McTiny: Encoding and decoding

McEliece for tiny network servers 1978 McEliece public key:

Daniel J. Bernstein, matrix G over F».

uic.edu, rub.de Normally m — mG is injective.

Tanja Lange, tue.nl

Fundamental literature:

1962 Prange (attack)

-+ many more attack papers.
1968 Berlekamp (decoder).
1970-1971 Goppa (codes).
1978 McEliece (cryptosystem).
1986 Niederreiter (compression)
+ many more optimizations.

McTiny: Encoding and decoding

McEliece for tiny network servers 1978 McEliece public key:

Daniel J. Bernstein, matrix G over F».
uic.edu, rub.de Normally m — mG is injective.
Tanja Lange, tue.nl Ciphertext: vector C = mG + e.

Uses secret codeword mG,

. welight-w error vector e.
Fundamental literature: S

1962 Prange (attack)

-+ many more attack papers.
1968 Berlekamp (decoder).
1970-1971 Goppa (codes).
1978 McEliece (cryptosystem).
1986 Niederreiter (compression)
+ many more optimizations.

McTiny: Encoding and decoding

McEliece for tiny network servers 1978 McEliece public key:

Daniel J. Bernstein, matrix G over F».
uic.edu, rub.de Normally m — mG is injective.
Tanja Lange, tue.nl Ciphertext: vector C = mG + e.

Uses secret codeword mG,

. welight-w error vector e.
Fundamental literature: S

1962 Prange (attack) 1978 parameters for 294 security

-+ many more attack papers. goal: 512 x 1024 matrix, w = 50.
1968 Berlekamp (decoder).

1970-1971 Goppa (codes).
1978 McEliece (cryptosystem).
1986 Niederreiter (compression)
+ many more optimizations.

McTiny:
McEliece for tiny network servers

Daniel J. Bernstein,

ulc.edu, rub.de

Tanja Lange, tue.nl

Encoding and decoding

Fundamental literature:

1962 Prange (attack)

-+ many more attack papers.
1968 Berlekamp (decoder).
1970-1971 Goppa (codes).
1978 McEliece (cryptosystem).
1986 Niederreiter (compression)
+ many more optimizations.

1978 McEliece public key:
matrix G over F».
Normally m +— mG is injective.

Ciphertext: vector C = mG + e.
Uses secret codeword mG,
weight-w error vector e.

1978 parameters for 2% security

goal: 512 x 1024 matrix, w = 50.

Public key 1s secretly generated
with binary Goppa code structure
that allows efficient decoding:

C — mG, e.

= for tiny network servers

. Bernstein,

1, Tub.de

inge, tue.nl

Encoding and decoding

ental literature:

ange (attack)

more attack papers.
rlekamp (decoder).

71 Goppa (codes).
-Eliece (cryptosystem).
2derreiter (compression)
more optimizations.

1978 McEliece public key:
matrix G over F».
Normally m +— mG is injective.

Ciphertext: vector C = mG + e.
Uses secret codeword mG,
weight-w error vector e.

1978 parameters for 2% security

goal: 512 x 1024 matrix, w = 50.

Public key Is secretly generated
with binary Goppa code structure
that allows efficient decoding:

C — mG,e.

Binary (

Paramet
w € {2,
ne{wl

network servers

1,

.nl

Encoding and decoding

ture:

ck)

ick papers.

decoder).
(codes).

yptosystem).
(compression)

'mizations.

1978 McEliece public key:
matrix G over F».
Normally m +— mG is injective.

Ciphertext: vector C = mG + e.
Uses secret codeword mG,
weight-w error vector e.

1978 parameters for 2°4 security
goal: 512 x 1024 matrix, w = 50.

Public key 1s secretly generated
with binary Goppa code structure
that allows efficient decoding:

C — mG, e.

Binary Goppa cod

Parameters: g € {

we{2,3,...,|(q
nec{wlgg+1,..

rvers

Encoding and decoding

ion)

1978 McEliece public key:

matrix G over F».
Normally m +— mG is injective.

Ciphertext: vector C = mG + e.
Uses secret codeword mG,
weight-w error vector e.

1978 parameters for 2% security

goal: 512 x 1024 matrix, w = 50.

Public key Is secretly generated
with binary Goppa code structure
that allows efficient decoding:

C — mG,e.

Binary Goppa codes

Parameters: g € {8, 16, 32,

wei2,3,....1(g—1)/lgg
nec{wlgg+1,...,9—1,c

Encoding and decoding Binary Goppa codes

1978 McEliece public key: Parameters: g € {8,16,32,...};
matrix G over F». w e {2,3,..., (g—1)/lgql};
Normally m — mG is injective. ne{wlgg+1,..., qg—1,q}.

Ciphertext: vector C = mG + e.
Uses secret codeword mG,
weight-w error vector e.

1978 parameters for 2% security

goal: 512 x 1024 matrix, w = 50.

Public key 1s secretly generated
with binary Goppa code structure
that allows efficient decoding:

C — mG,e.

Encoding and decoding

1978 McEliece public key:
matrix G over F».
Normally m +— mG is injective.

Ciphertext: vector C = mG + e.
Uses secret codeword mG,
weight-w error vector e.

1978 parameters for 2% security

goal: 512 x 1024 matrix, w = 50.

Public key 1s secretly generated
with binary Goppa code structure
that allows efficient decoding:

C — mG,e.

Binary Goppa codes

Parameters: g € {8,16,32,...};

wedi2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct aq,...,ap € Fg;
monic irreducible degree-w

polynomial g € Fg[x].

Encoding and decoding Binary Goppa codes

1978 McEliece public key: Parameters: g € {8,16,32,...};
matrix G over F». we{2,3,...,][(g—1)/1gql|};
Normally m — mG is injective. ne{wlgg+1,...,9—1,q}.
Ciphertext: vector C = mG + e. Secrets: distinct aq,...,ap € Fg;
Uses secret codeword mG, monic irreducible degree-w
weight-w error vector e. polynomial g € Fg[x].

1978 parameters for 2% security Goppa code: kernel of

goal: 512 x 1024 matrix, w = 50. the map v — > . v;/(x — a;)
from FJ to Fy[x]|/g.

Public key Is secretly generated | |
Normally dimension n — wlggqg.

with binary Goppa code structure
that allows efficient decoding:
C — mG, e.

Encoding and decoding

1978 McEliece public key:

matrix G over F».
Normally m +— mG is injective.

Ciphertext: vector C = mG + e.
Uses secret codeword mG,

weight-w error vector e.

264

1978 parameters for security

goal: 512 x 1024 matrix, w = 50.

Public key 1s secretly generated
with binary Goppa code structure
that allows efficient decoding:

C — mG,e.

Binary Goppa codes

Parameters: g € {8,16,32,...};

wedi2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct aq,...,ap € Fg;
monic irreducible degree-w
polynomial g € Fg[x].

Goppa code: kernel of

the map v — > . v;/(x — a;)
from FJ to Fy[x]|/g.

Normally dimension n — wlgq.

McEliece uses random G & Féxn

whose image Is this code.

o and decoding

“Eliece public key:
, over Fo.
y m— mG is injective.

xt: vector C = mG + e.
ret codeword mG,
V error vector e.

rameters for 2% security

2 x 1024 matrix, w = 50.

ey Is secretly generated
ary Goppa code structure
ws efficient decoding:

;, €.

Binary Goppa codes

Parameters: g € {8,16,32,...};

wei2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct aq, ..., € Fg;
monic irreducible degree-w
polynomial g € Fg[x].

Goppa code: kernel of

the map v — > . v;/(x — a;)
from FJ to Fy[x]|/g.

Normally dimension n — wlgq.

McEliece uses random G & Féxn

whose image Is this code.

One-way

Fundam
Can attz:
random

key G at

oding

olic key:

7 IS Injective.

C =mG + e.
ord mG,
“tor e.

or 204 secu rity

matrix, w = 5b0.

tly generated
- code structure
't decoding:

Binary Goppa codes

Parameters: g € {8,16,32,...};

wedi2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct aq,...,ap € Fg;
monic irreducible degree-w

polynomial g € Fg[x].

Goppa code: kernel of

the map v —) . v;/(x — a;)
from FJ to Fy[x]|/g.

Normally dimension n — wlgq.

McEliece uses random G & Féxn

whose image Is this code.

One-wayness (“O\

Fundamental secu
Can attacker effici
random m, e giver
key G and ciphert

urity

= 50.

ted
lcture

g.

Binary Goppa codes

Parameters: g € {8,16,32,...};

wei2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct aq,...,op € Fg;
monic irreducible degree-w

polynomial g € Fg[x].

Goppa code: kernel of

the map v — > . v;/(x — a;)
from FJ to Fy[x]|/g.

Normally dimension n — wlgqg.

McEliece uses random G & Féxn

whose image Is this code.

One-wayness ("OW-Passive’

Fundamental security questi
Can attacker efficiently find
random m, e given random |
key G and ciphertext mG+¢

Binary Goppa codes

Parameters: g € {8,16,32,...};

wei2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1q}.

