G
secret () try: -126*x"6 — 31*x"
a = randomweightw() 33%x"3 + 73*x"2
+ x -1 a3 = invertmodprime(a,3) sage: a,a3,GQ =
modpowerof2(£f,Q) aQ = invertmodpowerof2(a,Q) sage: a
e = randomsecret () -X"6 + x”5 - x74
- B4xx"4 - G = balancedmod(3 =* sage: convolutio
- B8*x + 61 convolution(e,aR),Q) -3*x"6 + 253*x"5
n(f,g) GQ = invertmodpowerof2(G,Q) 253*%x"2 - 3%x -
“4 + 2b6*%x + 257 secretkey = a,a3,G(sage: balancedmo
d(_,Q) return G,secretkey -3%x"6 - 3*xx°5 -
except: - 3*xx - 3
pass sage:

19
f2(£,Q)
- 61
X + 257

20
def keypair():

while True:

try:
a = randomweightw()
a3 = invertmodprime(a,3)
aQ = invertmodpowerof2(a,Q)
e = randomsecret ()
G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)
secretkey = a,a3d,G(Q
return G,secretkey

except:

pass

sage: G,secretkey = keypa
sage: G

-126*%x"6 - 31*x"b - 118%*x
33*%x"3 + 73*x"2 - 16%x +
sage: a,a3,G = secretkey
sage: a

-X"6 + X0 - x4 + X3 -
sage: convolution(a,G)
-3*%x"6 + 2b3%x"5 + 2b3*x°
253*%x72 - 3*%x - 3

sage: balancedmod(_,Q)
-3*%x"6 - 3*%x"b - 3*%x"3 +
- 3*%x - 3

sage:

def keypair(): :
while True:
try:
a = randomweightw()
a3 = invertmodprime(a,3)
aQ = invertmodpowerof2(a,Q)

e = randomsecret ()
G = balancedmod (3 x
convolution(e,aQ),Q)
GQ = invertmodpowerof2(G,Q)
secretkey = a,a3,G(
return G,secretkey
except:

pass

sage: G,secretkey = keypair()
sage: G

33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a
-XxX6 + x’b - x4 +x°3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -

263*xx"2 - 3*x - 3
sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72

- 3%x - 3

sage:

21

20
pair () :

True:

= randomweightw()
3 =
) =

invertmodprime(a,3)

invertmodpowerof2(a, Q)

randomsecret ()

balancedmod (3

convolution(e,aQ),Q)
) =
acretkey = a,a3,G(

invertmodpowerof2(G,Q)

eturn G,secretkey

sage: G,secretkey = keypair()
sage: G

-126*%x"6 - 31*x"5 - 1138*x"4 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a

-Xx"6 + x’b-x"4+x"3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -
253*%x72 - 3%x - 3

sage: balancedmod(_,Q)

-3*%x"6 - 3*%x°b - 3%xx"3 + 3%x72

- 3%x - 3

sage:

21

sage: d
sage: G
sage: b
sage: d
sage: C
sage: C
120*x76
102*x~
sage

20

weightw ()
tmodprime (a, 3)
tmodpowerof2(a,Q)
secret ()

edmod (3 *
volution(e,aQ),q)
tmodpowerof2(G,Q)
= a,a3,Gq

ecretkey

sage: G,secretkey = keypair()
sage: G

33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,Gl = secretkey
sage: a
-XxX6 + x’b - x4 +x"3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -

263*xx"2 - 3*x - 3
sage: balancedmod(_,Q)

-3*%x"6 - 3*%x”b - 3*%x"3 + 3*x72

- 3%x - 3

sage:

21

sage:

: def encryp

b,d = bd
bG = con
C = bala

return C

,secretke
= random

= random

Q Q& T @

= encryp

C

120*%x"6 + 7*x"b
102*%x"3 + 86*x”

sage:

20

(a,3)
0f2(a,qQ)

e,aQ),q)
0f2(G,Q)

sage: G,secretkey = keypair()
sage: G

33*%x"3 + 73*x"2 - 16*xx + 7
sage: a,a3,G) = secretkey
sage: a
-Xx"6 + xb-x"4+x"3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -

263*xx"2 - 3*xx - 3
sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72

- 3*%x - 3

sage:

21

sage: def encrypt(bd,G):
- b,d = bd

....: bG = convolution(
....: C = balancedmod(kt
Cee return C

sage: G,secretkey = keypa

sage: b = randomweightw()

sage: d = randomsecret ()

sage: C = encrypt((b,d),G

sage: C

120*%x"6 + 7*x"b5 - 116*x74
102%x73 + 86*x72 - 74x%Xx

sage:

sage: G,secretkey = keypair()
sage: G

-126*%x"6 - 31*%x"5 - 118*x74 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a

-Xx6 + x’b - x4 +x°3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -
253%x72 - 3%xx - 3

sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72
- 3%x - 3

sage:

21

sage: def encrypt(bd,G): .
..... b,d = bd

..... bG = convolution(b,G)
..... C = balancedmod(bG+d,Q)
..... return C

sage: G,secretkey = keypair()
sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120%x76 + 7*x"b5 - 116*xx74 +
102*%x~3 + 86*xx72 - 74*x - 95

sage:

,secretkey = keypair()

5 — 31*xx"b - 118%xx"4 -
+ 73*%x"2 - 16%x + 7
,a3,G = secretkey

x"b - x4 + x°3 -1
onvolution(a,G)

+ 253*%x”"b + 2b63*%x"3 -

2 — 3*%x - 3
alancedmod (_, Q)

- 3*%x"b - 3%x"3 + 3*%x72
- 3

21

22
sage: def encrypt(bd,G):

- b,d = bd

Ce bG = convolution(b,G)
C C = balancedmod (bG+d, Q)
Cee return C

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret ()

sage: C = encrypt((b,d),G)

sage: C

120*%x7"6 + 7*x"b5 - 116*xx74 +
102%x"3 + 86*x"2 - 74*xx - 9b

sage:

NTRU c

Given ci
a(bG +
a, b, d,e
so 3be -
Assume
are betw

Then 3¢
3be + a
Reduce

Multiply
to recov

Coeffs 3
SO recov

y = keypair()

5 - 118xx"4 -
- 16%x + 7

secretkey

+ x°3 -1
n(a,G)

+ 2b3*%x73 -

3

d(_,Q)
3*%x"3 + 3*x"2

21

sage:

. G,
. b
. d
. C

C

: def encrypt(bd,G):

b,d = bd
bG = convolution(b,G)
C = balancedmod(bG+d,Q)

return C

secretkey = keypair ()
= randomweightw()
= randomsecret ()

= encrypt((b,d),G)

120%x76 + 7*x"b5 - 116*xx74 +
102*%x"3 + 86*xx"2 - 74*x - 95

sage:

22

N TRU decryption

Given ciphertext £
a(bG + d) = 3be
a, b, d, e have smz
so 3be + ad i1s nof
Assume that coef
are between —Q /-

Then 3be + ad In
3be+ ad in R =.
Reduce modulo 3:

Multiply by 1/a in
to recover d in R3
Coeffs are betweer
so recover d in R.

ir()

4 -

3%x"2

21

sage: def encrypt(bd,G):

- b,d = bd

Ce bG = convolution(b,G)
Ce C = balancedmod (bG+d, Q)
Cee return C

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret ()

sage: C = encrypt((b,d),G)

sage: C

120*%x"6 + 7*x"b - 116*xx74 +
102%x"3 + 86*x"2 - 74xx - 95

sage:

22

N TRU decryption

Given ciphertext bG + d, co
a(bG +d) =3be+ ad in R
a, b, d, e have small coeffs,

so 3be + ad i1s not very big.
Assume that coeffs of 3be -
are between —Q/2 and Q/2

Then 3be + ad in Rg revea
3be+ad in R =Z[x]/(xN -
Reduce modulo 3: ad in R3

Multiply by 1/a in R3

to recover d Iin R3.

