McTiny: Encoding and decoding

McEliece for tiny network servers 1978 McEliece public key:

Daniel J. Bernstein, matrix G over F».

uic.edu, rub.de Normally m — mG is injective.

Tanja Lange, tue.nl

Fundamental literature:

1962 Prange (attack)

-+ many more attack papers.
1968 Berlekamp (decoder).
1970-1971 Goppa (codes).
1978 McEliece (cryptosystem).
1986 Niederreiter (compression)
+ many more optimizations.




McTiny: Encoding and decoding

McEliece for tiny network servers 1978 McEliece public key:

Daniel J. Bernstein, matrix G over F».
uic.edu, rub.de Normally m — mG is injective.
Tanja Lange, tue.nl Ciphertext: vector C = mG + e.

Uses secret codeword mG,

. welight-w error vector e.
Fundamental literature: S

1962 Prange (attack)

-+ many more attack papers.
1968 Berlekamp (decoder).
1970-1971 Goppa (codes).
1978 McEliece (cryptosystem).
1986 Niederreiter (compression)
+ many more optimizations.




McTiny: Encoding and decoding

McEliece for tiny network servers 1978 McEliece public key:

Daniel J. Bernstein, matrix G over F».
uic.edu, rub.de Normally m — mG is injective.
Tanja Lange, tue.nl Ciphertext: vector C = mG + e.

Uses secret codeword mG,

. welight-w error vector e.
Fundamental literature: S

1962 Prange (attack) 1978 parameters for 294 security

-+ many more attack papers. goal: 512 x 1024 matrix, w = 50.
1968 Berlekamp (decoder).

1970-1971 Goppa (codes).
1978 McEliece (cryptosystem).
1986 Niederreiter (compression)
+ many more optimizations.




McTiny:
McEliece for tiny network servers

Daniel J. Bernstein,

ulc.edu, rub.de

Tanja Lange, tue.nl

Encoding and decoding

Fundamental literature:

1962 Prange (attack)

-+ many more attack papers.
1968 Berlekamp (decoder).
1970-1971 Goppa (codes).
1978 McEliece (cryptosystem).
1986 Niederreiter (compression)
+ many more optimizations.

1978 McEliece public key:
matrix G over F».
Normally m +— mG is injective.

Ciphertext: vector C = mG + e.
Uses secret codeword mG,
weight-w error vector e.

1978 parameters for 2% security

goal: 512 x 1024 matrix, w = 50.

Public key 1s secretly generated
with binary Goppa code structure
that allows efficient decoding:

C — mG, e.



= for tiny network servers

. Bernstein,

1, Tub.de

inge, tue.nl

Encoding and decoding

ental literature:

ange (attack)

more attack papers.
rlekamp (decoder).

71 Goppa (codes).
-Eliece (cryptosystem).
2derreiter (compression)
more optimizations.

1978 McEliece public key:
matrix G over F».
Normally m +— mG is injective.

Ciphertext: vector C = mG + e.
Uses secret codeword mG,
weight-w error vector e.

1978 parameters for 2% security

goal: 512 x 1024 matrix, w = 50.

Public key Is secretly generated
with binary Goppa code structure
that allows efficient decoding:

C — mG,e.

Binary (

Paramet
w € {2,
ne{wl



network servers

1,

.nl

Encoding and decoding

ture:

ck)

ick papers.

decoder).
(codes).

yptosystem).
(compression)

'mizations.

1978 McEliece public key:
matrix G over F».
Normally m +— mG is injective.

Ciphertext: vector C = mG + e.
Uses secret codeword mG,
weight-w error vector e.

1978 parameters for 2°4 security
goal: 512 x 1024 matrix, w = 50.

Public key 1s secretly generated
with binary Goppa code structure
that allows efficient decoding:

C — mG, e.

Binary Goppa cod

Parameters: g € {

we{2,3,...,|(q
nec{wlgg+1,..



rvers

Encoding and decoding

ion)

1978 McEliece public key:

matrix G over F».
Normally m +— mG is injective.

Ciphertext: vector C = mG + e.
Uses secret codeword mG,
weight-w error vector e.

1978 parameters for 2% security

goal: 512 x 1024 matrix, w = 50.