Secrets: distinct aq,...,ap € Fg;
monic irreducible degree-w

polynomial g € Fg[x].

Goppa code: kernel of

the map v —) . v;/(x — a;)
from FJ to Fy[x]|/g.

Normally dimension n — wlgq.

McEliece uses random G & Féxn

whose image Is this code.

One-wayness (“OW-Passive”)

Fundamental security question:
Can attacker efficiently find
random m, e given random public
key G and ciphertext mG+e?

Binary Goppa codes

Parameters: g € {8,16,32,...};

wei2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1q}.

Secrets: distinct aq,...,ap € Fg;
monic irreducible degree-w
polynomial g € Fg[x].

Goppa code: kernel of

the map v —) . v;/(x — a;)
from FJ to Fy[x]|/g.

Normally dimension n — wlgq.

McEliece uses random G & Féxn

whose image Is this code.

One-wayness (“OW-Passive”)

Fundamental security question:
Can attacker efficiently find
random m, e given random public
key G and ciphertext mG+e?

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

Binary Goppa codes

Parameters: g € {8,16,32,...};

Secrets: distinct aq,...,ap € Fg;

monic irreducible degree-w

polynomial g € Fg[x].

Goppa code: kernel of

the map v —) . v;/(x — a;)
from FJ to Fy[x]|/g.

Normally dimension n — wlgq.

McEliece uses random G & Féxn

whose image Is this code.

One-wayness (“OW-Passive”)

Fundamental security question:
Can attacker efficiently find
random m, e given random public
key G and ciphertext mG+e?

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A\ — oo to achieve 2* security

against Prange’s attack.
Here cg ~ 0.7418860694.

0ppa codes

ers: g € {8,16,32,...};

distinct a1, ..., a, € Fg;
reducible degree-w
ial g € Fglx].

ode: kernel of

v) i vi/(x — aj)

to Fq[x]/g.

y dimension n — wlggqg.

> uses random G € Féxn
nage Is this code.

One-wayness ("OW-Passive”)

Fundamental security question:
Can attacker efficiently find
random m, e given random public
key G and ciphertext mG+e?

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A — oo to achieve 2* security

against Prange’s attack.
Here cg ~ 0.7418860694.

>26 sub
analyzin

1981 Cl:

Cre
1988 Le
1988 Le
1989 Kr
1989 St
1989 D
1990 Co
1990 val
1991 Du
1991 Co
1993 Ch
1993 Ch

Klw--,anEFq;

degree-w
[x].

o| of

vi/(x — o)
g.
nn—wlgaq.

dom G & Féxn
s code.

One-wayness (“OW-Passive”)

Fundamental security question:
Can attacker efficiently find
random m, e given random public
key G and ciphertext mG+e?

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A\ — oo to achieve 2* security
against Prange’s attack.

Here cg ~ 0.7418860694.

>26 subsequent p
analyzing one-way

1981 Clark—Cain,
crediting On

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Good

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Gooc

1993 Chabanne-C

1993 Chabaud.

-
S5 .

Fk><n

One-wayness (“OW-Passive”)

Fundamental security question:
Can attacker efficiently find
random m, e given random public
key G and ciphertext mG+e?

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A — oo to achieve 2* security

against Prange’s attack.
Here cg ~ 0.7418860694.

>26 subsequent publication:
analyzing one-wayness of sy:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farr

1993 Chabanne—Courteau.

1993 Chabaud.

One-wayness (“OW-Passive”)

Fundamental security question:
Can attacker efficiently find
random m, e given random public
key G and ciphertext mG+e?

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A\ — oo to achieve 2* security
against Prange’s attack.

Here cg ~ 0.7418860694.

>26 subsequent publications
analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.
1993 Chabaud.

ness (“OW-Passive")

ental security question:
icker efficiently find

m, e given random public
1d ciphertext mG+e?

ange: simple attack idea
sizes In 1978 McEliece.

Fliece system

er key-size optimizations)
+ 0(1))X?(Ig X)?-bit keys
% to achieve 2 security
Prange’'s attack.

~ 0.7418860694.

>26 subsequent publications

analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.

1993 Chabaud.

1994 val
1994 Ca
1998 Ca
1998 Ca
2008 Be
2009 Be

val
2009 Fir
2011 Be
2011 M:
2012 Be
2013 Ha
2015 M:
2016 Ca
2017 Bo

NV-Passive”)

rity question:
ently find

' random public
ext mG—+e?

ple attack idea
78 MckEliece.

em
e optimizations)
’(Ig X)?-bit keys
eve 2 security
ttack.

360694

>26 subsequent publications

analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.

1993 Chabaud.

1994 van Tilburg.
1994 Canteaut—Ck
1998 Canteaut—Ct
1998 Canteaut—Se
2008 Bernstein—Lz:
2009 Bernstein—Lz:
van Tilborg.
2009 Finiasz—Senc
2011 Bernstein—Lz
2011 May—Meurer
2012 Becker—Joux
2013 Hamdaoui-S
2015 May—Ozerov
2016 Canto Torres
2017 Both—May.

on:

yublic
7

Idea
ce.

|tions)
t keys
urity

>26 subsequent publications

analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Pete

2009 Bernstein—Lange—Pete
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Pete

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Me

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier

2017 Both—May.

>26 subsequent publications

analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.
1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

2017 Both—May.

sequent publications

o one-wayness of system:

irk—Cain,

diting Omura.
e—Brickell.

on.

ouk.

rn.

mer.
ffey—Goodman.

1 Tilburg.

mer.
ffey—Goodman—Farrell.
abanne—Courteau.

abaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

2017 Both—May.

The Mc
uses (g
as A\ —
against .
Same ¢

ublications

ness of system:

1ura.

'man.

'man—Farrell.
ourteau.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

2017 Both—May.

The McEliece syst
uses (cp 4+ o(1))\
as A — 0o to achi

against all attacks
Same ¢y ~ 0.7418

V)

stem:

ell.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

2017 Both—May.

The McEliece system

uses (cp + o(1))X%(Ig X)?-bi
as A\ — 00 to achieve 2* sec
against all attacks known to

Same ¢ ~ 0.7418860694.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

2017 Both—May.

The McEliece system
uses (cg + o(1))A?(Ig X)?-bit keys
as A\ — oo to achieve 22 security

against all attacks known today.
Same ¢g ~ 0.7418860694.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

2017 Both—May.

The McEliece system
uses (cg + o(1))A?(Ig X)?-bit keys
as A\ — oo to achieve 22 security

against all attacks known today.
Same ¢g ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks:
2008 Bernstein, 2017 Kachigar—
Tillich, 2018 Kirshanova.

1994 van Tilburg.
1994 Canteaut—C
1998 Canteaut—C

14

14

DANNE.

haud.

1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—

van Tilborg.

2009 Finiasz—Sendrier.
2011 Bernstein—Lange—Peters.
2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.
2015 May—Ozerov.
2016 Canto Torres—Sendrier.

2017 Both—May.

The McEliece system

uses (cg + o(1))A?(Ig X)?-bit keys
as A\ — oo to achieve 22 security
against all attacks known today.

Same ¢g ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks:
2008 Bernstein, 2017 Kachigar—
Tillich, 2018 Kirshanova.

Modern example,
mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
qg = 8192, n = 6960, w = 119.

1 Tilburg.
nteaut—Cha

nteaut—Cha

DANNE.

baud.

nteaut—Sendrier.

rnstein—Lange—Peters.

rnstein—Lange—Peters—

1 Tilborg.

asz—Sendrier.

rnstein—Lange—Peters.

y—Meurer—Thomae.

cker—Joux—May—Meurer.

mdaoui—Sendrier.

1y—Ozerov.

nto Torres—Sendrier.

th—May.

The McEliece system

uses (cg + o(1))A?(Ig X)?-bit keys
as A — oo to achieve 2* security
against all attacks known today.

Same ¢ ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks:
2008 Bernstein, 2017 Kachigar—
Tillich, 2018 Kirshanova.

Modern example,
mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
qg = 8192, n = 6960, w = 119.

NIST co

2016: U
Standar«
“post-qL

2017: 6

2019: N
20 subm

1dDaNNe.

1abaud.
ndrier.
inge—Peters.
inge—Peters—

rier.
nge—Peters.
—Thomae.

—May—Meurer.

endrier.

—Sendrier.

The McEliece system

uses (cg + o(1))A?(Ig X\)?-bit keys
as A\ — oo to achieve 22 security
against all attacks known today.

Same ¢ ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks:
2008 Bernstein, 2017 Kachigar—
Tillich, 2018 Kirshanova.

Modern example,
mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
qg = 8192, n = 6960, w = 119.

NIST competition

2016: U.S. Natior
Standards and Tec
“post-quantum’ ¢

2017: 69 complete

2019: NIST select
26 submissions for

S.

S.

urer.

The McEliece system

uses (cg + o(1))A?(Ig X)?-bit keys
as A — oo to achieve 22 security
against all attacks known today.

Same ¢ ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks:
2008 Bernstein, 2017 Kachigar—
Tillich, 2018 Kirshanova.

