What do quantum computers do?

Daniel J. Bernstein
University of lllinois at Chicago

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction Is
In a quantum computer’s
supported instruction set.

How do we know which
instructions a quantum
computer will support?

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

What do quantum computers do?

Daniel J. Bernstein
University of lllinois at Chicago

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction Is
In a quantum computer’s
supported instruction set.

How do we know which
instructions a quantum
computer will support?

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

What do quantum computers do?

Daniel J. Bernstein
University of lllinois at Chicago

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction Is
In a quantum computer’s
supported instruction set.

How do we know which
instructions a quantum
computer will support?

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”; etc.

What do quantum computers do?

Daniel J. Bernstein
University of lllinois at Chicago

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction Is
In a quantum computer’s
supported instruction set.

How do we know which
instructions a quantum
computer will support?

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.

)y quantum computers do?

. Bernstein
ty of lllinois at Chicago

im algorithm”
n algorithm that

Im computer can run.

juence of instructions,
ych Instruction Is
ntum computer’s
d Instruction set.

 we know which
ions a quantum
er will support?

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm” ; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.

Quantur
stores a
efficientl
laws of ¢
with as

This i1s t
quantun
by 1982
physics

- computers do?

N

is at Chicago

m
m that

ter can run.

Instructions,
“tion Is
puter’s
lon set.

 which
antum
pport?

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"‘NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.

Quantum compute
stores a simulated
efficiently simulate
laws of quantum g
with as much acclt

This Is the origina
quantum compute

by 1982 Feynman
physics with comg

rs do”?

120

1S,

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions
to compute “Toffoli gate”;
. “Simon’s algorithm”;

. “Shor’s algorithm”; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.

Quantum computer type 2 (
stores a simulated universe:
efficiently simulates the
laws of quantum physics
with as much accuracy as di

This Is the original concept
quantum computers introdu
by 1982 Feynman “Simulati
physics with computers’ .

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"‘NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions
to compute “Toffoli gate”;
. “Simon’s algorithm”;

. “Shor’s algorithm”; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.

Quantum computer type 2 (QC2):
stores a simulated universe;
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"‘NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions
to compute “Toffoli gate”;
. “Simon’s algorithm”;

. “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn't QCI1; e.g. can't factor quickly.

Quantum computer type 2 (QC2):
stores a simulated universe;
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

n computer type 1 (QC1):
many “qubits’;
lently perform

ate”, "Hadamard gate’,
led NOT gate”, “T gate”.

these instructions work
1ain goal of quantum-
er engineering.

> these instructions
ute “Toffoli gate”;
1on’'s algorithm'™;
or's algorithm™ ; etc.

belief: Traditional CPU

1; e.g. can't factor quickly.

Quantum computer type 2 (QC2):
stores a simulated universe:
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,

2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories” .

3

Quantur
efficientl
that any
compute

r type 1 (QC1):
1bits” :

orm

damard gate’,
rate’, T gate’.

tructions work
of quantum-
ering.

tructions
|l gate’’;
rithm'

hm" : etc.

aditional CPU
1't factor quickly.

Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum compute
efficiently comput:
that any possible |
computer can con

QC1):

1te
gate” .

work
Im-

PU

quickly.

Quantum computer type 2 (QC2):

stores a simulated universe:
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 3 (
efficiently computes anythin

that any possible physica
computer can compute effic

3 4

Quantum computer type 2 (QC2): Quantum computer type 3 (QC3):
stores a simulated universe; efficiently computes anything
efficiently simulates the that any possible physica

laws of quantum physics computer can compute efficiently.

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,

2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 3 (QC3):
efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QC3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 3 (QC3):
efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QC3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QCI.

n computer type 2 (QC2):

simulated universe;
y simulates the
juantum physics

much accuracy as desired.

he original concept of

' computers introduced
Feynman “Simulating

Nith computers’ .

belief: any QC1 is a QC2.

roof: see, e.g.,
dan—Lee—Preskill
im algorithms for
1 field theories™ .

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

A note ¢

Apparen
Current
from D-
can ber
simulate

r type 2 (QC2):

universe:
s the
hysics

Iracy as desired.

| concept of

rs introduced
“Simulating

uters’ .

vy QC1 is a QC2.

e.g.,
Preskill

1ms for
ories .