Public key Is secretly generated
with binary Goppa code structure
that allows efficient decoding:

C — mG,e.

Binary Goppa codes

Parameters: g € {8, 16, 32,

wei2,3,....1(g—1)/lgg
nec{wlgg+1,...,9—1,c



Encoding and decoding Binary Goppa codes

1978 McEliece public key: Parameters: g € {8,16,32,...};
matrix G over F». w e {2,3,..., (g—1)/lgql};
Normally m — mG is injective. ne{wlgg+1,..., qg—1,q}.

Ciphertext: vector C = mG + e.
Uses secret codeword mG,
weight-w error vector e.

1978 parameters for 2% security

goal: 512 x 1024 matrix, w = 50.

Public key 1s secretly generated
with binary Goppa code structure
that allows efficient decoding:

C — mG,e.




Encoding and decoding

1978 McEliece public key:
matrix G over F».
Normally m +— mG is injective.

Ciphertext: vector C = mG + e.
Uses secret codeword mG,
weight-w error vector e.

1978 parameters for 2% security

goal: 512 x 1024 matrix, w = 50.

Public key 1s secretly generated
with binary Goppa code structure
that allows efficient decoding:

C — mG,e.

Binary Goppa codes

Parameters: g € {8,16,32,...};

wedi2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct aq,...,ap € Fg;
monic irreducible degree-w

polynomial g € Fg[x].



Encoding and decoding Binary Goppa codes

1978 McEliece public key: Parameters: g € {8,16,32,...};
matrix G over F». we{2,3,...,][(g—1)/1gql|};
Normally m — mG is injective. ne{wlgg+1,...,9—1,q}.
Ciphertext: vector C = mG + e. Secrets: distinct aq,...,ap € Fg;
Uses secret codeword mG, monic irreducible degree-w
weight-w error vector e. polynomial g € Fg[x].

1978 parameters for 2% security Goppa code: kernel of

goal: 512 x 1024 matrix, w = 50. the map v — > . v;/(x — a;)
from FJ to Fy[x]|/g.

Public key Is secretly generated | |
Normally dimension n — wlggqg.

with binary Goppa code structure
that allows efficient decoding:
C — mG, e.




Encoding and decoding

1978 McEliece public key:

matrix G over F».
Normally m +— mG is injective.

Ciphertext: vector C = mG + e.
Uses secret codeword mG,

weight-w error vector e.

264

1978 parameters for security

goal: 512 x 1024 matrix, w = 50.

Public key 1s secretly generated
with binary Goppa code structure
that allows efficient decoding:

C — mG,e.

Binary Goppa codes

Parameters: g € {8,16,32,...};

wedi2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct aq,...,ap € Fg;
monic irreducible degree-w
polynomial g € Fg[x].

Goppa code: kernel of

the map v — > . v;/(x — a;)
from FJ to Fy[x]|/g.

Normally dimension n — wlgq.

McEliece uses random G & Féxn

whose image Is this code.



o and decoding

“Eliece public key:
, over Fo.
y m— mG is injective.

xt: vector C = mG + e.
ret codeword mG,
V error vector e.

rameters for 2% security

2 x 1024 matrix, w = 50.

ey Is secretly generated
ary Goppa code structure
ws efficient decoding:

;, €.

Binary Goppa codes

Parameters: g € {8,16,32,...};

wei2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct aq, ..., € Fg;
monic irreducible degree-w
polynomial g € Fg[x].

Goppa code: kernel of

the map v — > . v;/(x — a;)
from FJ to Fy[x]|/g.

Normally dimension n — wlgq.

McEliece uses random G & Féxn

whose image Is this code.

One-way

Fundam
Can attz:
random

key G at



oding

olic key:

7 IS Injective.

C =mG + e.
ord mG,
“tor e.

or 204 secu rity

matrix, w = 5b0.

tly generated
- code structure
't decoding:

Binary Goppa codes

Parameters: g € {8,16,32,...};

wedi2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct aq,...,ap € Fg;
monic irreducible degree-w

polynomial g € Fg[x].

Goppa code: kernel of

the map v — ) . v;/(x — a;)
from FJ to Fy[x]|/g.

Normally dimension n — wlgq.

McEliece uses random G & Féxn

whose image Is this code.