Coeffs are between —1 and
so recover d in R.

sage: def encrypt(bd,G):

..... b,d = bd

..... bG = convolution(b,G)
..... C = balancedmod(bG+d,Q)
..... return C

sage: G,secretkey = keypair()
sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)
sage: C

120%x76 + 7*x"b5 - 116*xx74 +
102*%x"3 + 86*xx72 - 74*x - 95

sage:

22

23
N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
| coetfs,

a, b, d, e have sma
so 3be + ad is not very big.

Assume that coeffs of 3be + ad
are between —Q/2 and Q/2 — 1.

Then 3be + ad in Rp reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d in R3.

Coeffs are between —1 and 1,
so recover d in R.

ef encrypt(bd,G):

b,d = bd

bG = convolution(b,G)

C = balancedmod (bG+d, Q)

return C

,secretkey = keypair ()
= randomweightw()
= randomsecret ()

= encrypt((b,d),G)

+ 7xx"b - 116*x"4 +
3 + 86*%x"2 - T4*x - 95

22

N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

so 3be + ad Is not very big.
Assume that coeffs of 3be + ad
are between —@/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d In R3.

Coeffs are between —1 and 1,
so recover d in R.

23

sage:

t(bd,G):

volution(b,G)
ncedmod (bG+d, Q)

y = keypair ()
weightw()
secret ()

t ((b,d),G)

- 1ll6*x"4 +
2 - 74xx - 95

22 23
N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

so 3be + ad is not very big.
Assume that coeffs of 3be + ad
are between —@Q/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R = Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d in R3.

Coeffs are between —1 and 1,
so recover d in R.

sage: def decryp

Cee et M = bala
..... conv = C
..... a,ald, Gy

..... u = M(co
..... d = M(co
..... b = M(co
..... return b

sage: decrypt(C,
(x"6 - x”b - x72
x4 + x°3 + x72
sage: b,d

(x"6 - x”b - x72

x4 + x°3 + x72

b,G)
G+d, Q)

ir()

22

23
N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

so 3be + ad is not very big.
Assume that coeffs of 3be + ad
are between —@/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d In R3.

Coeffs are between —1 and 1,
so recover d in R.

sage: def decrypt(C,secre
- M = balancedmod
- conv = convolutio
Ce et a,a3,Gl = secretk
Ce u = M(conv(C,a),Q
Ce d = M(conv(u,a3),
Ce b = M(conv(C-d,GQ
C et return b,d

sage: decrypt(C,secretkey
(x"6 - xb - x"2 -x -1,
Xx"4 + x"3 + x"2 - x)
sage: b,d

(x"6 - xb - x"2 -x -1,

x4 + x°3 + x°2 - x)

N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
| coetfs,

a, b, d, e have sma
so 3be + ad is not very big.

Assume that coeffs of 3be + ad
are between —Q/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d Iin R3.

Coeffs are between —1 and 1,
so recover d in R.

23

sage: def decrypt(C,secretkey):

M = balancedmod

conv = convolution

a,a3,GQ = secretkey

... u = M(conv(C,a),Q)
C d = M(conv(u,a3),3)
..... b = M(conv(C-d,GQR),Q)

return b,d

sage: decrypt(C,secretkey)

(x"6 - xbh-x"2-x-1, x5 +
x"4 + x°3 + x72 - x)

sage: b,d

(x"6 - xb-x"2-x-1, x5 +

x4 + x°3 + x72 - x)

24

lecryption

phertext bG + d, compute
d) = 3be + ad in Ryp.
| coetfs,

"have sma
- ad Is not very big.

' that coeffs of 3be + ad
een —Q/2 and Q/2 — 1.

e + ad in Rp reveals
din R =Z[x]/(xN —1).
modulo 3: ad in R3.

by 1/3 In R3

er d In Rb.

re between —1 and 1,
er d in R.

23

sage:

sage:

(x~6
x~4

def decrypt(C,secretkey):
M = balancedmod
conv = convolution
a,a3,GQ = secretkey
M(conv(C,a),Q)
M(conv(u,a3),3)
M(conv(C-d,GQ),Q)

return b,d

u =
d =
b =

: decrypt(C,secretkey)

- X'b - x72 -

+ X3 + x72 -
b,d

- X"b - x72 -

+ X3 + x72 -

x - 1, x5 +

24

sage: N
sage: G
sage: G
44*xx"6 -
126%x~.
sage: a
sage: a
-X"6 - :
sage: C
sage: M
sage: e.
sage: e
-3*xX"6 -
+ 3*X
sage:

G + d, compute
——eufin Rz}
|l coeffs,

- very big.
fs of 3be + ad
> and Q/2 — 1.

Ro reveals
Z[x]/(xN —1).
ad In R@.

R3

1 —1 and 1,

23

sage: def decrypt(C,secretkey):
- M = balancedmod

- conv = convolution

Ce et a,a3,GQ = secretkey

C u = M(conv(C,a),Q)

C d = M(conv(u,a3),3)

Ce b = M(conv(C-d,GQ),Q)
- return b,d

sage: decrypt(C,secretkey)

(x6 - xb-x"2-x-1, x°b +
Xx"4 + x”3 + x"2 - x)

sage: b,d

(x6 - xb-x"2-x-1, xb +

x4 + x°3 + x72 - x)

24

sage: N,Q,W = 7,
sage: G,secretke
sage: G

44*xx"6 — 97*x"5
126*xx"3 - 10*x~
sage: a,a3,GQ =
sage: a

-x"6 - x5 + x73
sage: conv = con
sage: M = balanc
sage: e3 = M(con
sage: ed

-3*x"6 + 3*%x"5 +
+ 3*X

sage:

mpute

23

sage: def decrypt(C,secretkey):
- M = balancedmod

- conv = convolution

Ce e a,a3,G = secretkey

Ce u = M(conv(C,a),Q)

Ce d = M(conv(u,a3),3)

Ce b = M(conv(C-d,GQ),Q)

C et return b,d

sage: decrypt(C,secretkey)

(x6 - xbh-x"2-x-1, x5 +
Xx"4 + x"3 + x"2 - x)

sage: b,d

(x6 - xbh-x"2-x-1, x5 +

x4 + x°3 + x°2 - x)