Modern example,
mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
qg = 8192, n = 6960, w = 119.

NIST competition

2016: U.S. National Institut
Standards and Technology s
“post-quantum’ competitiol

2017: 69 complete submissi

2019: NIST selects
26 submissions for round 2.

The McEliece system NIST competition
uses (cg + o(1))A?(Ig X)?-bit keys
as A\ — oo to achieve 22 security

2016: U.S. National Institute of

| Standards and Technology starts
against all attacks known today.

“post-quantum” competition.
Same ¢y ~ 0.7418860694.

| | 2017: 69 complete submissions.
Replacing A with 2\
stops all known quantum attacks: 2019: NIST selects

2008 Bernstein, 2017 Kachigar— 26 submissions for round 2.
Tillich, 2018 Kirshanova.

Modern example,
mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
qg = 8192, n = 6960, w = 119.

The McEliece system

uses (cg + o(1))A?(Ig X)?-bit keys

as A\ — oo to achieve 22 security
against all attacks known today.

Same ¢g ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks:

2008 Bernstein, 2017 Kachigar—
Tillich, 2018 Kirshanova.

Modern example,

mceliece6960119 parameter set

(2008 Bernstein—Lange—Peters):
qg=3192, n =6960, w = 1109.

NIST competition

2016: U.S. National Institute of
Standards and Technology starts
“post-quantum’” competition.

2017: 69 complete submissions.

2019: NIST selects
26 submissions for round 2.

“Classic McEliece’: submission
from team of 12 people.

Round-2 options:
3192128, 6960119, 66838128,
460896, 348864.

Fliece system
+ o(1))A?(Ig X)?-bit keys
> to achieve 2* security

1l attacks known today.
~ 0.7418860694.

g A with 2\

known quantum attacks:
rnstein, 2017 Kachigar—
2018 Kirshanova.

example,
26960119 parameter set
ernstein—Lange—Peters):

2. n=0900, w=119.

NIST competition

2016: U.S. National Institute of
Standards and Technology starts
“post-quantum’” competition.

2017: 69 complete submissions.

2019: NIST selects
26 submissions for round 2.

“Classic McEliece’: submission
from team of 12 people.

Round-2 options:
3192128, 6960119, 66838128,
460896, 348864.

Is Classi
1978 M

1978 Mc
huge amr

Some w
while cle
e.g., Nie
e.g., ma
Classic |

Classic |
more th:

em

’(Ig X)?-bit keys
eve 2 security
known today.

860694
2\

jantum attacks:
)17 Kachigar—
anova.

) parameter set
ange—Peters):
0, w = 119.

NIST competition

2016: U.S. National Institute of
Standards and Technology starts
“post-quantum’” competition.

2017: 69 complete submissions.

2019: NIST selects
26 submissions for round 2.

“Classic McEliece’: submission
from team of 12 people.

Round-2 options:
3192128, 6960119, 66838128,
460896, 348864.

Is Classic McEliec
1978 McEliece? N

1978 McEliece prc
huge amount of fc

Some work impro\
while clearly prese
e.g., Niederreliter «
e.g., many decodi
Classic McEliece L

Classic McEliece 3
more than OW-Pa

tacks:

Tar—

er set
1)
19.

NIST competition

2016: U.S. National Institute of
Standards and Technology starts
“post-quantum’” competition.

2017: 69 complete submissions.

2019: NIST selects
26 submissions for round 2.

“Classic McEliece’: submission
from team of 12 people.

Round-2 options:
3192128, 6960119, 66838128,
460896, 348864.

Is Classic McEliece same as
1978 McEliece? Not exactly

1978 McEliece prompted a
huge amount of followup wc

Some work improves efficien
while clearly preserving secu
e.g., Niederreiter compressic
e.g., many decoding speedu|
Classic McEliece uses all thi

Classic McEliece also aims f
more than OW-Passive secu

NIST competition

2016: U.S. National Institute of
Standards and Technology starts
“post-quantum’” competition.

2017: 69 complete submissions.

2019: NIST selects
26 submissions for round 2.

“Classic McEliece’: submission
from team of 12 people.

Round-2 options:
3192128, 6960119, 66838128,
460896, 348864.

Is Classic McEliece same as
1978 McEliece? Not exactly.

1978 McEliece prompted a
huge amount of followup work.

Some work improves efficiency
while clearly preserving security:
e.g., Niederreiter compression;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece also aims for
more than OW-Passive security.

mpetition

.S. National Institute of
Is and Technology starts
lantum” competition.

) complete submissions.

IST selects
Issions for round 2.

McEliece”: submission
'm of 12 people.

options:
3, 6960119, 6688128,
348864.

Is Classic McEliece same as
1978 McEliece? Not exactly.

1978 McEliece prompted a
huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter compression;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece also aims for
more than OW-Passive security.

Niederre

Generate
of lengtl

/ k
G' €F,

McEliece
random

al Institute of
“hnology starts
ompetition.

> submissions.

S
“round 2.

"+ submission
eople.

J, 6688128,

Is Classic McEliece same as
1978 McEliece? Not exactly.

1978 McEliece prompted a
huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter compression;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece also aims for

more than OW-Passive security.

Niederreiter key c

Generator matrix 1
of length n and di
G e Féxn with T

McEliece public ke
random invertible

e of
tarts

ons.

10N

Is Classic McEliece same as
1978 McEliece? Not exactly.

1978 McEliece prompted a
huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter compression;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece also aims for
more than OW-Passive security.

Niederreiter key compressior

Generator matrix for code I

of length n and dimension k
G' € F5*" with T = F& -G’

McEliece public key: G = S

random invertible S € FSXk

Is Classic McEliece same as Niederreiter key compression
1978 McEliece? Not exactly.

Generator matrix for code I

1978 McEliece prompted a of length n and dimension k:
huge amount of followup work. G' € F5*" with T = F& -G’
Some work improves efficiency McEliece public key: G = SG’ for
while clearly preserving security: random invertible S € Fng.

e.g., Niederreiter compression;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece also aims for
more than OW-Passive security.

Is Classic McEliece same as
1978 McEliece? Not exactly.

1978 McEliece prompted a
huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter compression;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece also aims for
more than OW-Passive security.

10
Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
G' € F5*" with T = F& -G’
McEliece public key: G = SG’ for

random invertible S & Fng.

Niederreiter instead reduces G’
to the unique generator matrix in
systematic form: G = (Ix|R).

Is Classic McEliece same as
1978 McEliece? Not exactly.

1978 McEliece prompted a
huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter compression;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece also aims for

more than OW-Passive security.

10
Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
G' € F5*" with T = F& -G’
McEliece public key: G = SG’ for

random invertible S & Fng.

Niederreiter instead reduces G’
to the unique generator matrix in
systematic form: G = (Ix|R).

Pr ~29% that systematic form
exists. Security loss: <2 bits.

c McEliece same as
“Eliece? Not exactly.

“Eliece prompted a
ount of followup work.

ork improves efficiency

arly preserving security:

derreiter compression;
ny decoding speedups.
VIcEliece uses all this.

VIcEliece also aims for

an OW-Passive security.

Niederreiter key compression

Generator matrix for code I
of length n and dimension k:

G' € F5*" with T = F5 -G’
McEliece public key: G = SG' for

random invertible S & FSXk.

Niederreiter instead reduces G’
to the unique generator matrix in
systematic form: G = (Ix|R).

Pr ~29% that systematic form
exists. Security loss: <2 bits.

10

Niederre

Use Niec
McEliec:

> same as
ot exactly.

mpted a
llowup work.

res efficiency

rving security:

ompression:;
1g speedups.
ses all this.

lso aims for

ssive security.

10
Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
G' € F5*" with T = F5 -G’
McEliece public key: G = SG’ for

random invertible S & Fng.

Niederreiter instead reduces G’
to the unique generator matrix in
systematic form: G = (Ix|R).

Pr ~29% that systematic form
exists. Security loss: <2 bits.

Niederreiter ciphet

Use Niederreiter k

McEliece cipherte

rk.

or

rity.

Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
G' € F5*" with T = F5 -G’
McEliece public key: G = SG' for

random invertible S & FSXk.

Niederreiter instead reduces G’
to the unique generator matrix in
systematic form: G = (Ix|R).

Pr ~29% that systematic form
exists. Security loss: <2 bits.

10

Niederreiter ciphertext comg

Use Niederreiter key G = (I

McEliece ciphertext: mG+¢

Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
G' € F5*" with T = F& -G’

McEliece public key: G = SG’ for

random invertible S & Fng.

Niederreiter instead reduces G’
to the unique generator matrix in
systematic form: G = (Ix|R).

Pr ~29% that systematic form
exists. Security loss: <2 bits.

10

Niederreiter ciphertext compression

Use Niederreiter key G = (Ix|R).

McEliece ciphertext: mG+e € FJ.