One-wayness (“O\

Fundamental secu
Can attacker effici
random m, e giver
key G and ciphert



urity

= 50.

ted
lcture

g.

Binary Goppa codes

Parameters: g € {8,16,32,...};

wei2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1,q}.

Secrets: distinct aq,...,op € Fg;
monic irreducible degree-w

polynomial g € Fg[x].

Goppa code: kernel of

the map v — > . v;/(x — a;)
from FJ to Fy[x]|/g.

Normally dimension n — wlgqg.

McEliece uses random G & Féxn

whose image Is this code.

One-wayness ("OW-Passive’

Fundamental security questi
Can attacker efficiently find
random m, e given random |
key G and ciphertext mG+¢



Binary Goppa codes

Parameters: g € {8,16,32,...};

wei2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1q}.

Secrets: distinct aq,...,ap € Fg;
monic irreducible degree-w

polynomial g € Fg[x].

Goppa code: kernel of

the map v — ) . v;/(x — a;)
from FJ to Fy[x]|/g.

Normally dimension n — wlgq.

McEliece uses random G & Féxn

whose image Is this code.

One-wayness ( “OW-Passive” )

Fundamental security question:
Can attacker efficiently find
random m, e given random public
key G and ciphertext mG+e?



Binary Goppa codes

Parameters: g € {8,16,32,...};

wei2,3,.... [(g—1)/lgql};
ne{wlgg+1,...,9—1q}.

Secrets: distinct aq,...,ap € Fg;
monic irreducible degree-w
polynomial g € Fg[x].

Goppa code: kernel of

the map v — ) . v;/(x — a;)
from FJ to Fy[x]|/g.

Normally dimension n — wlgq.

McEliece uses random G & Féxn

whose image Is this code.

One-wayness ( “OW-Passive” )

Fundamental security question:
Can attacker efficiently find
random m, e given random public
key G and ciphertext mG+e?

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.



Binary Goppa codes

Parameters: g € {8,16,32,...};

Secrets: distinct aq,...,ap € Fg;

monic irreducible degree-w

polynomial g € Fg[x].

Goppa code: kernel of

the map v — ) . v;/(x — a;)
from FJ to Fy[x]|/g.

Normally dimension n — wlgq.

McEliece uses random G & Féxn

whose image Is this code.

One-wayness ( “OW-Passive” )

Fundamental security question:
Can attacker efficiently find
random m, e given random public
key G and ciphertext mG+e?

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A\ — oo to achieve 2* security

against Prange’s attack.
Here cg ~ 0.7418860694.



0ppa codes

ers: g € {8,16,32,...};

distinct a1, ..., a, € Fg;
reducible degree-w
ial g € Fglx].

ode: kernel of

v ) i vi/(x — aj)

to Fq[x]/g.

y dimension n — wlggqg.

> uses random G € Féxn
nage Is this code.

One-wayness ( "OW-Passive” )

Fundamental security question:
Can attacker efficiently find
random m, e given random public
key G and ciphertext mG+e?

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A — oo to achieve 2* security

against Prange’s attack.
Here cg ~ 0.7418860694.

>26 sub
analyzin

1981 Cl:

Cre
1988 Le
1988 Le
1989 Kr
1989 St
1989 D
1990 Co
1990 val
1991 Du
1991 Co
1993 Ch
1993 Ch




Klw--,anEFq;

degree-w
[x].

o| of

vi/(x — o)
g.
nn—wlgaq.

dom G & Féxn
s code.

One-wayness (“OW-Passive” )

Fundamental security question:
Can attacker efficiently find
random m, e given random public
key G and ciphertext mG+e?

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A\ — oo to achieve 2* security
against Prange’s attack.

Here cg ~ 0.7418860694.

>26 subsequent p
analyzing one-way

1981 Clark—Cain,
crediting On

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Good

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Gooc

1993 Chabanne-C

1993 Chabaud.




-
S5 .

Fk><n

One-wayness (“OW-Passive” )

Fundamental security question:
Can attacker efficiently find
random m, e given random public
key G and ciphertext mG+e?

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A — oo to achieve 2* security

against Prange’s attack.
Here cg ~ 0.7418860694.