24

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypa

sage: G

44xx"6 — 97*x"b - 62*%x"4
126*%x~3 - 10*x72 + 14x*x

sage: a,a3,G) = secretkey

sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*%x"6 + 3*x"5 + 3*x"4 -
+ 3*X

sage:

sage: def decrypt(C,secretkey):
- M = balancedmod

- conv = convolution

Ce et a,a3,GQ = secretkey

C u = M(conv(C,a),Q)

C d = M(conv(u,a3),3)

Ce b = M(conv(C-d,GQ),Q)
- return b,d

sage: decrypt(C,secretkey)

(x6 - xbh-x"2-x-1, x°b +
Xx"4 + x"3 + x"2 - x)

sage: b,d

(x6 - xbh-x"2-x-1, x°b +

x4 + x°3 + x72 - x)

24

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()
sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22
sage: a,a3,G) = secretkey
sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*x"6 + 3*%x"b + 3*x"4 - 3*x”3
+ 3*X

sage:

25

o f decrypt(C,secretkey):24 sage: N,Q,W = 7,256,5 B sage: b
M = balancedmod sage: G,secretkey = keypair() sage: d
conv = convolution sage: G sage: C
a,ad,GQ = secretkey 44xx"6 — 97*xx"b - 62*%x"4 - sage: C
u = M(conv(C,a),Q) 126%x"3 - 10*x"2 + 14*xx - 22 -120%x~
d = M(conv(u,a3),3) sage: a,a3,GQ = secretkey + 56*x
b = M(conv(C-4d,GQ),Q) sage: a sage: u
return b,d -X"6 - x5 +x3+x-1 sage: u

sage: conv = convolution 3*xx"6 -
ecrypt (C,secretkey) sage: M = balancedmod 6*x —

x"b - x"2-x -1, x°5 + sage: e3 = M(conv(a,G),Q) sage: C

x"3 + x72 - Xx) sage: e3 8*x"6 -
,d -3*%x"6 + 3*%x"b + 3*xx"4 - 3%x”3 6xx —

X" - x2-x-1, x5 + + 3*Xx sage:

Xx"3 + x72 - x) sage:

t (C,secretkey) :

ncedmod
onvolution

= secretkey
nv(C,a),Q)
nv(u,a3),3)
nv(C-d,GQ),Q)
,d

secretkey)

-x -1, x5 +

_X)

24

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*%x"2 + 14*xx - 22

sage: a,a3,G) = secretkey
sage: a

-Xx"6 - x5 +x"3+x -1
sage: conv = convolution
sage: M = balancedmod
sage: e3 = M(conv(a,G),Q)
sage: ed

-3*%x"6 + 3*%x°5 + 3*%xx"4 - 3%xx~3
+ 3*x

sage:

25

sage:
sage:
sage:

sage:

b
d
C
C

random
random

M(conv

-120*%x"6 - x5 +
+ 56%x"2 - 98%*x

sage: u = M(conv

sage:

u

8xx"6 — 2%xx°bH -

6xx — 1

sage: conv(b,e3)

3*x"6 — 2*%x"bH -

6*xx — 1

sage:

tkey) :

x"5 +

x"b5 +

24

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44xx"6 — 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22

sage: a,a3,G) = secretkey

sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*x"6 + 3*%x°b + 3*x"4 - 3*%x”3
+ 3*X

sage:

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q
sage: C

-120%x"6 - x°b + 6*%x74 -
+ B6*xx"2 - 98*%x - 71
sage: u = M(conv(a,C),Q)
sage: u

3*xX"6 - 2%x°b - T*x"4 + 4
6*x - 1

sage: conv(b,e3)+conv(a,d
3*xX"6 - 2%x"b - T*xx"4 + 4
6*x - 1

sage:

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()
sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22
sage: a,a3,G) = secretkey
sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*x"6 + 3*%x"b + 3*x"4 - 3*x”3
+ 3*X

sage:

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q)
sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ B6*xx"2 - 98*%x - 71

sage: u = M(conv(a,C),Q)

sage: u

3*X"6 - 2%x"b - T*xx"4 + 4*xx"3 -
6*x - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*x - 1

sage:

26

,Q,W = 7,256,5
,secretkey = keypair ()

- O7xx"b5 - 62%x"4 -
3 — 10xx"2 + 14%x - 22
,a3,G = secretkey

x"b + x°3 +x -1

onv = convolution

= balancedmod

3 = M(conv(a,G),Q)

3

t 3*%x°b + 3*%x74 - 3*x”3

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q)
sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ B6*xx"2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

S*X"6 - 2%x"b - T*x"4 + 4*xx"3 -
6*x - 1

sage: conv(b,e3)+conv(a,d)
3*X"6 — 2%x"b - T*xx"4 + 4*%x"3 -
6*x - 1

sage:

26

sage: #
sage: M
-X"6 +
sage: M
-X"6 +
sage: C
-3*x"b -
sage: M
x4 + x
sage: d
x4 + x
sage:

256,5
y = keypair()

- 62%x74 -
2 + 14%xx - 22

secretkey

+ x -1
volution

edmod

v(a,G),Q)

3*%x"4 - 3*%x~3

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q)
sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24*%x”3
+ B6*xx"2 - 98*%x - 71

sage: u = M(conv(a,C),Q)

sage: u

S*X"6 — 2%x"b - T*x"4 + 4*%x"3 -
6*xx - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*x - 1

sage:

26

sage: # u 1s 3be
sage: M(u,3)
-X"6 + x°5 - x74
sage: M(conv(a,d
-X"6 + x°5 - x74
sage: conv(M(u,3
-3*x"5 + x4 + x
sage: M(_,3)

x4 + x°3 - X
sage: d

x4 + x°3 - X

sage:

ir()

3*xx~3

25

sage: b
sage: d
sage: C
sage: C

-120*%x"6 - x5 + 6%x74 - 24%x"3

+ b6*xx”
sage: u
sage: u
3*xX"6 -

6*x - 1

= randomweightw()

= randomsecret ()

= M(conv(b,G)+d,Q)

2 - 98%xx - 71
= M(conv(a,C),Q)

2%x"5 = T*x"4 + 4%x°3 -

sage: conv(b,e3)+conv(a,d)

3*x"6 -
6kxx - 1

sage:

2*%x"h - T*x"4 + 4%x"3 -

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x50 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + x°3 - X
sage: M(_,3)

x4 + xX°3 - X

sage: d

x4 + X3 - X

sage:

R

sage: b = randomweightw()

sage: C = M(conv(b,G)+d,Q)

b

sage: d = randomsecret ()

C

sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ 56%x72 - 98%x - 71

sage: u = M(conv(a,C),Q)

sage: u

3*X"6 - 2%x"b - T*x"4 + 4*%x"3 -
6*xx - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*%x - 1

sage:

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage: d

x4 + x°3 - X

sage:

R

27

~

O

~

1

= randomweightw()

= randomsecret ()

= M(conv(b,G)+d,Q)
- x°5 + 6%xx"4 - 24%x"3
2 - 98xx - 71

= M(conv(a,C),Q)