11

10 11
Niederreiter key compression Niederreiter ciphertext compression

Generator matrix for code I Use Niederreiter key G = (Ix|R).

of length n and dimension k:

McEliece ciphertext: mG+e € FI.
G'EFIZ(X” with r:Flz(-G'. P 2

Niederreiter ciphertext, shorter:

HeT e F{" R

where H = (R"|I,_4).

McEliece public key: G = SG’ for
random invertible S € Fng.

Niederreiter instead reduces G’
to the unique generator matrix in
systematic form: G = (Ix|R).

Pr ~29% that systematic form
exists. Security loss: <2 bits.

10 11
Niederreiter key compression Niederreiter ciphertext compression

Generator matrix for code I Use Niederreiter key G = (Ix|R).

of length n and dimension k:

McEliece ciphertext: mG+e € FI.
G'EFIZ(X” with r:Flz(-G'. P 2

Niederreiter ciphertext, shorter:

HeT e F{" R

where H = (R"|I,_4).

McEliece public key: G = SG’ for
random invertible S € Fng.

Niederreiter instead reduces G’ . . L
Given H and Niederreiter's HeT,

to the unique generator matrix in . .
que g can attacker efficiently find e?

systematic form: G = (Ix|R).

Pr ~29% that systematic form
exists. Security loss: <2 bits.

Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
G' € F5*" with T = F& -G’
McEliece public key: G = SG’ for

random invertible S & Fng.

Niederreiter instead reduces G’
to the unique generator matrix in
systematic form: G = (Ix|R).

Pr ~29% that systematic form
exists. Security loss: <2 bits.

10

11
Niederreiter ciphertext compression

Use Niederreiter key G = (Ix|R).
McEliece ciphertext: mG+e € FJ.

Niederreiter ciphertext, shorter:
T (n—k)x1
He' & F2

where H = (R"|I,_4).

Given H and Niederreiter's He ',
can attacker etficiently find e?

If so, attacker can efficiently
find m, e given G and mG + e:

Niederreiter key compression

Generator matrix for code I

of length n and dimension k:
G' € F5*" with T = F& -G’
McEliece public key: G = SG’ for

random invertible S & Fng.

Niederreiter instead reduces G’
to the unique generator matrix in
systematic form: G = (Ix|R).

Pr ~29% that systematic form
exists. Security loss: <2 bits.

10

11
Niederreiter ciphertext compression

Use Niederreiter key G = (Ix|R).
McEliece ciphertext: mG+e € FJ.

Niederreiter ciphertext, shorter:
T (n—k)x1
He' & F2

where H = (R"|I,_4).

Given H and Niederreiter's He ',
can attacker etficiently find e?

If so, attacker can efficiently
find m, e given G and mG + e:
compute H(mG +e)' = He';
find e; compute m from mG.

Iter key compression

or matrix for code [

1 n and dimension k:
" with T = F§ - G'.

> public key: G = SG’ for
invertible S € F/2<Xk.

iter instead reduces G’
nique generator matrix Iin

tic form: G = (Ix|R).

o that systematic form
ecurity loss: <2 bits.

10

Niederreiter ciphertext compression

Use Niederreiter key G = (Ix|R).
McEliece ciphertext: mG+e € FJ.

Niederreiter ciphertext, shorter:
T (n—k)x1
He' & F2

where H = (R"|I,_).

Given H and Niederreiter's He ',
can attacker etficiently find e?

If so, attacker can efficiently
find m, e given G and mG + e:
compute H(mG +e)' = He';
find e; compute m from mG.

11

Other ct

Niederre

Solomor
by Sidel

More co
codes, k

AG code
several |

mpression

or code [
mension k:

k
y: G = SG' for
kX k
SeF;" "

d reduces G’
rator matrix In

5 = (I R).

tematic form
5s: <2 bits.

10

Niederreiter ciphertext compression

Use Niederreiter key G = (Ix|R).
McEliece ciphertext: mG+e € F7.

Niederreiter ciphertext, shorter:
T (n—k)x1
He' & F2

where H = (R |I,_4).

Given H and Niederreiter's He ',
can attacker efficiently find e?

If so, attacker can efficiently
find m, e given G and mG + e:
compute H(mG +e)' = He';
find e; compute m from mG.

11

Other choices of ¢

Niederreiter sugge
Solomon codes. E

by Sidelnikov and

More corpses: e.g

codes, Reed—Mull¢
AG codes, Gabidu
several LDPC cod

10

Niederreiter ciphertext compression

Use Niederreiter key G = (Ix|R).
McEliece ciphertext: mG+e € FJ.

Niederreiter ciphertext, shorter:
HeT e F{"H)x1
where H = (R"|I,_).

Given H and Niederreiter's He ',
can attacker etficiently find e?

If so, attacker can efficiently
find m, e given G and mG + e:
compute H(mG +e)' = He';
find e; compute m from mG.

11

Other choices of codes

Niederreiter suggested Reed
Solomon codes. Broken in 1
by Sidelnikov and Shestakov

More corpses: e.g., concatet
codes, Reed—Muller codes, s

AG codes, Gabidulin codes,
several LDPC codes.

Niederreiter ciphertext compression

Use Niederreiter key G = (Ix|R).
McEliece ciphertext: mG+e € FJ.

Niederreiter ciphertext, shorter:
HeT e F{" R
where H = (R |I,_4).

Given H and Niederreiter's He ',
can attacker efficiently find e?

If so, attacker can efficiently
find m, e given G and mG + e:
compute H(mG +e)' = He';
find e; compute m from mG.

11

12
Other choices of codes

Niederreiter suggested Reed-—
Solomon codes. Broken in 1992
by Sidelnikov and Shestakov.

More corpses: e.g., concatenated

codes, Reed—Muller codes, several

AG codes, Gabidulin codes,
several LDPC codes.

Niederreiter ciphertext compression

Use Niederreiter key G = (Ix|R).
McEliece ciphertext: mG+e € FJ.

Niederreiter ciphertext, shorter:
T (n—k)x1
He' & F2

where H = (R |I,_4).

Given H and Niederreiter's He ',
can attacker efficiently find e?

If so, attacker can efficiently
find m, e given G and mG + e:
compute H(mG +e)' = He';
find e; compute m from mG.

11

12
Other choices of codes

Niederreiter suggested Reed-—
Solomon codes. Broken in 1992
by Sidelnikov and Shestakov.

More corpses: e.g., concatenated
codes, Reed—Muller codes, several

AG codes, Gabidulin codes,
several LDPC codes.

No proof that changing codes
preserves security level.

Classic McEliece: binary Goppa.

Iter ciphertext compression

lerreiter key G = (I¢|R).
> ciphertext: mG+e € F5.

Iter ciphertext, shorter:
F(n—k)xl
2

= (RT|In—k)-

and Niederreiter's He '
cker efficiently find e?

acker can efficiently
> given G and mG + e:
 H(mG +e)' = He';
ompute m from mG.

11

Other choices of codes

Niederreiter suggested Reed-—
Solomon codes. Broken in 1992
by Sidelnikov and Shestakov.

More corpses: e.g., concatenated

codes, Reed—Muller codes, several

AG codes, Gabidulin codes,
several LDPC codes.

No proof that changing codes
preserves security level.

Classic McEliece: binary Goppa.

12

IND-CC.

OW-Pas

Message
Attacket
and obse

text compression

CYy G = (Ik‘R).
t: mG4e € F'27.

text, shorter:

7—k)'

erreiter's HeT,
ently find e?

efficiently
and mG + e:
e) = He';

) from mG.

11

Other choices of codes

Niederreiter suggested Reed-—
Solomon codes. Broken in 1992
by Sidelnikov and Shestakov.

More corpses: e.g., concatenated

codes, Reed—Muller codes, several

AG codes, Gabidulin codes,
several LDPC codes.

No proof that changing codes
preserves security level.

Classic McEliece: binary Goppa.

12

IND-CCA2 securit

OW-Passive secur
Messages are not

Attackers choose ¢
and observe reacti

)ression

(|R).
e Fg.

ter:

LIeT,

~,m,
o

11

Other choices of codes

Niederreiter suggested Reed-—
Solomon codes. Broken in 1992
by Sidelnikov and Shestakov.

More corpses: e.g., concatenated
codes, Reed—Muller codes, several

AG codes, Gabidulin codes,
several LDPC codes.

No proof that changing codes
preserves security level.

Classic McEliece: binary Goppa.

12

IND-CCA2 security

OW-Passive security is too \
Messages are not random.
Attackers choose ciphertexts
and observe reactions.

Other choices of codes

Niederreiter suggested Reed-—
Solomon codes. Broken in 1992
by Sidelnikov and Shestakov.

More corpses: e.g., concatenated
codes, Reed—Muller codes, several

AG codes, Gabidulin codes,
several LDPC codes.

No proof that changing codes
preserves security level.

Classic McEliece: binary Goppa.

12

IND-CCA2 security

OW-Passive security is too weak.
Messages are not random.
Attackers choose ciphertexts

and observe reactions.

13

Other choices of codes

Niederreiter suggested Reed-—
Solomon codes. Broken in 1992
by Sidelnikov and Shestakov.