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

A note on D-Wave

Apparent scientific
Current “quanturm
from D-Wave are
can be more cost-
simulated by tradi

QC2):

asired.

of
ced

ng

' QC2.

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

A note on D-Wave

Apparent scientific consensu
Current “quantum compute
from D-Wave are useless—
can be more cost-effectively
simulated by traditional CPl

Quantum computer type 3 (QC3): A note on D-Wave
efficiently computes anything

Apparent scientific consensus:

that any possible physica » ’
y P PRy Current “quantum computers

computer can compute efficiently. tom D-Wave are useless—
General belief: any QC2 is a QCS3. can be more cost-effectively
Argument for belief: simulated by traditional CPUs.
any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.

Quantum computer type 3 (QC3): A note on D-Wave
efficiently computes anything

Apparent scientific consensus:

that any possible physica » ’
y P PRy Current “quantum computers

computer can compute efficiently. tom D-Wave are useless—
General belief: any QC2 is a QCS3. can be more cost-effectively
Argument for belief: simulated by traditional CPUs.

any physical computer must But D-Wave ic

follow the laws of quantum . .
e collecting venture capital;

physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:

look, we're building a QC1.

Quantum computer type 3 (QC3): A note on D-Wave
efficiently computes anything

Apparent scientific consensus:

that any possible physica » ’
y P PRy Current “quantum computers

computer can compute efficiently. tom D-Wave are useless—
General belief: any QC2 is a QCS3. can be more cost-effectively
Argument for belief: simulated by traditional CPUs.

any physical computer must But D-Wave ic

follow the laws of quantum . .
e collecting venture capital;

physics, so a QC2 can efficiently

| | e selling some machines;
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

A note on D-Wave

Apparent scientific consensus:
Current “quantum computers”
from D-Wave are useless—
can be more cost-effectively
simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

A note on D-Wave

Apparent scientific consensus:
Current “quantum computers”
from D-Wave are useless—
can be more cost-effectively
simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

A note on D-Wave

Apparent scientific consensus:
Current “quantum computers”
from D-Wave are useless—
can be more cost-effectively
simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

n computer type 3 (QC3):

y computes anything

- possible physica
r can compute efficiently.

belief: any QC2 is a QC3.

1t for belief:

sical computer must

1e laws of quantum

so a QC2 can efficiently
any physical computer.

belief: any QC3 is a QC1.

1t for belief:
're building a QC1.

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—
can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

T he stat

Data (
a list of

e.g.. (0,

r type 3 (QC3): A note on D-Wave The state of a cor
eiar?ytfnng Apparent scientific consensus: Data (“state”) stc
’ ysmafr - Current “quantum computers” a list of 3 element
pute etmciently. from D-Wave are useless— e.g.: (0,0,0).

y QC2 is a QCS3. can be more cost-effectively

of simulated by traditional CPUs.

uter must But D-Wave is

quantum

e collecting venture capital;

can efficientl . .
Y e selling some machines;

cal computer. . .
P e collecting possibly useful

vy QC3 is a QC1. engineering expertise;
of e not being punished
g a QCI. for deceiving people.

Is D-Wave a bad investment?

QC3): A note on D-Wave The state of a computer

5 Apparent scientific consensus: Data (“state”) stored in 3 &
S Current “quantum computers” a list of 3 elements of {0, 1}
ently. from D-Wave are useless— e.g.: (0,0,0).

' QC3. can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;
ntly . .

e selling some machines;
Iter. . .

e collecting possibly useful
' QC1. engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

A note on D-Wave

Apparent scientific consensus:
Current “quantum computers”
from D-Wave are useless—
can be more cost-effectively
simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

The state of a computer

Data (“state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).

A note on D-Wave

Apparent scientific consensus:
Current “quantum computers”
from D-Wave are useless—
can be more cost-effectively
simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

The state of a computer

Data (“state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).

eg: (1,1,1).

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—
can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

The state of a computer

Data (“state”) stored in 3 bits:
a list of 3 elements of {0, 1}.

e.g.. (0,0,0).
eg: (1,1,1)
e.g.. (0,1,1).

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—
can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

The state of a computer

Data (“state”) stored in 3 bits:
a list of 3 elements of {0, 1}.

e.g.. (0,0,0).
eg: (1,1,1)
e.g.: (0,1,1).

Data stored in 64 bits:
a list of 64 elements of {0, 1}.