2%x"5 = T*x"4 + 4%x°3 -

onv(b,e3)+conv(a,d)

1

2*%x"h - T*x"4 + 4%x"3 -

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x50 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + x°3 - X
sage: M(_,3)

x4 + xX°3 - X

sage: d

x4 + X3 - X

sage:

R

27

Does de

All coefl
All coefl

and exa

Each co
has absc
(Same a
a of any

Similar ¢
Each co
has absc

e.g. W -
Decrypti

weightw()
secret ()

(b,G)+d,Q)
6xx"4 - 24%x"3
- 71

(2,C),Q)

T*x"4 + 4%xx~3 -

+conv(a,d)

T*x"4 + 4%x~3 -

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage: d

x4 + X3 - X

sage:

R

21

Does decryption a

All coeffs of d are

All coeffs of a are
and exactly W are

Each coeff of ad i

has absolute value
(Same argument v
a of any weight, a

Similar comments
Each coeff of 3be
has absolute value

e.g. W =467 at
Decryption works

24%x”"3

:*XAB -

:*XAS -

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x50 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX°3 - X
sage: M(_,3)

x4 + xX°3 - X

sage: d

x4 + X3 - X

sage:

R

27

Does decryption always worl

All coeffs of d are in {—1,0
All coeffs of a are in {—1, 0,
and exactly W are nonzero.

Each coeff of ad iIn R

has absolute value at most |
(Same argument would worl
a of any weight, d of weigh?

Similar comments for e, b.
Each coeff of 3be 4+ ad in R
has absolute value at most -

e.g. W = 467: at most 186¢
Decryption works for Q = 4

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + xb - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage: d

x4 + x°3 - X

sage:

R

21

28
Does decryption always work?

All coeffs of d are in {—1,0,1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad iIn R

has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W.)

Similar comments for e, b.
Each coeff of 3be + ad in R
has absolute value at most 4.

e.g. W =467: at most 1868.
Decryption works for Q = 4096.

u is 3bet+ad 1in
(u,3)

x5 - x74 + x73
(conv(a,d),3)
x5 - x4 + x~3
onv(M(u,3) ,a3)

t x74 + x°3 - X
(_,3)

"3 - X

"3 - X

R

27

Does decryption always work?

All coeffs of d are in {—1,0, 1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad In R

has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W .)

Similar comments for e, b.
Each coeff of 3be + ad in R
has absolute value at most 4.

e.g. W =467: at most 1868.
Decryption works for Q = 4096.

28

What akt

Same ar
a=b=
14+ x+
3be + a

But coe
when a,

1996 N1
no-decry
but reco
with son
1998 N1
failure
It can be

+ad 1n

21

Does decryption always work?

All coeffs of d are in {—1,0,1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W.)

Similar comments for e, b.
Each coeff of 3be + ad in R
has absolute value at most 4.

e.g. W =467: at most 1868.
Decryption works for Q = 4096.

23

What about W =

Same argument d«
a=b=d=e=
14+ x+x%+ -
3be + ad has a cc

But coeffs are usu
when a, d are cho:

1996 NTRU hand
no-decryption-failt
but recommended
with some chance
1998 NTRU papel
failure “will occur
It can be ignored |

27

Does decryption always work?

All coeffs of d are in {—1,0, 1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W.
(Same argument would work for
a of any weight, d of weight W .)

Similar comments for e, b.
Each coeff of 3be 4+ ad in R
has absolute value at most 4.

e.g. W =467: at most 1868.
Decryption works for Q = 4096.

28

What about W = 467, Q =

Same argument doesn't wor
a=b=d=e=

1+ x+x24+ -+ xV-1
3be + ad has a coeff 4W >

But coeffs are usually <102.
when a, d are chosen randor

1996 N TRU handout mentic
no-decryption-failure option,
but recommended smaller ¢J
with some chance of failures
1998 NTRU paper: decrypti
failure “will occur so rarely 1
it can be ignored In practice

Does decryption always work?

All coeffs of d are in {—1,0,1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W .)

Similar comments for e, b.
Each coeff of 3be + ad in R
has absolute value at most 4.

e.g. W =467: at most 1868.
Decryption works for Q = 4096.

23

What about W = 467, QQ = 20487

Same argument doesn't work.
a=b=d=e=

14+ x+x2+---+xV-1

3be + ad has a coeff 4W > Q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 N TRU handout mentioned
no-decryption-failure option,
but recommended smaller Q
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
It can be ignored In practice”.

29

cryption always work?

sof d arein {—1,0,1}.
sof aarein {—1,0,1},
tly W are nonzero.

eff of ad Iin R

lute value at most W'
rgument would work for
weight, d of weight W.)

omments for e, b.
off of 3be +ad in R
lute value at most 4W'.

— 467: at most 1868.
on works for Q = 4096.

28

29
What about W = 467, Q) = 20487

Same argument doesn't work.
a=b=d=e=

14+ x+x2+--+xV-1

3be + ad has a coeff 4W > Q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 NTRU handout mentioned
no-decryption-failure option,
but recommended smaller Q
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
it can be ignored In practice”.

Crypto -
Nguyen-
Silverms
“The Im
decrypti
security

Decrypti
“all the
for vario
may not

Even wc
some rai
can figu

Iways work?

in {—1,0,1}
in{—1,0,1},

' NONZEroO.

n R
-at most .

vould work for
" of weight W)

for e, b.
+ad in R
-at most 4W/.

most 1868.
for Q = 4096.

23

29
What about W = 467, QQ = 20487

Same argument doesn't work.
a=b=d=e=

14+ x+x2+---+xV-1

3be + ad has a coeff 4W > Q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 N TRU handout mentioned
no-decryption-failure option,
but recommended smaller Q
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
it can be ignored In practice”.

Crypto 2003 Howsg
Nguyen—Pointche\
Silverman—Singer-
“The impact of

decryption failures
security of NTRU

Decryption failure:
“all the security p

for various NTRU
may not be valid :

Even worse: Attac
some random dect
can figure out the

V.

)96.

28

29
What about W = 467,) = 20487

Same argument doesn't work.
a=b=d=e=

14+ x+x2+---+xV-1

3be + ad has a coeff 4W > Q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 NTRU handout mentioned
no-decryption-failure option,
but recommended smaller Q
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
it can be ignored In practice’.

Crypto 2003 Howgrave-Gral
Nguyen—Pointcheval-Proos-
Silverman—Singer—Whyte
“The impact of

decryption failures on the
security of NTRU encryptiot

Decryption failures imply th.
“all the security proofs know
for various NTRU paddings
may not be valid after all”.

Even worse: Attacker who s
some random decryption fai
can figure out the secret key

What about W = 467, QQ = 20487

Same argument doesn't work.
a=b=d=e=

14+ x+x2+---+xV-1

3be + ad has a coeff 4W > Q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 N TRU handout mentioned
no-decryption-failure option,
but recommended smaller Q
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
It can be ignored In practice”.

29

Crypto 2003 Howgrave-Graham-—
Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte
“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that
“all the security proofs known . ..
for various NTRU paddings
may not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!

out W = 467, = 20487

gument doesn't work.
d=e=
d has a coeff 4W > Q/2.

fs are usually <1024
d are chosen randomly.