More corpses: e.g., concatenated
codes, Reed—Muller codes, several

AG codes, Gabidulin codes,
several LDPC codes.

No proof that changing codes
preserves security level.

Classic McEliece: binary Goppa.

12

IND-CCA2 security

OW-Passive security is too weak.
Messages are not random.
Attackers choose ciphertexts

and observe reactions.

Classic McEliece does more work
for “IND-CCA2 security" .

Combines coding theory with
AES-GCM “authenticated cipher”
and SHA-3 “hash function”.

All messages are safe.
Reusing keys is safe.

13

1oices of codes

Iter suggested Reed—
| codes. Broken in 1992
nikov and Shestakov.

rpses: e.g., concatenated
eed—Muller codes, several

s Gabidulin codes,
DPC codes.

f that changing codes
s security level.

VIcEliece: binary Goppa.

12

IND-CCA2 security

OW-Passive security is too weak.
Messages are not random.
Attackers choose ciphertexts

and observe reactions.

Classic McEliece does more work
for “IND-CCA2 security" .

Combines coding theory with
AES-GCM “authenticated cipher”
and SHA-3 “hash function”.

All messages are safe.
Reusing keys is safe.

13

Time

Cycles o

params

343364
460396
668812¢
696011¢
319212¢

343364
460396
668812¢
696011¢
319212¢

odes

sted Reed-—
roken in 1992
Shestakov.

 concatenated
r codes, several
lin codes,

s,

nging codes
level.

binary Goppa.

12

IND-CCA2 security

OW-Passive security is too weak.
Messages are not random.
Attackers choose ciphertexts

and observe reactions.

Classic McEliece does more work
for “IND-CCA2 security" .

Combines coding theory with

AES-GCM “authenticated cipher”

and SHA-3 “hash function”.

All messages are safe.
Reusing keys is safe.

13

Time

Cycles on Intel Ha

params oOp C)

348864 enc 4°F
460896 enc 3
6688128 enc 15-
6960119 enc 154
8192128 enc 18-

348864 dec 13¢
460896 dec 27:
6688128 dec 32(
6960119 dec 30
8192128 dec 324

12 13

IND-CCA2 security Time
— OW-Passive security is too weak. Cycles on Intel Haswell CPL
992 Messages are not random.

| params op cycles
Attackers choose ciphertexts

and observe reactions. 348864 enc 45833

1atea 460896 enc 82684
everal Classic McEliece does more work 6688128 enc 153372
for “IND-CCA2 security”. 6960119 enc 154977
Combines coding theory with 8192128 enc 1833892
es AES-GCM “authenticated cipher” 348864 dec 136840
and SHA—3 “hash function”. 460896 dec 273872

6688128 dec 320423
6960119 dec 302460
8192128 dec 324003

ppa. All messages are safe.
Reusing keys is safe.

13
IND-CCA2 security Time

OW-Passive security is too weak. Cycles on Intel Haswell CPU core:

Messages are not random.
params op cycles

Attackers choose ciphertexts

348864 enc 458883
460896 enc 382084

and observe reactions.

Classic McEliece does more work 6688198 enc 153372
for “IND-CCA2 security” . 6960119 enc 154972
Combines coding theory with 8192128 enc 1833892
AES-GCM “authenticated cipher” 348864 dec 136840
and SHA-3 “hash function”. 460896 dec 273872

6688128 dec 320423
6960119 dec 302460
8192128 dec 324003

All messages are safe.
Reusing keys is safe.

A2 security

sive security Is too weak.
s are not random.

s choose ciphertexts
rve reactions.

VIcEliece does more work
)-CCA2 security” .

s coding theory with

M “authenticated cipher”

\-3 “hash function”.

ages are safe.
keys is safe.

13

14
Time

Cycles on Intel Haswell CPU core:

params op cycles

348864 enc 45388
460896 enc 820634
6688128 enc 153372
6960119 enc 154972
8192128 enc 183892

348864 dec 136840
460896 dec 273872
6688128 dec 320428
6960119 dec 302460
8192128 dec 324008

“Wait,
most Im

to have

params

343364

34383641
460396

4603961
668812¢
668812¢
696011¢
696011¢
319212¢
319212¢

y

ty Is too weak.
random.
“Iphertexts
ons.

loes more work

curity’ .

theory with

nticated cipher”

function’ .

afe.
fe.

13

Time

Cycles on Intel Haswell CPU core:

params op cycles

348864 enc 45388
460896 enc 820634
6688128 enc 153372
6960119 enc 154972
8192128 enc 183892

348864 dec 136840
460896 dec 273872
6688128 dec 320428
6960119 dec 302460
8192128 dec 324008

14

“Wait, you're leav
most iImportant cc
to have such slow

params op

348864 keyger
348864f keyger
460896 keyger
460896f keyger
6638381238 keyger
6688123f keyger
6960119 keyger
6960119f keyger
8192128 keyger
81921281 keyger

veak.

work

pher”

13

14
Time

Cycles on Intel Haswell CPU core:

params op cycles

348864 enc 45388
460896 enc 820634
6688128 enc 153372
6960119 enc 154972
8192128 enc 183892

348864 dec 136840
460896 dec 273872
6688128 dec 320428
6960119 dec 302460
8192128 dec 324008

“Wait, you re leaving out th
most important cost! It's cr
to have such slow keygen!”

params op Cy

348864 keygen 14087C
348864f Lkeygen « 8223Z
460896 keygen 441517
460896f keygen 28236€
6688128 keygen 118046¢
6688128f keygen 62547C
6960119 keygen 110934C
6960119f keygen 56457(
8192128 keygen 933422
8192128f keygen 67336(

Time

Cycles on Intel Haswell CPU core:

params op cycles

348864 enc 45388
460896 enc 820634
6688128 enc 153372
6960119 enc 154972
8192128 enc 183892

348864 dec 136840
460896 dec 273872
6688128 dec 320428
6960119 dec 302460
8192128 dec 324008

14

“Walit, you're leaving out the
most important cost! It's crazy
to have such slow keygen!”

params op cycles

348864 keygen 140870324
348864f keygen 82232360
460896 keygen 441517292
460896f keygen 2382869316
6688128 keygen 1180463912
6688128f keygen 625470504
6960119 keygen 1109340668
6960119f keygen 564570384
8192128 Lkeygen 933422948
8192128f keygen 673360388

15

n Intel Haswell CPU core:

op

cycles

enc

enc
3 enc
) enc

3 enc

45333
82634
153372
154972
183892

dec
dec
3 dec
) dec
3 dec

136340
2733872
320423
302460
324008

14

“Wait, you 're leaving out the
most important cost! It's crazy
to have such slow keygen!”

params op cycles

348864 keygen 140870324
348864f keygen 82232360
460896 keygen 441517292
460896f keygen 2382869316
6688128 keygen 1180463912
6688128f keygen 625470504
6960119 keygen 1109340668
6960119f keygen 564570384
8192128 Lkeygen 933422948
8192128f keygen 673360388

15

1. What
that this
a proble

swell CPU core:

icles

333
634
372
1072
392

340
372
428
460
1003

14

“Walit, you're leaving out the
most important cost! It's crazy
to have such slow keygen!”

params op cycles

348864 keygen 140870324
348864f keygen 82232360
460896 keygen 441517292
460896f keygen 2382869316
6688128 keygen 1180463912
6688128f keygen 625470504
6960119 keygen 1109340668
6960119f keygen 564570384
8192128 keygen 933422948
8192128f keygen 673360388

15

1. What evidence
that this keygen ti
a problem for appl

| core:

14

“Wait, you 're leaving out the
most iImportant cost! It's crazy
to have such slow keygen!”

params op cycles

348864 keygen 140870324
348864f keygen 82232360
460896 keygen 441517292
460896f keygen 2382869316
6688128 keygen 1180463912
6688128f keygen 625470504
6960119 keygen 1109340668
6960119f keygen 564570384
8192128 Lkeygen 933422948
8192128f keygen 673360388

15

1. What evidence do we hay
that this keygen time is
a problem for applications?

“Walit, you're leaving out the
most important cost! It's crazy
to have such slow keygen!”

params op cycles

348864 keygen 140870324
348864f keygen 82232360
460896 keygen 441517292
460896f keygen 2382869316
6688128 keygen 1180463912
6688128f keygen 625470504
6960119 keygen 1109340668
6960119f keygen 564570384
8192128 keygen 933422948
8192128f keygen 673360388

15

1. What evidence do we have
that this keygen time is
a problem for applications?

16

“Walit, you're leaving out the
most important cost! It's crazy
to have such slow keygen!”

params op cycles

348864 keygen 140870324
348864f keygen 82232360
460896 keygen 441517292
460896f keygen 2382869316
6688128 keygen 1180463912
6688128f keygen 625470504
6960119 keygen 1109340668
6960119f keygen 564570384
8192128 keygen 933422948
8192128f keygen 673360388

15

16
1. What evidence do we have

that this keygen time is
a problem for applications?

2. Classic McEliece is designed
for IND-CCAZ2 security, so

a key can be generated once and
used a huge number of times.