>26 subsequent publication:
analyzing one-wayness of sy:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farr

1993 Chabanne—Courteau.

1993 Chabaud.




One-wayness (“OW-Passive” )

Fundamental security question:
Can attacker efficiently find
random m, e given random public
key G and ciphertext mG+e?

1962 Prange: simple attack idea
guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)
uses (cp + o(1))A%(Ig X)?-bit keys
as A\ — oo to achieve 2* security
against Prange’s attack.

Here cg ~ 0.7418860694.

>26 subsequent publications
analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.
1993 Chabaud.




ness (“OW-Passive")

ental security question:
icker efficiently find

m, e given random public
1d ciphertext mG+e?

ange: simple attack idea
sizes In 1978 McEliece.

Fliece system

er key-size optimizations)
+ 0(1))X?(Ig X)?-bit keys
% to achieve 2 security
Prange’'s attack.

~ 0.7418860694.

>26 subsequent publications

analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.

1993 Chabaud.

1994 val
1994 Ca
1998 Ca
1998 Ca
2008 Be
2009 Be

val
2009 Fir
2011 Be
2011 M:
2012 Be
2013 Ha
2015 M:
2016 Ca
2017 Bo



NV-Passive” )

rity question:
ently find

' random public
ext mG—+e?

ple attack idea
78 MckEliece.

em
e optimizations)
’(Ig X)?-bit keys
eve 2 security
ttack.

360694

>26 subsequent publications

analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.

1993 Chabaud.

1994 van Tilburg.
1994 Canteaut—Ck
1998 Canteaut—Ct
1998 Canteaut—Se
2008 Bernstein—Lz:
2009 Bernstein—Lz:
van Tilborg.
2009 Finiasz—Senc
2011 Bernstein—Lz
2011 May—Meurer
2012 Becker—Joux
2013 Hamdaoui-S
2015 May—Ozerov
2016 Canto Torres
2017 Both—May.




on:

yublic
7

Idea
ce.

|tions)
t keys
urity

>26 subsequent publications

analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.

1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.

1998 Canteaut—Chabaud.

1998 Canteaut—Sendrier.

2008 Bernstein—Lange—Pete

2009 Bernstein—Lange—Pete
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Pete

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Me

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier

2017 Both—May.




>26 subsequent publications

analyzing one-wayness of system:

1981 Clark—Cain,
crediting Omura.

1988 Lee—Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey—Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey—Goodman—Farrell.

1993 Chabanne—Courteau.
1993 Chabaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

2017 Both—May.



sequent publications

o one-wayness of system:

irk—Cain,

diting Omura.
e—Brickell.

on.

ouk.

rn.

mer.
ffey—Goodman.

1 Tilburg.

mer.
ffey—Goodman—Farrell.
abanne—Courteau.

abaud.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

2017 Both—May.

The Mc
uses (g
as A\ —
against .
Same ¢



ublications

ness of system:

1ura.

'man.

'man—Farrell.
ourteau.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

2017 Both—May.

The McEliece syst
uses (cp 4+ o(1))\
as A — 0o to achi

against all attacks
Same ¢y ~ 0.7418



V)

stem:

ell.

1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

2017 Both—May.

The McEliece system

uses (cp + o(1))X%(Ig X)?-bi
as A\ — 00 to achieve 2* sec
against all attacks known to

Same ¢ ~ 0.7418860694.



1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

2017 Both—May.

The McEliece system
uses (cg + o(1))A?(Ig X)?-bit keys
as A\ — oo to achieve 22 security

against all attacks known today.
Same ¢g ~ 0.7418860694.



1994 van Tilburg.

1994 Canteaut—Chabanne.
1998 Canteaut—Chabaud.
1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—
van Tilborg.

2009 Finiasz—Sendrier.

2011 Bernstein—Lange—Peters.

2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.

2015 May—Ozerov.

2016 Canto Torres—Sendrier.

2017 Both—May.

The McEliece system
uses (cg + o(1))A?(Ig X)?-bit keys
as A\ — oo to achieve 22 security

against all attacks known today.
Same ¢g ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks:
2008 Bernstein, 2017 Kachigar—
Tillich, 2018 Kirshanova.



1994 van Tilburg.
1994 Canteaut—C
1998 Canteaut—C

14

14

DANNE.

haud.