"RU handout mentioned
ption-failure option,
mmended smaller Q

ne chance of failures.
"RU paper: decryption
will occur so rarely that
> Ignored In practice’”.

29

Crypto 2003 Howgrave-Graham-—
Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte

“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that

“all the security proofs known . ..

for various NTRU paddings
may not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!

Coeff of
aodn—1

This coe
dp, dl, - -
high cor
dn-—1, d

Some cc
ao, a1, . -
correlati
of dN—l

l.e. a IS
x' rev(d
rev(d) =

467, Q = 20487

yesn't work.

—XW_li
eff 4W > Q/Q

ally <1024
sen randomly.

but mentioned
Ire option,
smaller Q

of failures.

. decryption
so rarely that
n practice”.

29

Crypto 2003 Howgrave-Graham-—
Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte

“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that

“all the security proofs known . ..

for various NTRU paddings
may not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!

Coeff of xN—1 in .
apodn -1+ ardy—2

This coeff is large

., dN—-1 h
high correlation w

dpo, dl, - -

d/\/_l, d/\/_z, ooy @

Some coeff is larg

., dN—-1 h
correlation with sc

ap, a1, - -

of dN—11 d/\/_z, Ca

1.e. a Is correlated
x' rev(d) for some

rev(d) = dy+dix”

20487

Q/2.

nly.

ned

on
hat

29

Crypto 2003 Howgrave-Graham-—
Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte

“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that

“all the security proofs known . ..

for various NTRU paddings
may not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!

30

Coeff of xN=1 in ad is
apdn_1+ a1dy_o + - -+ a

This coeff is large <
ap, a1,...,ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <
apg, a1, ..., an_1 has high
correlation with some rotati

of d/\/_l, d/\/_z, Cee do.

l.e. a Is correlated with
x! rev(d) for some i, where
rev(d) = do+dixV 144

Crypto 2003 Howgrave-Graham-—
Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte

“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that

“all the security proofs known . ..

for various NTRU paddings
may not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!

30

31
Coeff of xN=1 in ad is

aody_1 +aidy_o+ -+ an_1do.

This coeff is large <
ap, a1, ..., ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <

ap, a1, ..., an_1 has high
correlation with some rotation
of dN—11 d/\/_z, C e do.

l.e. a Is correlated with
x! rev(d) for some i, where
rev(d) = dp+dixV 14+ +dy_1x.

003 Howgrave-Graham-—
-Pointcheval-Proos—
n—Singer—\Whyte

pact of

on failures on the

of NTRU encryption”:

on failures imply that

security proofs known . ..

us NTRU paddings
be valid after all”.

rse: Attacker who sees
rdom decryption failures
re out the secret key!

30

31
Coeff of xN=1 in ad is

aody_1+ ar1dy_o+ -+ any_1do.

This coeff is large <
ap, a1,...,ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <
apg, a1, ..., an_1 has high
correlation with some rotation

of d/\/_l, d/\/_z, Ce e do.

l.e. a Is correlated with
x! rev(d) for some i, where
rev(d) = do+dixVN 14 +dy_1x.

Reasona
random
a correlz
rev(a) c
arev(a)

Experim
Average
over son
Is close -
Round t

Eurocryj
algorithr

rrave-Graham-—

ral—Proos—
Whyte

on the
encryption’ :

s Imply that

-oofs known . ..

paddings
fter all” .

ker who sees
yption failures
secret key!

30

31
Coeff of xN=1 in ad is

aody_1 +aidy_o+ -+ an_1do.

This coeff is large <
ap, a1,...,ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <

ap, a1, ..., an_1 has high
correlation with some rotation
of dN—11 d/\/_z, C e do.

l.e. a Is correlated with
x! rev(d) for some i, where
rev(d) = dp+dixVN 14+ +dy_1x.

Reasonable guesse
random decryptior
a correlated with ¢
rev(a) correlated \
arev(a) correlated

Experimentally col
Average of drev(c
over some decrypt
is close to arev(a)
Round to integers

Eurocrypt 2002 G
algorithm then fin

1d M —

at

/n ...

ees
lures

30

31
Coeff of xN=1 in ad is

aody_1+ar1dy_o+ -+ any_1do.

This coeff is large <
ap, a1,...,anN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <

ap, a1, ..., an_1 has high
correlation with some rotation
of d/\/_l, d/\/_z, C e do.

l.e. a Is correlated with
x! rev(d) for some i, where
rev(d) = do+dixVN 14 +dy_1x.

Reasonable guesses given a
random decryption failure:
a correlated with some x' re
rev(a) correlated with x~'d.
arev(a) correlated with dre

Experimentally confirmed:
Average of drev(d)

over some decryption failure
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—Szy«
algorithm then finds a.

Coeff of xN=1 in ad is

aody_1 +airdy_o+ -+ an_1do.

This coeff is large <
ap, a1, ..., ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <
ap, a1, ..., an_1 has high
correlation with some rotation

of dN—11 d/\/_z, Cee do.

l.e. a is correlated with
x' rev(d) for some i, where

31

rev(d) = do+dixVN 14+ +dy_1x.

Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x™'d.

arev(a) correlated with drev(d).

Experimentally confirmed:
Average of drev(d)

over some decryption failures
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds a.

32

xN=1in ad is

+ai1dy_o+---+any_1do.

ff Is large <
., apn_1 has
relation with

Vo do.

eff is large <
., an_1 has high
on with some rotation

dy_o, ..., do.

correlated with
) for some i, where

- do+dixN I dy g x

31

Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x™'d.

arev(a) correlated with drev(d).

Experimentally confirmed:
Average of drev(d)

over some decryption failures
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds a.

32

1999 Ha
2000 Ja
Hoffsteir
Fluhrer,

using 1n

Attacker
d+1, a
d+2 a
d+ 3, e

This che
T—a, I-X¢
::23, y

+3a, et

d IS
+ -+ ay_1dp.

as
ith

b.
SR
as high

yme rotation
. dp.

with
I, where
V—1
+ - Fdy_1x.

31

Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x™'d.

arev(a) correlated with drev(d).

Experimentally confirmed:
Average of drev(d)

over some decryption failures
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds a.

32

1999 Hall-Goldbel
2000 Jaulmes—Jou
Hoffstein—=Silverm:

Fluhrer, etc.: Evel
using invalid mess

Attacker changes

d::l,d::X, C ey
d::2, d::2X,
d + 3, etc.

This changes 3be

1T—d, = Xa, ..., X

::23, ::2X3, c ey Z

+3a, etc.

v—1d0.

on

31

-d/\/_lx.

Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x~'d.

arev(a) correlated with drev(d).

Experimentally confirmed:
Average of drev(d)

over some decryption failures
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—-Szydlo
algorithm then finds a.

32

1999 Hal

2000 Jau

—Goldberg—Schneie
mes—Joux, 2000

Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier at

using invalid messages.

Attacker changes d to
d+1 d=+x, ..., d::XN_]
d::2, d::2X, C ey d::2X/\

d + 3, etc.

