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The state of a computer
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Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

NOT gates

NOTp gate on 3 ¢
(3,1,4,1,5,9,2,6
(1,3,1,4,9,5,6,2



D

73;
73;

/173;

|7 3:

/173;
/173;

[ 73;

/173.

10

e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

b Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).



e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

12



e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

12



e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

12



e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

12



v 3 qubits have state
),0,1,0,0).

ment produces
with probability O;
with probability O;

with probability O;

with probability O;
with probability 0O;

with probability 1;

with probability O;
with probability O.

-anteed outcome.

11 12
NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

Operatic
NOTy, s
Operatic

flipping
Flip: ou



have state

).

luces

abl
abl
abl
abl
abl

abl

abl

ity O;
ity O;
ity O;
ity O;
ity O;
ity 1;
ity O;
ability 0.

tcome.

11 12
NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

Sstate
(1,0,0,0,0,0,0, (
(0,1,0,0,0,0,0, (
(0,0,1,0,0,0,0, (
(0,0,0,1,0,0,0, (
(0,0,0,0,1,0,0, (
(0,0,0,0,0,1,0,
(0,0,0,0,0,0,1, (
(0,0,0,0,0,0,0,

Operation on quail
NOTp, swapping |
Operation after m

flipping bit 0 of re
Flip: output iIs nof



D

12
NOT gates

state Measure

NOT, gate on 3 qubits: (1,0,0,0,0,0,0,0) 000
(3.1,4,1,5,9,2, 6) (0,1,0,0,0,0,0,0) 001
(1,3,1,4,9,5,6,2). (0,0,1,0,0,0,0,0) 010
NOTgy gate on 4 qubits: (0,0,0,1,0,0,0,0) 011
(314.1592653580793)— 0001000 100
(1,3,1,4,9,5.6.2,3,5,8,5,7,9,3,9) (0.0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110

NOT; gate on 3 qubits: (0,0,0,0,0,0,0, 1) 111

(3,1,4,1,5,9,2,6) —

(4,1,3,1,2,6,5,9). Operation on quantum state

NOTp, swapping pairs.
NOT> gate on 3 qubits: Operation after measuremer
(3,1,4,1,5,9,2,6) — flipping bit O of result.
(5,9,2,6,3,1,4,1). Flip: output Is not input.




NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

12

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTp, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13



tes

ate on 3 qubits:
,5,9,2,6) —
1,9,5,6,2).

ate on 4 qubits:
5,9,2,6,5,3,5,8,9,7,9,3) —
9,5,6,2,3,5,8,5,7,9,3,9).

ate on 3 qubits:
,5,9,2,6) —
[,2,6,5,9).

ate on 3 qubits:
,5,9,2,6) —
,3,1,4,1).

12

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTp, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controll

e.g. CN(
(3,1,4,:
(3,1,1,¢



ubits:
) —
).
ubits:

3,5,8,9,7,9,3)
5,8,5,7,9,3,9).

ubits:

12

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controlled-NOT g

eg.CNOTLm
(3,1,4,1,5,9,2,6
(3,1,1,4,5,9,6,2



12

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTp, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output Is not input.

13

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).



state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

14



state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

14
Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

Operation after measurement:
flipping bit 0 /f bit 1 is set; i.e.,




state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

14
Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

Operation after measurement:
flipping bit 0 /f bit 1 is set; i.e.,
eg.CNOTZm

(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).




state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) — (92,91, g0 @ q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3,1,4,1,5,9,2,6) —
(3.9,4,6,5,1,2,1).

14



state measurement
0,0,0,0,0 000
0,0,0,0, O; 001 >
0,0,0,0,0 010

1 0,0,0,0; 011 >
0,1,0,0,0 100

0 O,l,0,0; 101>
0,0,0,1,0)

)n on quantum state:
wapping pairs.

n after measurement:
bit 0 of result.

tput Is not Iinput.