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—
can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

The state of a computer

Data (“state”) stored in 3 bits:
a list of 3 elements of {0, 1}.

e.g.. (0,0,0).
eg: (1,1,1)
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
1,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

n D-Wave

t scientific consensus:

“quantum computers”

\Wave are useless—
nore cost-effectively

d by traditional CPUs.

Vave Is

Ing venture capital;
some machines;
ing possibly useful
ering expertise;
ing punished
“elving people.

ve a bad investment?

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.

e.g.: (0,0,0).
eg: (1,1,1)
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,0,00,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
1,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

T he stat

Data stc
a list of

e.g.. (3

v

. consensus.

 computers”

useless—
effectively

tional CPUs.

e capital;
chines;

ly useful
rtise;

1ed

ople.

nvestment?

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg.: (1,1,1).
eg.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,0001,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
1,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

The state of a qus

Data stored in 3 ¢

a list of 8 number

e.g.:

(3,1,4,1,5,

The state of a computer The state of a quantum con
Data (“state”) stored in 3 bits: Data stored in 3 qubits:

a list of 3 elements of {0, 1}. a list of 8 numbers, not all :
e.g.: (0,0,0). eg.: (3,1,4,1,509,2,6).
eg: (1,1,1).

e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
1,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg: (1,1,1).
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.:

(3,1,4,1,5,9,2,6).

7

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg: (1,1,1).
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg: (1,1,1).
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg: (1,1,1).
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

7
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg: (1,1,1).
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—8,—2,8).

e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

7

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

3 list of 2°* numbers. not all zero.

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg: (1,1,1).
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—8,—2,8).

e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

7

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

3 list of 2°* numbers. not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

e of a computer

state”) stored in 3 bits:

3 elements of {0, 1}.
0,0).
1,1).
1,1).

red in 64 bits:

64 elements of {0, 1}.
1,1,1,1,0,0,0, 1,
.0,0,1,1,0,0,0,
.1,0,0,0,0,0,1,
.0,0,1,0,0,0,1,
.1,0,0,1,0,0,0,
.1,0,0,1,0,0,1).

7
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:
3 list of 2°* numbers. not all zero.

Data stored in 1000 qubits: a list
of 21000 numbers, not all zero.

Measuri

Can sim
Cannot
of numb

nputer

red in 3 bits:

s of {0, 1}.

bits:

ts of {0, 1}.
),0,0,1,
0,0,0,
0,0,1,
0,0,1,
0,0,0,
0,0,1).

7
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:
3 list of 2°* numbers. not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quan

Can simply look a
Cannot simply loo
of numbers stored

1ts:

7
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list
of 21000 numbers, not all zero.

Measuring a quantum comp

Can simply look at a bit.
Cannot simply look at the |
of numbers stored in n qubr’

7
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

7
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(ao, a1, ..
measurement produces g

with probability |ag|?/ Y, |ar|?.

.,aQn_l) then

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(ao, a1, ..
measurement produces g

with probability |ag|?/ Y, |ar|?.

.,aQn_l) then

State is then all zeros
except 1 at position q.

e of a quantum computer

red In 3 qubits:

8 numbers, not all zero.
1,4,1,5,9,2,6).
2,7,—1,8,1, -8, -2, 8).
0,0,0,0,1,0,0).

red in 4 qubits: a list of

vers, not all zero. e.g.:
,5,9,2,6,5,3,5,8,9,7,9, 3).

red In 64 qubits:

004 numbers, not all zero.

red In 1000 qubits: a list
numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(ao, a1, ..
measurement produces g

with probability |ag|?/ Y, |ar|?.

Y azn_l) then

State is then all zeros
except 1 at position q.

e.g.. Sa
(1,1,1,:

Intum_computer

ubits:

s, not all zero.
),2,06).

' 1,—-8,—-2,8).
1,0,0).

ubits: a list of

Il zero. e.g.:
.5,3,5,8,9,7,9, 3).

qubits:
ers, not all zero.

)0 qubits: a list
not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(ao, a1, ..
measurement produces g

with probability |ag|?/ Y, |ar|?.

Y aQn_l) then

State is then all zeros
except 1 at position q.

e.g.: Say 3 qubits
(1,1,1,1,1,1,1,1

1puter

’E€ro.

st of

| zero.

a list
ro.

Measuring a quantum computer

0,7,9,3).

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(ag, a1,...,a»_1) then
measurement produces g

with probability |ag|?/ Y, |ar|?.