This changes 3be + ad: adc
T—a, rXa, ... ::XN_la;
+2a, +2xa, ..., ::2XN_13;
+3a, etc.

Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x™'d.

arev(a) correlated with drev(d).

Experimentally confirmed:
Average of drev(d)

over some decryption failures
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds a.

32

1999 Hal

2000 J

Fluhrer, etc.: Even easier attacks

—Goldberg—Schneier,

aulmes—Joux, 2000
Hoffstein—Silverman, 2016

using invalid messages.

Attacker changes d to
d X,”.,d::XN_%
d+2x, ..., d::2XN_1;

d—+1,
d+ 2
d + 3,

etc.

This changes 3be + ad: adds

T—d, Xa, ...

::23,:

:2X3,...

+34a, etc.

, X

N—la;

:ZXN_la;

33

ble guesses given a
decryption failure:

ted with some x' rev(d).

orrelated with x~'d.

correlated with drev(d).

entally confirmed:

of drev(d)

1e decryption failures
to arev(a).

o integers: arev(a).

ot 2002 Gentry—Szydlo
n then finds a.

32

1999 Hal
2000 Jau
Hoffstein—Silverman, 2016

Fluhrer, etc.: Even easier attacks

-3a, etc.

—Goldberg—Schneier,
mes—Joux, 2000

using invalid messages.

Attacker changes d to

d+1 d+x, ..., d::XN_l;
d+2, d=+2x,...,d 2XN_1;
d + 3, etc.

This changes 3be + ad: adds
—a, TXa, ... ::XN_la;

-2a, t2xa, ..., ::2XN_13;

33

e.g. 3be
all other
and a =

Then 3¢t
-+ (3
Decrypti

Search f

Does 3b
Yes if x

l.e. If a

Try kx?
See patt

S given a
1 failure:

some x' rev(d).

vith x~'d.

with d rev(d).

nfirmed:

/)
ion failures

arev(a).

antry—Szydlo
ds a.

32

1999 Hal
2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d+1 d+x, ..., d::XN_l;
d+2 d=+2x, ..., d::2XN_1;
d + 3, etc.

This changes 3be 4+ ad: adds
T—a, T—Xa, ... ::XN_la;

+2a, +2xa, ..., ::2XN_13;

+34a, etc.

33

e.g. 3be+ad = --
all other coeffs in
and a = - - - + x*"

Then 3be + ad +
-+ (390 + k)x*
Decryption fails fc

Search for smalles

Does 3be + ad +
Yes if xa=---+
le., ifa=---+x

Try kx?, kx3, etc.
See pattern of a c

1lo

32

1999 Hal
2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d+1 d+x, ..., d::XN_l;
d+2, d=+2x, ..., d::2XN_1;
d + 3, etc.

This changes 3be + ad: adds
T—a, rXa, ... ::XN_la;

+2a, +2xa, ..., ::2XN_13;

+3a, etc.

33

e.g. 3be+ad = - -+390x*
all other coeffs in [—389, 38

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that f:

Does 3be + ad + kxa also f
Yes if xa—=---4+ x*8 4 ...
i.e., ifa:---—|—x477_|_..._

Try kx2, kx3, etc.
See pattern of a coeffs.

1999 Hal
2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d

d

d

1, d-

:X,...,d::

2, d -

:2X,...,d:

XN_l;

B 2XN—1.

3, etc.

This changes 3be 4+ ad: adds

1Td,
::23, -

T—Xa, ...

:XN_la

-2xa, ..., ::2XN_13;
+3a, etc.

33

34
e.g. 3betad = ---+390x48+. ..

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa = --- 4+ x478
e fa=- .-+ x4 1+ ...

Try kx2, kx3, etc.
See pattern of a coeffs.

|l-Goldberg—Schneier,

Jlmes—Joux, 2000
1-Silverman, 2016
etc.: Even easier attacks

/alid messages.

- changes d to

'+ x, ..., d::XN_l;
'+ 2x, ..., d::2XN_1;
{C.

nges 3be + ad: adds
3, ..., ::XN_la;

'Xa, ..., ::2XN_13;

33

e.g. 3be+ad = -+390x48 ...

all other coeffs in [—389, 389];

and a=---+ x*% ..

Then 3be + ad + ka =
-+ (390 + k)x*78 .

Decryption fails for big k.

Search for smallest k that fails.

so fail?

Does 3be + ad + kxa a
Yes if xa = --- 4 x*8 _
e ifa= . - +x%" 4+

Try kx2, kx3, etc.
See pattern of a coeffs.

34

Brute-fo

Attacket
G = 3e/
Can att:

Search (
If d = C

(Can thi
secrets ¢

also stoy

Or searc
If e = af
to decry
attack f

-g—Schneier,

x, 2000

n, 2016

1 easler attacks
ages.

d to
d =+ XN_l'
d =+ 2XN_1;

33

e.g. 3be+ad = - -+390x48 ...

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa=---+x*8 ...
i.e., ifa:---+x477+..._

Try kx2, kx3, etc.
See pattern of a coeffs.

34

Brute-force search

Attacker Is given
G = 3e/a, ciphert
Can attacker find

Search (%)QW chi
It d = C — bG is ¢

(Can this find two
secrets d? Unlikel
also stop legitimat

Or search through
If e =aG/3 is sm:
to decrypt. Advar
attack for many c

T,

tacks

Is

33

e.g. 3be+ad = -+390x48 4. ..

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa—=---4+ x*8 4 ...
i.e., ifa:---—|—x477_|_..._

Try kx2, kx3, etc.
See pattern of a coeffs.

34

Brute-force search

Attacker is given public key
G = 3e/a, ciphertext C = b
Can attacker find b?

Search (VA&) oW choices of b.
If d = C — bG is small: don

(Can this find two different
secrets d? Unlikely. This wc
also stop legitimate decrypti

Or search through choices o
If e = aG/3 is small, use (a,
to decrypt. Advantage: can
attack for many ciphertexts.

e.g. 3be+ad = ---+390x*8 4. ..

all other coeffs in [—389, 389];

and a=---+ x*% 1 ..

Then 3be + ad + ka =
-+ (390 + k)x*78 .

Decryption fails for big k.

Search for smallest k th

Does 3be + ad + kxa a

at fails.

so fail?

Yes if xa = --- 4+ x*8 _
e ifa= .- - +x%" 4+

Try kx2, kx3, etc.
See pattern of a coeffs.

34

Brute-force search

Attacker is given public key

G = 3e/a, ciphertext C = bG + d.

Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.

If e = aG/3 is small, use (a, e)

to decrypt. Advantage: can reuse
attack for many ciphertexts.

35

tad = ---+390x*8 4. . .

“coeffs in [—389, 389];

e+ ad + ka =
)0 + k)x*8 ...
on fails for big k.

or smallest k that fails.

e + ad + kxa also fail?

AT

| kx3, etc.
ern of a coeffs.

Brute-force search

Attacker is given public key

G = 3e/a, ciphertext C = bG +d.

Can attacker find b?