13

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) = (92, 91, g0 @ q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3,1,4,1,5,9,2,6) —
(3,9,4,6,5,1,2,1).

14

Toffoli g

Also knc
controlle

e.g. CCI
(3,1,4,:
(3,1,4,:



measurement

1tum state:
alrs.
easurement:
sult.

. Input.

13

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) — (92,91, 90 @ q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3,1,4,1,5,9,2,6) —
(3.9.4,6,5,1,2,1).

14

Toffoli gates

Also known as
controlled-controll

eg.CCNOTZLm
(3,1,4,1,5,9,2,6
(3,1,4,1,5,9,6,2



13 14

Controlled-NOT gates Toffoli gates
ment
> e.g. CNOT1 o: Also known as
(3,1,4,1,5,9,2,6) — controlled-controlled-NOT ¢
— (L145896.2) e.g. CCNOTo 1 0:
Operation after measurement: (3,1,4,1,5,9,2,6) —
"> flipping bit 0 if bit 1 is set; i.e. (3,1,4,1,5,9,6,2).
(92,91, 90) — (92, g1, G0 @ q1).
:::> eg.CNOTZm

(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3,1,4,1,5,9,2,6) —
(3,9,4,6,5,1,2,1).

—t

1T.




Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6) —
(3.1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) — (92,91, g0 @ q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3,1,4,1,5,9,2,6) —
(3,9.4,6,5,1,2,1).

14

Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

15



Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6) —
(3.1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) — (92,91, g0 @ q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3,1,4,1,5,9,2,6) —
(3,9.4,6,5,1,2,1).

14

Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:
(92, 91, 90) — (g2, 91, 90 @ q192).

15



Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6) —
(3.1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) — (92,91, g0 @ q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3.1,4,1,5,9,2,6) —
(3,9.4,6,5,1,2,1).

14

Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

eg.CCNOTQLZ
(3,1,4,1,5,9,2,6) —
(3,1,4,6,5,9,2,1).

15



ed-NOT gates

JT10:
,5,9,2,6) —
1,5,9,6,2).

n after measurement:

bit O /f bit 1 is set: i.e.,
70) — (g2, 91,90 ® q1).

JT>p:
,5,9,2,6) —
[,9,5,6,2).

)T 2:
,5,9,2,6) —
,5,1,2,1).

14

15
Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6, 2).

Operation after measurement:
(92, 91, 90) — (92, 91, 90 @ q192).

eg.CCNOTQLZ
(3,1,4,1,5,9,2,6) —
(3,1,4,6,5,9,2,1).

More sh

Combine
to build



ates

) —
).

easurement:

t 1 1s set; I.e..
.q1, G0 D q1).

14

Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

eg.CCNOTQLZ
(3,1,4,1,5,9,2,6) —
(3,1,4,6,5,9,2,1).

15

More shuffling

Combine NOT, CI
to build other pert



1t:

l.e.,
71)-

14

Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

eg.CCNOTQLZ
(3,1,4,1,5,9,2,6) —
(3,1,4,6,5,9,2,1).

15

More shuftfling

Combine NOT, CNOT, Toff
to build other permutations.



Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

eg.CCNOTQLZ
(3,1,4,1,5,9,2,6) —
(3,1,4,6,5,9,2,1).

15

More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

16



Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

eg.CCNOTQLZ
(3,1,4,1,5,9,2,6) —
(3,1,4,6,5,9,2,1).

15

16
More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CCNOTg 10
31465921

CNOTQl ><j ></

36415129

NO Ty >< >< >< ><

6 3141592



ates

Wn as
d-controlled-NOT gates.

NOT> 1 0:
,5,9,2,6) —
[,5,9,6,2).

n after measurement:

10) — (92,91, 90 ® q192).

NOTg 1 2:
,5,9,2,6) —
,5,9,2,1).

15

More shuftfling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CCNOTp 10
31465921

CNOTO’l >< ><

364151209

NO Ty >< >< >< ><

6 3141592

16

Hadama

Hadama

(a, b) —

3 1
X |
4 2



ed-NOT gates.