“Walit, you're leaving out the
most important cost! It's crazy
to have such slow keygen!”

params op cycles

348864 keygen 140870324
348864f keygen 82232360
460896 keygen 441517292
460896f keygen 2382869316
6688128 keygen 1180463912
6688128f keygen 625470504
6960119 keygen 1109340668
6960119f keygen 564570384
8192128 keygen 933422948
8192128f keygen 673360388

15

16
1. What evidence do we have

that this keygen time is
a problem for applications?

2. Classic McEliece is designed
for IND-CCAZ2 security, so

a key can be generated once and
used a huge number of times.

3. McEliece's binary operations
are very well suited for hardware.
See 2018 Wang—Szefer—
Niederhagen. Isn't this what's
most important for the future?

ou're leaving out the
portant cost! It's crazy
such slow keygen!”

op cycles

keygen 140870324

keygen 32232360

keygen 441517292
- keygen 282369316
3 keygen 1180468912
3f keygen 625470504
) keygen 1109340668
)f keygen 564570384
3 keygen 933422948
3f keygen 673360388

15

1. What evidence do we have
that this keygen time is
a problem for applications?

2. Classic McEliece is designed
for IND-CCAZ2 security, so

a key can be generated once and
used a huge number of times.

3. McEliece's binary operations
are very well suited for hardware.
See 2018 Wang—Szefer—
Niederhagen. Isn't this what's
most important for the future?

16

Bytes cc

params

343364
4603896
668812¢
696011¢
319212¢

343364
460396
668812¢
696011¢
319212¢

“It's cra

ing out the) 1. What evidence do we have ’ Bytes communicat

st It's crazy that this keygen time iIs barams object

keygen!” a problem for applications? .

348864 cipherte

cycles 2. Classic McEliece is designed 460896 cipherte

, 140870324 for IND-CCAZ security, so 6688128 cipherte

1 82232360 a key can be generated once ana 6960119 cipherte:

1 441517292 used a huge number of times. 8192128 cipherte:

1 282869316 3. MckEliece's binary operations 348864 key '

1 1180468912 are very well suited for hardware. 460896 key

1 625470504 See 2018 Wang—Szefer— 6688128 key

1 1109340663 Niederhagen. Isn't this what's 6960119 key

1 5045703384 most important for the future? 8192128 key

1 933422948

. 678860388 “It's crazy to have

azy

cles

324
360
292
1316
012
504
6683
384
048
388

15

1. What evidence do we have
that this keygen time is
a problem for applications?

2. Classic McEliece is designed
for IND-CCAZ2 security, so

a key can be generated once and
used a huge number of times.

3. McEliece's binary operations
are very well suited for hardware.
See 2018 Wang—Szefer—
Niederhagen. Isn't this what's
most important for the future?

16

Bytes communicated

params

object

byte

343364
4603896
6688128
6960119
3192128

ciphertext

ciphertext

ciphertext

ciphertext

ciphertext

12
13
24
22
24

343364
460396
6688128
6960119
3192128

key
key
key
key
key

26112
52416
1044969
104731
135782

“It's crazy to have big keys!

1. What evidence do we have
that this keygen time iIs
a problem for applications?

2. Classic McEliece is designed
for IND-CCAZ2 security, so

a key can be generated once and
used a huge number of times.

3. McEliece's binary operations

are very well suited for hardware.

See 2018 Wang—Szefer—
Niederhagen. Isn't this what's
most important for the future?

16

Bytes communicated

params object bytes

348864 ciphertext 123
460896 ciphertext 183
6688128 ciphertext 240
6960119 ciphertext 226
8192128 ciphertext 240

348864 key 261120
460896 key 524160
6688128 key 1044992
6960119 key 1047319
8192128 key 1357824

“It's crazy to have big keys!”

17

- evidence do we have
, keygen time Is
m for applications?

ic McEliece Is designed
CCAZ2 security, so

n be generated once and
uge number of times.

lece’s binary operations
well suited for hardware.
3 Wang—Szefer—

1igen. Isn't this what's
portant for the future?

16

Bytes communicated

params object bytes

348864 ciphertext 123
460896 ciphertext 183
6688128 ciphertext 240
6960119 ciphertext 226
8192128 ciphertext 240

348864 key 261120
460896 key 524160
6688128 key 1044992
6960119 key 1047319
8192128 key 1357824

“It's crazy to have big keys!”

17

What ev
that the
a proble

do we have
me IS
Ications”?

e Is designed
urity, so

rated once and
er of times.

ry operations

d for hardware.

zefer—
- this what's
r the future?

16

Bytes communicated

params object bytes

348864 ciphertext 123
460896 ciphertext 183
6688128 ciphertext 240
6960119 ciphertext 226
8192128 ciphertext 240

348864 key 261120
460896 key 524160
6688128 key 1044992
6960119 key 1047319
8192128 key 1357824

“It's crazy to have big keys!”

17

What evidence do
that these key size
a problem for appl

/€

1ed

» and

ons
NVare.

('S
re’?

16

Bytes communicated

params

object

bytes

343364
4603896
6688128
6960119
3192128

cip
cip

Cl
Cl
Cl

0
0

nertext

nertext

nertext

nertext

bhertext

128
138
240
226
240

343364
460396
6688128
6960119
3192128

key

key

key

key

key

261120
524160
1044992
1047319
1357824

“It's crazy to have big keys!”

17

What evidence do we have
that these key sizes are
a problem for applications?

Bytes communicated

params object bytes

348864 ciphertext 123
460896 ciphertext 183
6688128 ciphertext 240
6960119 ciphertext 226
8192128 ciphertext 240

348864 key 261120
460896 key 524160
6688128 key 1044992
6960119 key 1047319
8192128 key 1357824

“It's crazy to have big keys!”

17

What evidence do we have
that these key sizes are
a problem for applications?

18

Bytes communicated

params object bytes
348864 ciphertext 123
460896 ciphertext 183
6688128 ciphertext 240
6960119 ciphertext 226
8192128 ciphertext 240
348864 key 261120
460896 key 524160
6688128 key 1044992
6960119 key 1047319
8192128 key 1357824

“It's crazy to have big keys!”

17

18
What evidence do we have

that these key sizes are
a problem for applications?

Compare to, e.g., web-page size.

httparchive.org statistics:
50% of web pages are >1.8MB.
25% of web pages are >3.5MB.
10% of web pages are >6.5MB.
The sizes keep growing.

Typically browser receives one web
page from multiple servers, but
reuses servers for more pages.

Is key size a big part of this?

)mmunicated

object bytes
ciphertext 123
ciphertext 183
3 ciphertext 240
) ciphertext 226
3 ciphertext 240
key 261120
key 524160
3 key 1044992
) key 1047319
3 key 1357824

zy to have big keys!”

17

What evidence do we have
that these key sizes are
a problem for applications?

Compare to, e.g., web-page size.

httparchive.org statistics:
50% of web pages are >1.8MB.
25% of web pages are >3.5MB.
10% of web pages are >6.5MB.
The sizes keep growing.

Typically browser receives one web
page from multiple servers, but
reuses servers for more pages.

Is key size a big part of this?

18

2015 Mc
postqual
Use star
technigt
etc.) to

commun

Each cif
the way

the servi
can ofte
much fa

Again IN

ed
bytes
Xt 128
Xt 188
Xt 240
Xt 226
Xt 240
201120
524160
1044992
1047319
1357324

' big keys!”

17

What evidence do we have
that these key sizes are
a problem for applications?

Compare to, e.g., web-page size.

httparchive.org statistics:
50% of web pages are >1.8MB.
25% of web pages are >3.5MB.
10% of web pages are >6.5MB.
The sizes keep growing.

Typically browser receives one web
page from multiple servers, but
reuses servers for more pages.

Is key size a big part of this?

18

2015 McGrew “Li
postquantum cryp
Use standard netw
techniques (multic
etc.) to reduce co:
communicating pt

Each ciphertext h:

the way between 1

the server, but pul
can often be retrie
much faster local

Again IND-CCA2

17

What evidence do we have
that these key sizes are
a problem for applications?

Compare to, e.g., web-page size.

httparchive.org statistics:
50% of web pages are >1.8MB.
25% of web pages are >3.5MB.
10% of web pages are >6.5MB.
The sizes keep growing.

Typically browser receives one web
page from multiple servers, but
reuses servers for more pages.

Is key size a big part of this?

18

2015 McGrew “Living with
postquantum cryptography”

Use standard networking

techniques (multicasts, cach

etc.) to reduce cost of

communicating public keys.

Each ciphertext has to trave

t
t

ne way between the client :

ne server, but public keys

can often be retrieved throu

much faster local network.

Again IND-CCA2 is critical.

What evidence do we have
that these key sizes are
a problem for applications?

Compare to, e.g., web-page size.

httparchive.org statistics:
50% of web pages are >1.8MB.
25% of web pages are >3.5MB.
10% of web pages are >6.5MB.
The sizes keep growing.

Typically browser receives one web
page from multiple servers, but
reuses servers for more pages.

Is key size a big part of this?