Search (VA&) oW choices of b.
If d = C — bG is small: done!

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.

If e = aG/3 is small, use (a, e)

to decrypt. Advantage: can reuse
attack for many ciphertexts.

35

Equivale

Secret k
secret ke
secret ke

Search ¢

N = 701

N = 70]

Exercise

+390x478

[—389, 389);

N

ka =
78_|__

r big k.

t k th

kxa a

at fails.

so fail?

X478 _
Ar(1+

oeffs.

34

35
Brute-force search

Attacker is given public key
G = 3e/a, ciphertext C = bG + d.
Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.

If e = aG/3 is small, use (a, e)

to decrypt. Advantage: can reuse
attack for many ciphertexts.

Equivalent keys

Secret key (a, €) i
secret key (xa, xe
secret key (x2a, x°

Search only &~ (\/A\;)

N =701, W = 46
N

(w)?2

N =701 W = 20

(

(W)

Exercise: Find mo

1ls.

ail?

34

35
Brute-force search

Attacker is given public key
G = 3e/a, ciphertext C = bG +d.
Can attacker find b?

Search (VA&) oW choices of b.
If d = C — bG is small: done!

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.

If e = aG/3 is small, use (a, e)

to decrypt. Advantage: can reuse
attack for many ciphertexts.

Equivalent keys

Secret key (a, e) is equivaler

secret key (xa, xe),

secret key (x°a, x°e), etc.

Search only %(%)2W/N ch
N =701, W = 467
() ~2
()2 /N = 2!
N =701, W = 200:
(W)~
(w)2Y /N ~ 2

Exercise: Find more equival

Brute-force search

Attacker is given public key

G = 3e/a, ciphertext C = bG + d.

Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different

35

Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(VA\;)ZW/N choices.

N =701, W =467

36

(V/\é) 2W ~ 21106.09;
(\/A\;)QW/N ~ 21096.64

N =701, W = 200:
(V/\DQW ~ 2799.76;

(x)QW/N ~ 2790.31

secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.
If e = aG/3 is small, use (a, e)
to decrypt. Advantage: can reuse

| Exercise: Find more equivalences!
attack for many ciphertexts.

rce search

~1s given public key

a, ciphertext C = bG + d.

\cker find b?

VA&) oW choices of b.
" — bG i1s small: donel!

s find two different
1?7 Unlikely. This would

) legitimate decryption.)

h through choices of a.

G /3 is small, use (a, e)
pt. Advantage: can reuse
Or many ciphertexts.

35
Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(%)2W/N choices.

N =701 W = 467:
(‘%V/)zW ~ 21106.09;
(V/\DQW/N ~ 21096.64

N =701, W = 200:
(V/\DQW ~ 2799.76;

(VA\;)ZW/N ~ 2790.31

Exercise: Find more equivalences!

36

Collision

Write a
a1 = bo
ar = rer

e=(G/
so e — (
Eliminat
H(—(G/
H(f) =

Enumer:

Enumer:
Search f

Only ab
~0555.52

yublic key

ext C = bG +d.

b?

vices of b.
mall: donel

different
y. This would
e decryption.)

choices of a.
all, use (a, €)
tage: can reuse
phertexts.

35

Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(VA\;)ZW/N choices.

N =701 W = 467:
(V/\é)2W ~ 21106.09;

(V/\J) 2W/N ~ 21096.64

N = 701, W = 200:
(%)2‘/‘/ ~ 2799.76;

(x)QW/N ~ 2790.31

Exercise: Find more equivalences!

36

Collision attacks

Write a as a1 + a;
a1 = bottom [N/
d) = remaining te

e =(G/3)a= (G,
so e —(G/3)ar =
Eliminate e: almo
H(—(G/3)az) = F
H(f) = ([fo <0],.

Enumerate all H(-

Enumerate all H((
Search for collisior

Only about 3V/2
A299292 for N =

35

uld
on.)

f a.

reusSe

Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(%)2W/N choices.

N =701, W = 467:

(‘%V/)zW ~ 21106.09;
(V/\DQW/N ~ 21096.64

N =701, W = 200:

N
W

(VA\;)ZW/N ~ 2790.31

Exercise: Find more equivalences!

(NYoW s 279976,

36

Collision attacks

Write a as a; + a» where
a1 = bottom | N/2| terms o
a> = remaining terms of a.

e =(G/3)a=(G/3)a1 + (G
so e — (G/3)ax = (G/3)ay.

Eliminate e: almost certainl
H(—(G/3)az2) = H((G/3)a
H(f) = ([fo <O0],..., (k-1

Enumerate all H(—(G/3)as’
Enumerate all H((G/3)ay).
Search for collisions.

Only about 3N/2 gperations
~229992 for N = 701.

Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(VA\;)ZW/N choices.

N =701, W =467

(V/\é) 2W ~ 21106.09;

(V/\J) 2W/N ~ 21096.64

N =701, W = 200:

N
W

(x)QW/N ~ 2790.31

Exercise: Find more equivalences!

(NYoW s 279976,

36

37
Collision attacks

Write a as a; + a» where
a; = bottom [N/2] terms of a,
a> = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ay
so e —(G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] [fk—l < O])

Enumerate all H(—(G/3)a»).
Enumerate all H((G/3)a1).
Search for collisions.

Only about 3N/2 gperations:
~229992 for N = 701.

nt keys

ey (a, e) is equivalent to

2y (xa, xe),

y (x%a, x°e), etc.

nly ~(V/\|§) 2W' /N choices.

W =467:

(‘%V/)zW ~ 21106.09;
(V/\DQW/N ~ 21096.64

, W =200:

N
W

(VA\;)ZW/N ~ 2790.31

. Find more equivalences!

(NYoW s 279976,

36

Collision attacks

Write a as a; + a» where
a1 = bottom [N/2] terms of a,
a» = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ay

so e — (G/3)ax = (G/3)ay.
Eliminate e: almost certainly

H(—(G/3)az) = H((G/3)a1) for

H(f) — ([fo < O] [fk—l < 0])

Enumerate all H(—(G/3)ap).
H((G/3)a1).

Search for collisions.

Enumerate a

Only about 3N/2 gperations:
~229992 for N = 701.

37

Lattice \

Given pt
Comput

acRis

5 equivalent to

I

e), etc.
2W /N choices.

[

\oW ~, 51106.09.
/)27 = 2 ,
W /N ~ 2109664

0:

N
/N

W /N ~ 279031

re equivalences!

W ~ »799.76.
)W ~ 279976,

36

Collision attacks

Write a as a; + a» where
a1 = bottom [N/2] terms of a,
a> = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ay

so e —(G/3)ax = (G/3)ay.
Eliminate e: almost certainly

H(—(G/3)az) = H((G/3)a1) for

H(f) = ([fo < O] [fk—l < O])

Enumerate a
Enumerate a

H(—(G/3)a2).
H((G/3)a1).

Search for collisions.

Only about 3N/2 gperations:
~229992 for N = 701.

37

Lattice view of N1

Given public key (
Compute H=G/.

a € R is obtained

1 x,..., xN—1

by a few additions

aH € R is obtair

by a few additions

e € R i1s obtained

by a few additions

1t to

)ICES.