) —
).

easurement:

g1, 90 D q192).

) —

).

15

More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CCNOTO,LQ
31465921

CNOTO,l >< ><

36415129

NOTo >< >< >< ><

6 3141592

16

Hadamard gates

Hadamardp:

(a,b) — (a+ b, a

3 1 4 1
XX
4 2 5 3



ates.

1t
7192)-

15

More shuftfling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CCNOTp 10
31465921

CNOTO’l >< ><

364151209

NO Ty >< >< >< ><

6 3141592

16

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1
XX
4 2 5 3

ﬂ

5 0
X

14 —4 ¢




More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CCNOTO,LQ
31465921

CNOTO,l >< ><

364151209

NOTo >< >< >< ><

6 3141592

16

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1
XX
4 2 5 3

2

X TX

14 —4 8

6

—4

17



More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CCNOTO,LQ
31465921

X X

364151209

X XX X

6 3141592

CNOTO,l

NOT,

16

17
Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX IXT X
4 2 5 3 14 -4 38 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

k]

1

KK

S8



uffling

> NOT, CNOT, Toffoli

other

permutations.

s of gates to

positions by distance 1:

314159 26

P

659 21

i

3 1

%

o
@)
O

6 3141592

16

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
X IXT X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K]

17

Simon's
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16 17

Hadamard gates Simon'’s algorithm
NOT, Toffoli Hadamardp: Step 1. Set up pu
mutations. (a,b) > (a+ b,a— b). 1,0,0,0,0,0,0,0,
o 0,0,0,0,0,0,0,0,
by distance 1. 3 1 4 1 5 9 2 6 0,0,0,0,0,0,0,0,
XX IXE X eoasoo
4159 26

>< 4 2 5 3 14 —4 8 —4 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0
Hadamard;y: | T
Ao 92 0,0,0,0,0,0,0,0,
>< >< (a,b, ¢, d) = 0,0,0,0,0,0,0,0.

» 4 1 5129 (a+c,b+d,a—c,b—d)

1

' 141509 2 T>’<>‘<‘
!

S8

K]
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Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX IXT X
4 2 5 3 14 -4 8 -4
Hadamards:
(a, b, c,d) —

(a+c,b+d,a—c,b—d).

K
KK

KK

K]

17

Simon’s algorithm

Step 1. Set up pure zero st:

1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,00,0,0,0,0,
0,0,00,0,0,0,0,
0,0,0,0,0,0,0,0.



Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |
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18
Simon’s algorithm

Step 1. Set up pure zero state:

O OO OO O O
& &

O OO OO O o o

O OO OO O o o

O OO OO O o o

O OO O O O o O



17
Hadamard gates Simon'’s algorithm

Hadamardp: Step 2. Hadamardp:
(a, b) — (a+ b,a— b). 1.1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
3 1 4 1 5 90 2 6 0,0,0,0,0,0,0,0,
NI IX] XX oonsoos
4 2 5 3 14 -4 8 —4 0,0,0,0,0,0,0,0,
Hadamardj: 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
(a,b,c,d)— 0,0,0,0,0,0,0,0.

(a+c,b+d,a—c,b—d).

K
KK

KK

K |
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Hadamard gates Simon'’s algorithm

Hadamardp: Step 3. Hadamardj:
(a, b) — (a+ b,a— b). 1 1,1,1,0,0,0,0,
0,0,0,0,0,0,0,0,
3 1 4 1 5 9 2 6 0,0,0,0,0,0,0,0,
NI IX] X IX] eesoooo
4 2 5 3 14 —4 8 —4 0,0,0,0,0,0,0,0,
Hadamard;: 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
(a,b,c,d)— 0,0,0,0,0,0,0,0.

(a+c,b+d,a—c,b—d).

K
KK

KK

K |




Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 4. Hadamards:

1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,00,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0.

Each column is a parallel universe.