State is then all zeros
except 1 at position q.

e.g.: Say 3 qubits have stat:
(1,1,1,1,1,1,1,1).

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(ag, a1,...,a»_1) then
measurement produces g

with probability |ag|?/ Y, |ar|?.

State is then all zeros
except 1 at position q.

e.g.: Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(a0, a1, ..., arn_1) then
measurement produces g

with probability |ag|?/ Y, |ar|?.

State is then all zeros
except 1 at position q.

e.g.: Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 with
101 = 5 with
110 = 6 with

111 = 7 with

Dropanbil
Dropanbil

Dropanbil

DFroPanl

probabi

DrFroPanl

DFroPanl

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
orobability 1/8.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(a0, a1, ..., arn_1) then
measurement produces g

with probability |ag|?/ Y, |ar|?.

State is then all zeros
except 1 at position q.

e.g.: Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probability 1/8;
001 = 1 with probability 1/8;
010 = 2 with probability 1/8;
011 = 3 with probability 1/8;
100 = 4 with probability 1/8;
101 = 5 with probability 1/8;
110 = 6 with probability 1/8;
111 = 7 with probability 1/8.

“Quantum RNG.”

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(a0, a1, ..., arn_1) then
measurement produces g

with probability |ag|?/ Y, |ar|?.

State is then all zeros
except 1 at position q.

e.g.: Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probability 1/8;
001 = 1 with probability 1/8;
010 = 2 with probability 1/8;
011 = 3 with probability 1/8;
100 = 4 with probability 1/8;
101 = 5 with probability 1/8;
110 = 6 with probability 1/8;
111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold
today are measurably biased.

N1g a quantum computer

ply look at a bit.
simply look at the list
ers stored in n qubits.

iNng n qubits
“es n bits and
vs the state.

ts have state
e azn_l) then
ment produces g

bability |aq|?/S_, |ar|?.

then all zeros
at position g.

e.g.. Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probability 1/8;
001 = 1 with probability 1/8;
010 = 2 with probability 1/8;
011 = 3 with probability 1/8;
100 = 4 with probability 1/8;
101 = 5 with probability 1/8;
110 = 6 with probability 1/8;
111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold
today are measurably biased.

e.g.. Sa
(3,1,4,:

(um_computer

t a bit.
k at the list
in n qubits.

ts
and
e.

ate
then
luces g

al?/ X rlarl?.

2ros

n q.

e.g.: Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probability 1/8;
001 = 1 with probability 1/8;
010 = 2 with probability 1/8;
011 = 3 with probability 1/8;
100 = 4 with probability 1/8;
101 = 5 with probability 1/8;
110 = 6 with probability 1/8;
111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold
today are measurably biased.

e.g.. Say 3 qubits
(3,1,4,1,5,9,2,6

uter

St
[S.

e.g.: Say 3 qubits have state

(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probabi
001 = 1 with probabi

010 = 2 with probabi

011 = 3 with probabi
100 = 4 with probabi

101 = 5 with probabi

110 = 6 with probabi

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;

111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably

hlased.

e.g.: Say 3 qubits have stat:
(3,1,4,1,5,9,2,6).

e.g.: Say 3 qubits have state

(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probabi
001 = 1 with probabi

010 = 2 with probabi

011 = 3 with probabi
100 = 4 with probabi

101 = 5 with probabi

110 = 6 with probabi

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;

111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably

hlased.

e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6).

10

e.g.: Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measurement produces

orobability 1/8;
orobability 1/8;

orobability 1/8;

orobability 1/8;

n probability 1/8;

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 wit

101 = 5 with
110 = 6 with
111 = 7 with

orobability 1/8;

orobability 1/8;

orobability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6).

Measurement produces

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 with
101 = 5 with
110 = 6 with
111 = 7 with

Dropanbil
Dropanil

Dropanil

DFroPaDl

probabi

DrFroPanl

DFroPanl

ility 9/173;
lity 1/173;
ility 16/173;
lity 1/173;
ility 25/173;
lity 81/173;
lity 4/173;
orobability 36/173.

10

e.g.: Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measurement produces

orobability 1/8;
orobability 1/8;

orobability 1/8;

orobability 1/8;

n probability 1/8;

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 wit

101 = 5 with
110 = 6 with
111 = 7 with

orobability 1/8;

orobability 1/8;

orobability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6).