1106.09.
096.64

2799.76.
2790.31.

snces!

36

Collision attacks

Write a as a; + a» where
a1 = bottom [N/2] terms of a,
a» = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ap

so e — (G/3)ax = (G/3)ay.
Eliminate e: almost certainly

H(—(G/3)az) = H((G/3)a1) for

H(f) — ([fo < O] [fk—l < 0])

Enumerate all H(—(G/3)ap).
H((G/3)a1).

Search for collisions.

Enumerate a

Only about 3N/2 gperations:
~229992 for N = 701.

37

Lattice view of NTRU

Given public key G = 3e/a.
Compute H=G/3 =¢/air
a € R is obtained from

1 x,..., xN—1

by a few additions, subtract

aH € R i1s obtained from
H xH, ... xN=1H
by a few additions, subtract

e € R is obtained from

by a few additions, subtract

Collision attacks

Write a as a; + a» where
a; = bottom [N/2] terms of a,
a> = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ap
so e —(G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] [fk—l < O])

H(—(G/3)a2).
H((G/3)a1).
Search for collisions.

Enumerate a

Enumerate a

Only about 3N/2 gperations:
~229992 for N = 701.

37

38
Lattice view of NTRU

Given public key G = 3e/a.
Compute H=G/3 =¢e/ain Rp.
a € R is obtained from

1 x,..., xN—1

by a few additions, subtractions.

aH € R 1s obtained from
H xH, ..., xN=1H
by a few additions, subtractions.

e € R is obtained from

by a few additions, subtractions.

_attacks

as a; + a» where
ttom | N/2| terms of a,
naining terms of a.

3)a=(G/3)a; + (G/3)ay

G/3)ap = (G/3)ay.

e e: almost certainly
3)as) = H((G/3)ay) for

ite all H(—(G/3)ay).
H((G/3)a1).

or collisions.

1te a

sut 3N/2 operations:
for N = 701.

37

Lattice view of NTRU

Given public key G = 3e/a.

Compute H=G/3 =e¢e/ain Rp.

a € R is obtained from
1 x,..., xN—1

by a few additions, subtractions.

aH € R i1s obtained from
H xH, ... xN=1H
by a few additions, subtractions.

e € R is obtained from

by a few additions, subtractions.

38

gvvhere
)| terms of a,
rms of a.

3)a; + (G/3)ar
(G/3)a1.

st certainly
1((G/3)ay) for
S [fk—l < O])

-(G/3)a2).
G/3)a1).
1S.
perations:

701.

37

Lattice view of NTRU

Given public key G = 3e/a.

Compute H=G/3 =¢e/ain Rp.

a € R is obtained from
1 x,..., xN—1

by a few additions, subtractions.

aH € R 1s obtained from
H xH, ..., xN=1H
by a few additions, subtractions.

e € R is obtained from

by a few additions, subtractions.

38

(e, a) € R? is obtz
(Q,0),
(Qx,0),

kClXAL_l,O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions

Write H as
Ho + Hix+ -+

37

Lattice view of NTRU

Given public key G = 3e/a.

Compute H=G/3 =e¢e/ain Rp.

a € R is obtained from
1 x,..., xN—1

by a few additions, subtractions.

aH € R i1s obtained from
H xH, ... xN=1H
by a few additions, subtractions.

e € R is obtained from

by a few additions, subtractions.

38

(e, a) € R? is obtained from
(Q,0),
(Qx,0),

.(QXN—I, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtract

Write H as
Ho + Hix + -+ Hy_1xN-

Lattice view of NTRU

Given public key G = 3e/a.

Compute H=G/3 =¢e/ain Rp.

a € R is obtained from
1 x,..., xN—1

by a few additions, subtractions.

aH € R 1s obtained from
H xH, ..., xN=1H
by a few additions, subtractions.

e € R is obtained from

by a few additions, subtractions.

38

(e, a) € R? is obtained from
(@, 0),
(Rx,0),

.(QXN_l, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtractions.

Write H as
Hyo + Hix + -+ Hy_1xN—1.

39

siew of NTRU

iblic key G = 3¢/ a.

e H=G/3 =¢e/ain Ryp.

obtained from
XN—l

additions, subtractions.

) Is obtained from
. ,XN_lH
additions, subtractions.

obtained from

additions, subtractions.

38

39
(e, a) € R? is obtained from

(Q,0),
(Qx, 0),

.(QXN—I, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtractions.

Write H as
Ho + Hix+ -+ Hy_1xN—1.

(ep, €1, .
IS obtair
(Q,0,..
(0,Q, ..

(0,0, ...
(Ho, H1,

(Hn-1,

(Hy1, Ha,
by a few

R

; = 3e/a.

3 = e/a N RQ.

from

. subtractions.

ied from
!

. subtractions.

from
XN_l,

!

. subtractions.

38

(e, a) € R? is obtained from
(@, 0),
(Rx,0),

.(QXN_l, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtractions.

Write H as
Hyo + Hix + -+ Hy_1xN—1.

39

(eg, €1, ..., en_1
Is obtained from
(Q,0,...,0,0,0,.
(0,Q,...,0,0,0,.
(0,0,..., Q,0,0,.
(Ho, H1, ..., Hp

by a few additions

 Rp.

onSs.

onSs.

onSs.

38

39
(e, a) € R? is obtained from

(Q,0),
(@x, 0),

.(QXN—I, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtractions.

Write H as
Ho + Hix+ -+ Hy_1xN—1.

IS obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtract

(e, a) € R? is obtained from
(@, 0),
(Rx,0),

.(QXN_l, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtractions.

Write H as
Hyo + Hix + -+ Hy_xN—1.

39

Is obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

R? is obtained from

,XN—l)

additions, subtractions.

as
X4+ Hy_1xN—1

39

IS obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

(ep, €1, .
IS @ Surg
In lattice

(@Q.0,..

Attacker
In this |z

Many s
set up |z
if e is ckh

Exercise
(d, b) ac
e a latti
e a shor

ined from

. subtractions.

H/\/_1X

N—-1

39

Is obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

IS a surprisingly sh
in lattice generate
(Q,0,...,0,0,0,.

Attacker searches
In this lattice usin

Many speedups. e
set up lattice to c
if e is chosen 10X

Exercise: Describe
(d, b) as a probler
e a lattice vector |
e a short vector In

onSs.

39

IS obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

Is a surprisingly short vector

in lattice generated by
(Q,0,...,0,0,0,...,0) etc.

Attacker searches for short \
in this lattice using (e.g.) Bl

Many speedups. e.g. rescalir
set up lattice to contain (e,
if e is chosen 10x larger th:

Exercise: Describe search fo
(d, b) as a problem of findir
e a lattice vector near a poi
e a short vector in a lattice.

Is obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

IS a surprisingly short vector
in lattice generated by

(Q,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:
set up lattice to contain (e, 10a)
if e is chosen 10x larger than a.

Exercise: Describe search for

(d, b) as a problem of finding
e a lattice vector near a point;
e a short vector In a lattice.