18



Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5. CNOTg 3:
1,0, 1,
0,1,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,

p—t

O O O O O O +H O ;¢

O O O O O O O =+
O O O O O O = O
O O O O O O O
O O O O O O = O
O O O O O O O

Each column is a parallel universe
performing its own computations.
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Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5b. More shuffling:

1,0,0,0,1,0,0,0,
0,1,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,1,0,0,0,1,0,
0,0,0,10,0,0,1,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0.

Each column is a parallel universe
performing its own computations.

18



Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5c. More shuffling:

1,0,0,0,0,0,0,0,
0,1,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,0,1,0,0,
0,0,1,0,0,0,0,0,
0,0,0,1,0,0,0,0,
0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,1.

Each column is a parallel universe
performing its own computations.

18



Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5d. More shuffling:

1,0,0,0,0,0,0,0,
0,0,000,1,0,0,
0,0,0,0,1,0,0,0,
0,1,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,
0,0,00,0,0,0,1,
0,0,0,0,0,0,1,0,
0,0,0,1,0,0,0,0.

Each column is a parallel universe
performing its own computations.

18



Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5e. More shuffling:

1,0,0,0,0,0,0,0,
0,0,000,1,0,0,
0,0,0,0,1,0,0,0,
0,1,0,0,0,0,0,0,
0,0,1,0,0,0,0,1,
0,0,00,0,0,0,0,
0,0,0,1,0,0,1,0,
0,0,0,0,0,0,0,0.

Each column is a parallel universe
performing its own computations.

18



Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5f. More shuffling:
0,0,
1,0,
0,1,
0,0,
0,0,
0,0,
0,0,
0,0,

O O B O O O O O

Each column is a parallel universe
performing its own computations.
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Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5g. More shuffling:

0,1,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,0,1,0,0,
1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,010,0,1,0,
0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,1.

Each column is a parallel universe
performing its own computations.

18



Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5h. More shuffling:
0,0,0,0,
0,0,
0,0,
0,0,
0,1,
0,0,
0,0,
1,0,

OO O O O rBr O O O
O O O O O O =
O O = O O O O O

Each column is a parallel universe
performing its own computations.

18



Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step bi.
0,0,
0,0,
0,0,
0,0,
0,1,
0,0,
0,0,
1,0,

More shutfling:
,0,1,0,

O O O O +r O O O
O O O O O O = O
O O = O O O O O
O = O O O O O
O O O O O O O B
o O O O O = O

Each column is a parallel universe
performing its own computations.
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Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5j. Final shuffling:
0,0,0,0,0,0,0,0,
0,0,0,1,0,0,1,0,
0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,1,
0,1,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
1,0000,1,0,O0.

Each column is a parallel universe
performing its own computations.

18



Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5j. Final shuffling:
0,0,0,0,0,0,0,0,
0,0,0,1,0,0,1,0,
0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,1,
0,1,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
1,0000,1,0,O0.

Each column is a parallel universe
performing its own computations.
Surprise: u and u @ 101 match.

18
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Hadamard gates Simon'’s algorithm

Hadamardp: Step 6. Hadamardp:
0,0,0,0,0,0,0,0,

a,b) — (a+ b,a—b). T
(a, b) = ( ) 001710011

0
3 1 4 1 5 90 2 6 0,0,0,0,0,0,0,0,
X IX] IXI IX] eontoont
4 2 5 3 14 —4 8 —4 1.1,0,0,1,1,0,0,
Hadamardl: O'O'O'O’O’O’O’O’
0,0,0,0,0,0,0,0,
(a,b,c,d)— 1.1,0,0,1,1,0,0.

(a+c,b+d,a—c,b—d).

K
KK

KK

K |




Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 7. Hadamards:

0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
0,0,00,0,0,0,0,
0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1.

18



Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

18
Simon’s algorithm

Step 8. Hadamardo:

0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,00,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0, 2.



Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |
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18
Simon’s algorithm

Step 8. Hadamardo:

0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,00,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0, 2.

Step 9: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.