18

2015 McGrew “Living with
postquantum cryptography':

Use standard networking

techniques (multicasts, caching,

etc.) to reduce cost of

communicating public keys.

Each cip

t
t

ne way

nertext has to travel all

hetween the client and

ne server, but public keys

can often be retrieved through

much faster local network.

Again IND-CCA2 is critical.

19

1dence do we have
se key sizes are
m for applications?

> to, e.g., web-page size.

hive.org statistics:
wveb pages are >1.8MB.

wveb pages are >3.5MB.

wveb pages are >6.5MB.
s keep growing.

/ browser receives one web
m multiple servers, but
rvers for more pages.

ze a big part of this?

18

2015 McGrew “Living with
postquantum cryptography’ :
Use standard networking
techniques (multicasts, caching,
etc.) to reduce cost of
communicating public keys.

Each ciphertext has to travel all

the way between the client and

the server, but public keys
can often be retrieved through
much faster local network.

Again IND-CCA2 is critical.

19

Denial o

Standare
strategy
of conne
up all m
for keep

SYN flo

Server ic
some CO
connecti

we have
S are
Ications?

web-page size.

r statistics:
are >1.8MB.
are >3.5MB.
are >6.5MB.

wing.

receives one web
> servers, but
more pages.

art of this?

18

2015 McGrew “Living with
postquantum cryptography':
Use standard networking
techniques (multicasts, caching,
etc.) to reduce cost of
communicating public keys.

Each ciphertext has to travel all

the way between the client and

the server, but public keys
can often be retrieved through
much faster local network.

Again IND-CCA2 is critical.

19

Denial of service

Standard low-cost
strategy: make a |
of connections to
up all memory ave
for keeping track ¢

SYN flood, HT TP

Server is forced to
some connections,
connections from

1e web
but

18

2015 McGrew “Living with
postquantum cryptography’ :
Use standard networking
techniques (multicasts, caching,
etc.) to reduce cost of
communicating public keys.

Each ciphertext has to travel all

the way between the client and

the server, but public keys
can often be retrieved through
much faster local network.

Again IND-CCA2 is critical.

19

Denial of service

Standard low-cost attack

strategy: make a huge num|
of connections to a server, f
up all memory available on :
for keeping track of connect

SYN flood, HTTP flood, et

Server is forced to stop serv
some connections, including
connections from honest clie

2015 McGrew “Living with
postquantum cryptography':

Use standard networking

techniques (multicasts, caching,

etc.) to reduce cost of

communicating public keys.

Each ciphertext has to travel all

t
t

ne way between the client and

ne server, but public keys

can often be retrieved through

much faster local network.

Again IND-CCA2 is critical.

19

20
Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

2015 McGrew “Living with
postquantum cryptography':

Use standard networking

techniques (multicasts, caching,

etc.) to reduce cost of

communicating public keys.

Each ciphertext has to travel all

t
t

ne way between the client and

ne server, but public keys

can often be retrieved through

much faster local network.

Again IND-CCA2 is critical.

19

20
Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

“Grew “Living with
ntum cryptography’:
dard networking

es (multicasts, caching,
reduce cost of

icating public keys.

hertext has to travel all

between the client and
or, but public keys
n be retrieved through
ster local network.

|D-CCAZ2 is critical.

19

Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

20

A tiny r
handles
each Inc
without

/ing with
tography":
orking

asts, caching,
st of

blic keys.

s to travel all
he client and
olic keys

ved through
network.

IS critical.

19

Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

20

A tiny network s
handles and imme
each incoming net
without allocating

Ing,

| all
nd

19

Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

20

A tiny network server

handles and immediately for
each incoming network pack
without allocating any mem

Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

20

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

21

Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

20

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers
to publish information.
Unauthenticated example from

last century: “anonymous NFS".

21

Denial of service

Standard low-cost attack
strategy: make a huge number
of connections to a server, filling
up all memory available on server
for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving
some connections, including
connections from honest clients.

But some Internet protocols
are not vulnerable to this attack.

20

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

21

20 21
f service A tiny network server "Here's

handles and immediately forgets McEliece
1 low-cost attack

each incoming network packet,
. make a huge number & P

. . without allocating any memory.
ctions to a server, filling

emory available on server Can use tiny network servers
ng track of connections. to publish information.
Unauthenticated example from

od, HT TP flood, etc.
last century: “anonymous NFS".

, forced to stop serving | |
1997 Aura—Nikander, 2005 Shieh—

nnections, including | |
Myers—Sirer modify any protocol

ons from honest clients. |
to use a tiny network server

e Internet protocols if an “input continuation”
vulnerable to this attack. fits into a network packet.

attack

nuge number

a server, filling
ilable on server
f connections.

' flood, etc.

stop serving
including
honest clients.

protocols
to this attack.

20

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

21

“Here's a natural
McEliece can't po

20 21

A tiny network server "Here's a natural scenario tl
handles and immediately forgets McEliece can't possibly hant

or each incoming network packet,

lling without allocating any memory.

Server Can use tiny network servers

lons. to publish information.

) Unauthenticated example from

- last century: “anonymous NFS".

e 1997 Aura—Nikander, 2005 Shieh—

e, Myers—Sirer modify any protocol

to use a tiny network server
if an “input continuation”
tack. fits into a network packet.

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

21

“Here's a natural scenario that
McEliece can't possibly handle:

22

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

21

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.

22

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

21

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,
| want a tiny network server.
e [or forward secrecy,
| want the server to encrypt a
session key to an ephemeral
public key sent by the client.

22

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

21

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e [or forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.

22

A tiny network server

handles and immediately forgets
each incoming network packet,
without allocating any memory.

Can use tiny network servers

to publish information.
Unauthenticated example from
last century: “anonymous NFS".

1997 Aura—Nikander, 2005 Shieh—
Myers—Sirer modify any protocol
to use a tiny network server

if an “input continuation”

fits into a network packet.

21

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e [or forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.

It's crazy if post-quantum
standards can't handle this!”

22

1etwork server

and immediately forgets
oming network packet,
allocating any memory.

tiny network servers
h information.
nticated example from

ury:

ra—Nikander, 2005 Shieh—
irer modify any protocol

“anonymous NFS".

tiny network server
1put continuation”
a network packet.

21

22
“Here's a natural scenario that

McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e For forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.
It's crazy if post-quantum
standards can't handle this!”

Bernstel
handles

arver
diately forgets
work packet,

any memory.

ork servers
tion.

xample from
nymous NFS”.

ler, 2005 Shieh—
y any protocol
ork server
nuation”
packet.

21

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e [or forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.

It's crazy if post-quantum
standards can't handle this!”

22

Bernstein—Lange °
handles this scena

gets
et,
ory.

Om
FS™.

Shieh—
-0col

21

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e For forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.

It's crazy if post-quantum
standards can't handle this!”

22

Bernstein—Lange "McTiny"
handles this scenario.

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e [or forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.
It's crazy if post-quantum
standards can't handle this!”

22

Bernstein—-Lange “McTiny"
handles this scenario.

23

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,

| want a tiny network server.
e [or forward secrecy,

| want the server to encrypt a

session key to an ephemeral

public key sent by the client.
e [his forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 12807

Either way, your key Is too big.
It's crazy if post-quantum
standards can't handle this!”

22

23
Bernstein—Lange "McTiny"

handles this scenario.

1. The easy part: Client
encrypts session key to server's
long-term McEliece public key.
This establishes an encrypted
authenticated session.

"Here's a natural scenario that
McEliece can't possibly handle:
e [o stop memory floods,
| want a tiny network server.
e [or forward secrecy,
| want the server to encrypt a
session key to an ephemeral
public key sent by the client.
e [his forces the public key
to fit into a network packet.
Is that 1500 bytes? Or 12807

Either way, your key Is too big.

It's crazy if post-quantum
standards can't handle this!”

22

Bernstein—-Lange “McTiny"
handles this scenario.

1. The easy part: Client
encrypts session key to server's
long-term McEliece public key.
This establishes an encrypted
authenticated session.

Attacker who records this session
and later steals server’s secret key
can then decrypt everything.
Remaining problem:

within this session, encrypt to an

ephemeral key for forward secrecy.

23

a natural scenario that
> can't possibly handle:
p memory floods,

a tiny network server.
rward secrecy,

the server to encrypt a
1 key to an ephemeral
key sent by the client.
orces the public key
nto a network packet.

1500 bytes? Or 12807

way, your key Is too big.

y If post-quantum
s can't handle this!”

22

23
Bernstein—Lange "McTiny"

handles this scenario.

1. The easy part: Client
encrypts session key to server's
long-term McEliece public key.
This establishes an encrypted
authenticated session.

Attacker who records this session
and later steals server's secret key
can then decrypt everything.
Remaining problem:

within this session, encrypt to an
ephemeral key for forward secrecy.

2. Clien
public ke

K11
K2 1

Kr,l
Each blc
to fit int

scenario that
ssibly handle:
' tloods,
twork server.
ecy,

r to encrypt a
1 ephemeral
oy the client.
bublic key
vork packet.

es? Or 12807

key Is too big.

uantum
ndle this!”