1998 Canteaut—Sendrier.
2008 Bernstein—Lange—Peters.

2009 Bernstein—Lange—Peters—

van Tilborg.

2009 Finiasz—Sendrier.
2011 Bernstein—Lange—Peters.
2011 May—Meurer—Thomae.

2012 Becker—Joux—May—Meurer.

2013 Hamdaoui—Sendrier.
2015 May—Ozerov.
2016 Canto Torres—Sendrier.

2017 Both—May.

The McEliece system

uses (cg + o(1))A?(Ig X)?-bit keys
as A\ — oo to achieve 22 security
against all attacks known today.

Same ¢g ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks:
2008 Bernstein, 2017 Kachigar—
Tillich, 2018 Kirshanova.

Modern example,
mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
qg = 8192, n = 6960, w = 119.



1 Tilburg.
nteaut—Cha

nteaut—Cha

DANNE.

baud.

nteaut—Sendrier.

rnstein—Lange—Peters.

rnstein—Lange—Peters—

1 Tilborg.

asz—Sendrier.

rnstein—Lange—Peters.

y—Meurer—Thomae.

cker—Joux—May—Meurer.

mdaoui—Sendrier.

1y—Ozerov.

nto Torres—Sendrier.

th—May.

The McEliece system

uses (cg + o(1))A?(Ig X)?-bit keys
as A — oo to achieve 2* security
against all attacks known today.

Same ¢ ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks:
2008 Bernstein, 2017 Kachigar—
Tillich, 2018 Kirshanova.

Modern example,
mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
qg = 8192, n = 6960, w = 119.

NIST co

2016: U
Standar«
“post-qL

2017: 6

2019: N
20 subm



1dDaNNe.

1abaud.
ndrier.
inge—Peters.
inge—Peters—

rier.
nge—Peters.
—Thomae.

—May—Meurer.

endrier.

—Sendrier.

The McEliece system

uses (cg + o(1))A?(Ig X\)?-bit keys
as A\ — oo to achieve 22 security
against all attacks known today.

Same ¢ ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks:
2008 Bernstein, 2017 Kachigar—
Tillich, 2018 Kirshanova.

Modern example,
mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
qg = 8192, n = 6960, w = 119.

NIST competition

2016: U.S. Natior
Standards and Tec
“post-quantum’ ¢

2017: 69 complete

2019: NIST select
26 submissions for



S.

S.

urer.

The McEliece system

uses (cg + o(1))A?(Ig X)?-bit keys
as A — oo to achieve 22 security
against all attacks known today.

Same ¢ ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks:
2008 Bernstein, 2017 Kachigar—
Tillich, 2018 Kirshanova.

Modern example,
mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
qg = 8192, n = 6960, w = 119.

NIST competition

2016: U.S. National Institut
Standards and Technology s
“post-quantum’ competitiol

2017: 69 complete submissi

2019: NIST selects
26 submissions for round 2.



The McEliece system NIST competition
uses (cg + o(1))A?(Ig X)?-bit keys
as A\ — oo to achieve 22 security

2016: U.S. National Institute of

| Standards and Technology starts
against all attacks known today.

“post-quantum” competition.
Same ¢y ~ 0.7418860694.

| | 2017: 69 complete submissions.
Replacing A with 2\
stops all known quantum attacks: 2019: NIST selects

2008 Bernstein, 2017 Kachigar— 26 submissions for round 2.
Tillich, 2018 Kirshanova.

Modern example,
mceliece6960119 parameter set
(2008 Bernstein—Lange—Peters):
qg = 8192, n = 6960, w = 119.




The McEliece system

uses (cg + o(1))A?(Ig X)?-bit keys

as A\ — oo to achieve 22 security
against all attacks known today.

Same ¢g ~ 0.7418860694.

Replacing A with 2\

stops all known quantum attacks:

2008 Bernstein, 2017 Kachigar—
Tillich, 2018 Kirshanova.

Modern example,

mceliece6960119 parameter set

(2008 Bernstein—Lange—Peters):
qg=3192, n =6960, w = 1109.

NIST competition

2016: U.S. National Institute of
Standards and Technology starts
“post-quantum’” competition.

2017: 69 complete submissions.

2019: NIST selects
26 submissions for round 2.

“Classic McEliece’: submission
from team of 12 people.