22

23
Bernstein—Lange "McTiny"

handles this scenario.

1. The easy part: Client
encrypts session key to server's
long-term McEliece public key.
This establishes an encrypted
authenticated session.

Attacker who records this session
and later steals server’s secret key
can then decrypt everything.
Remaining problem:

within this session, encrypt to an
ephemeral key for forward secrecy.

2. Client decompc
public key K = R

Ki1 Kio2 K
Ko1 Koo K
Kr1 Kr2 K

Each block is sma
to fit into a netwo

1at
dle:

22

23
Bernstein—Lange "McTiny"

handles this scenario.

1. The easy part: Client
encrypts session key to server's
long-term McEliece public key.
This establishes an encrypted
authenticated session.

Attacker who records this session
and later steals server's secret key
can then decrypt everything.
Remaining problem:

within this session, encrypt to an
ephemeral key for forward secrecy.

2. Client decomposes ephen
public key K = R' into blo.

Ki1 Kio Ki3
Ko1 Koo Koz

Kr,l Kr,2 Kr,3
Each block is small enough
to fit into a network packet.

Bernstein—Lange “McTiny"
handles this scenario.

1. The easy part: Client
encrypts session key to server's
long-term McEliece public key.
This establishes an encrypted
authenticated session.

Attacker who records this session
and later steals server's secret key
can then decrypt everything.
Remaining problem:

within this session, encrypt to an
ephemeral key for forward secrecy.

23

2. Client decomposes ephemeral
public key K = R into blocks:

Kii1 Kiz2 K13z ... Kiyg
Ko1 Koo Koz ... Koy
Kr,l Kr,2 Kr,3 L Kr,Z

Each block is small enough
to fit into a network packet.

24

Bernstein—Lange “McTiny"
handles this scenario.

1. The easy part: Client
encrypts session key to server's
long-term McEliece public key.
This establishes an encrypted
authenticated session.

Attacker who records this session
and later steals server’s secret key
can then decrypt everything.
Remaining problem:

within this session, encrypt to an

ephemeral key for forward secrecy.

23

2. Client decomposes ephemeral

public key K = R into blocks:
Kii1 Kiz2 Ki3 K1¢
Ko1 Koo Koz3 Ko ¢
Kr,l Kr,2 Kr,3 Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends K; ; to server.
Server sends back K je.'

encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

24

n—Lange “McTiny"
this scenario.

asy part: Client
session key to server's
m McEliece public key.
ablishes an encrypted
cated session.

~who records this session
r steals server’'s secret key
| decrypt everything.

ng problem:

11S session, encrypt to an
al key for forward secrecy.

23

2. Client decomposes ephemeral

public key K = R into blocks:
Ki1 Kio Ki3 K1¢
K1 Koo Ki3 Ko ¢
Kr,l Kr,2 Kr,3 Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends Kj ; to server.
Server sends back K je.'

encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

24

4. Clien
containi
Server s

‘McTiny"
rio.

Client

2y to server's
e public key.
1 encrypted
on.

rds this session

rver's secret key
verything.

n:

, encrypt to an

forward secrecy.

23

2. Client decomposes ephemeral
public key K = R into blocks:

Kii1 Kiz2 Ki3z3 ... Kiyg
Ko1 Koo Koz ... Koy
Kr,l Kr,2 Kr,3 L Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends K; ; to server.
Server sends back K je.'

encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

24

4. Client sends on
containing several
Server sends back

or's

ey.

SSion
et key

[O an
2Crecy.

23

2. Client decomposes ephemeral
public key K = R into blocks:

Kii1 Kiz2 Ki3z3 ... Kiyg
Ko1 Koo Koz ... Koy
Kr,l Kr,2 Kr,3 . Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends Kj ; to server.

Server sends back K je.'

encrypted to a server cookie key.

Server cookie key is not per-client.

Key Is erased after a few minutes.

24

4. Client sends one packet

containing several K,-,je-T.

Server sends back combinat;

2. Client decomposes ephemeral
public key K = R into blocks:

Kii1 Kiz2 Ki3z3 ... Kiyg
Ko1 Koo Koz ... Koy
Kr,l Kr,2 Kr,3 L Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends K; ; to server.
Server sends back K je.'

encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

24

4. Client sends one packet

containing several K,-,je-T.

Server sends back combination.

25

2. Client decomposes ephemeral

public key K = R into blocks:
Kii1 Ki2 Ki3 K1¢
Ko1 Koo Koz3 Ko ¢
Kr,l Kr,2 Kr,3 Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends K; ; to server.
Server sends back K je.'

encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

24

4. Client sends one packet
containing several K,-,je-T.

Server sends back combination.

5. Repeat to combine everything,
including I,_, part of H.

25

2. Client decomposes ephemeral

public key K = R into blocks:
Kii1 Ki2 Ki3 K1¢
Ko1 Koo Koz3 Ko ¢
Kr,l Kr,2 Kr,3 Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends K; ; to server.
Server sends back K je.'

encrypted to a server cookie key.

Server cookie key is not per-client.
Key is erased after a few minutes.

24

4. Client sends one packet
containing several K,-,je-T.

Server sends back combination.

5. Repeat to combine everything,
including I,_, part of H.

6. Server sends final He'
directly to client,
encrypted by session key
but not by cookie key.

7. Client decrypts.

25

2. Client decomposes ephemeral

public key K = R into blocks:
Kii1 Ki2 Ki3 K1¢
Ko1 Koo Koz3 Ko ¢
Kr,l Kr,2 Kr,3 Kr,Z

Each block is small enough
to fit into a network packet.

3. Client sends K; ; to server.

Server sends back K je.'

encrypted to a server cookie key.

Server cookie key is not per-client.

Key Is erased after a few minutes.

24

4. Client sends one packet
containing several K,-,je-T.

Server sends back combination.

5. Repeat to combine everything,
including I,_, part of H.

6. Server sends final He'
directly to client,
encrypted by session key
but not by cookie key.

7. Client decrypts.

Forward secrecy: Once cookie key
and secret key for H are erased,
client and server cannot decrypt.

25

t decomposes ephemeral
sy K = R into blocks:

Kio Ki3 K¢
Koo K3 Ko ¢
Kr,2 Kr,3 Kr,Z

ck 1s small enough
0 a network packet.

t sends K; ; to server.

ends back K,-,jejT

d to a server cookie key.

ookie key Is not per-client.

rased after a few minutes.

4. Client sends one packet
containing several K,-,je-T.

Server sends back combination.

5. Repeat to combine everything,
including I,,_, part of H.

6. Server sends final He'
directly to client,
encrypted by session key
but not by cookie key.

7. Client decrypts.

Forward secrecy: Once cookie key
and secret key for H are erased,
client and server cannot decrypt.

25

Classic |

Security
by 40 ye

Cipherte
IND-CC

Open-so
fast con:
also FP(

No pate

Big keys

with tin

https:,

ses ephemeral
-

into blocks:

13 .- Kl,Z
D3 ... Kz,g

r,3 S Kr’e
Il enough
rk packet.

J to server.

e
K,Jej

ver cookie key.

IS not per-client.

- a few minutes.

4. Client sends one packet
containing several K,-,je-T.

Server sends back combination.

5. Repeat to combine everything,
including I,_, part of H.

6. Server sends final He'
directly to client,
encrypted by session key
but not by cookie key.

(. Client decrypts.

Forward secrecy: Once cookie key
and secret key for H are erased,
client and server cannot decrypt.

25

Classic McEliece r

Security asymptot
by 40 years of cry;

Ciphertexts among

IND-CCA2 securit

Open-source imple
fast constant-time
also FPGA implen

No patents.

Big keys, but still
with tiny network

https://classic

| key.

client.

nutes.

24

4. Client sends one packet
containing several K,-,je-T.

Server sends back combination.

5. Repeat to combine everything,
including I,,_, part of H.

6. Server sends final He'
directly to client,
encrypted by session key
but not by cookie key.

7. Client decrypts.

Forward secrecy: Once cookie key
and secret key for H are erased,
client and server cannot decrypt.

25

Classic McEliece recap

Security asymptotics unchar
by 40 years of cryptanalysis.

Ciphertexts among the shor

IND-CCAZ2 security.

Open-source implementatior
fast constant-time software,
also FPGA implementation.

No patents.

Big keys, but still compatibl
with tiny network servers.

https://classic.mcelie:

4. Client sends one packet
containing several K,-,je-T.

Server sends back combination.

5. Repeat to combine everything,
including I,_, part of H.

6. Server sends final He'
directly to client,
encrypted by session key
but not by cookie key.

(. Client decrypts.

Forward secrecy: Once cookie key
and secret key for H are erased,
client and server cannot decrypt.

25

26
Classic McEliece recap

Security asymptotics unchanged
by 40 years of cryptanalysis.

Ciphertexts among the shortest.

IND-CCAZ2 security.

Open-source implementations:
fast constant-time software,
also FPGA implementation.

No patents.

Big keys, but still compatible
with tiny network servers.

https://classic.mceliece.org