Round-2 options:
3192128, 6960119, 66838128,
460896, 348864.



Fliece system
+ o(1))A?(Ig X)?-bit keys
> to achieve 2* security

1l attacks known today.
~ 0.7418860694.

g A with 2\

known quantum attacks:
rnstein, 2017 Kachigar—
2018 Kirshanova.

example,
26960119 parameter set
ernstein—Lange—Peters):

2. n=0900, w=119.

NIST competition

2016: U.S. National Institute of
Standards and Technology starts
“post-quantum’” competition.

2017: 69 complete submissions.

2019: NIST selects
26 submissions for round 2.

“Classic McEliece’: submission
from team of 12 people.

Round-2 options:
3192128, 6960119, 66838128,
460896, 348864.

Is Classi
1978 M

1978 Mc
huge amr

Some w
while cle
e.g., Nie
e.g., ma
Classic |

Classic |
more th:



em

’(Ig X)?-bit keys
eve 2 security
known today.

860694
2\

jantum attacks:
)17 Kachigar—
anova.

) parameter set
ange—Peters):
0, w = 119.

NIST competition

2016: U.S. National Institute of
Standards and Technology starts
“post-quantum’” competition.

2017: 69 complete submissions.

2019: NIST selects
26 submissions for round 2.

“Classic McEliece’: submission
from team of 12 people.

Round-2 options:
3192128, 6960119, 66838128,
460896, 348864.

Is Classic McEliec
1978 McEliece? N

1978 McEliece prc
huge amount of fc

Some work impro\
while clearly prese
e.g., Niederreliter «
e.g., many decodi
Classic McEliece L

Classic McEliece 3
more than OW-Pa



tacks:

Tar—

er set
1)
19.

NIST competition

2016: U.S. National Institute of
Standards and Technology starts
“post-quantum’” competition.

2017: 69 complete submissions.

2019: NIST selects
26 submissions for round 2.

“Classic McEliece’: submission
from team of 12 people.

Round-2 options:
3192128, 6960119, 66838128,
460896, 348864.

Is Classic McEliece same as
1978 McEliece? Not exactly

1978 McEliece prompted a
huge amount of followup wc

Some work improves efficien
while clearly preserving secu
e.g., Niederreiter compressic
e.g., many decoding speedu|
Classic McEliece uses all thi

Classic McEliece also aims f
more than OW-Passive secu



NIST competition

2016: U.S. National Institute of
Standards and Technology starts
“post-quantum’” competition.

2017: 69 complete submissions.

2019: NIST selects
26 submissions for round 2.

“Classic McEliece’: submission
from team of 12 people.

Round-2 options:
3192128, 6960119, 66838128,
460896, 348864.

Is Classic McEliece same as
1978 McEliece? Not exactly.

1978 McEliece prompted a
huge amount of followup work.

Some work improves efficiency
while clearly preserving security:
e.g., Niederreiter compression;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece also aims for
more than OW-Passive security.



mpetition

.S. National Institute of
Is and Technology starts
lantum” competition.

) complete submissions.

IST selects
Issions for round 2.

McEliece”: submission
'm of 12 people.

options:
3, 6960119, 6688128,
348864.

Is Classic McEliece same as
1978 McEliece? Not exactly.

1978 McEliece prompted a
huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter compression;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece also aims for
more than OW-Passive security.

Niederre

Generate
of lengtl

/ k
G' €F,

McEliece
random



al Institute of
“hnology starts
ompetition.

> submissions.

S
“round 2.

"+ submission
eople.

J, 6688128,

Is Classic McEliece same as
1978 McEliece? Not exactly.

1978 McEliece prompted a
huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter compression;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece also aims for

more than OW-Passive security.

Niederreiter key c

Generator matrix 1
of length n and di
G e Féxn with T

McEliece public ke
random invertible



e of
tarts

ons.

10N

Is Classic McEliece same as
1978 McEliece? Not exactly.

1978 McEliece prompted a
huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter compression;
e.g., many decoding speedups.
Classic McEliece uses all this.

Classic McEliece also aims for
more than OW-Passive security.

Niederreiter key compressior

Generator matrix for code I
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and SHA-3 “hash function”.

All messages are safe.
Reusing keys is safe.
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