Measurement produces

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 with
101 = 5 with
110 = 6 with
111 = 7 with

Dropanbil
Dropanil

Dropanil

DFroPaDl

probabi

DrFroPanl

DFroPanl

ility 9/173;
lity 1/173;
ility 16/173;
lity 1/173;
ility 25/173;
lity 81/173;
lity 4/173;
orobability 36/173.

5 1s most likely outcome.

10

v 3 qubits have state

,1,1,1,1).

ment produces

wit
wit
wit
wit
wit
wit

wit

N

N

N

N

olge
olge

olge

Do

N pro

N

N

with

olgo
olge

Dd
Dd
Dd
Dd
Dd

Dd

Dd

DI
DI
DI
DI

DI

DI

DI

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;

orobability 1/8.

im RNG.”

- Quantum RNGs sold
e measurably

hlased.

e.g.: Say 3 qubits have state

(3,1,4,1,5,9,2,6).

Measurement produces

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 with
101 = 5 with
110 = 6 with
111 = 7 with

olge
olge

olge

Dro
pro
Oro
Oro

Dd
Dd
Dd
Dd
Dd

Dd

Dd

DI
DI
DI
DI

DI

DI

DI

ility 9/173;
lity 1/173;
ility 16/173;
lity 1/173;
ility 25/173;
lity 81/173;
lity 4/173;
orobability 36/173.

5 1s most likely outcome.

10

e.g.. Sa
(0,0,0,(

have state

luces

ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8.

n RNGs sold
bly biased.

e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6).

Measurement produces
000 = 0 with probability 9/173;
001 = 1 with probability 1/173;

010 = 2 with probability 16/173;

011 = 3 with probability 1/173;

100 = 4 with probability 25/173;
101 = 5 with probability 81/173;

110 = 6 with probability 4/173;

111 = 7 with probability 36/173.

5 1s most likely outcome.

10

e.g.. Say 3 qubits
(0,0,0,0,0,1,0,0

D

W GN WGWVV WGV WV VW W WV

old

e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6).

Measurement produces
000 = 0 with probability 9/173;
001 = 1 with probability 1/173;

010 = 2 with probability 16/173;

011 = 3 with probability 1/173;

100 = 4 with probability 25/173;
101 = 5 with probability 81/173;

110 = 6 with probability 4/173;

111 = 7 with probability 36/173.

5 1s most likely outcome.

10

e.g.: Say 3 qubits have stat:
(0,0,0,0,0,1,0,0).

e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6).

Measurement produces
000 = 0 with probability 9/173;
001 = 1 with probability 1/173;

010 = 2 with probability 16/173;

011 = 3 with probability 1/173;

100 = 4 with probability 25/173;
101 = 5 with probability 81/173;

110 = 6 with probability 4/173;

111 = 7 with probability 36/173.

5 1s most likely outcome.

10

e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

11

e.g.. Say 3 qubits have state : e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6). (0,0,0,0,0,1,0,0).
Measurement produces Measurement produces
000 = 0 with probability 9/173; 000 = O with probability O;
001 = 1 with probability 1/173; 001 = 1 with probability 0;
010 = 2 with probability 16/173; 010 = 2 with probability 0;
011 = 3 with probability 1/173; 011 = 3 with probability 0;
100 = 4 with probability 25/173; 100 = 4 with probability O
101 = 5 with probability 81/173; 101 = 5 with probability 1;
110 = 6 with probability 4/173; 110 = 6 with probability O;
111 = 7 with probability 36/173. 111 = 7 with probability 0.
5 1s most likely outcome.

e.g.. Say 3 qubits have state : e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6). (0,0,0,0,0,1,0,0).
Measurement produces Measurement produces
000 = 0 with probability 9/173; 000 = O with probability O;
001 = 1 with probability 1/173; 001 = 1 with probability 0;
010 = 2 with probability 16/173; 010 = 2 with probability 0;
011 = 3 with probability 1/173; 011 = 3 with probability 0;
100 = 4 with probability 25/173; 100 = 4 with probability O
101 = 5 with probability 81/173; 101 = 5 with probability 1;
110 = 6 with probability 4/173; 110 = 6 with probability 0;
111 = 7 with probability 36/173. 111 = 7 with probability O.
5 is most likely outcome. b Is guaranteed outcome.

v 3 qubits have state

,5,9,2,6).

ment produces

wit
wit
wit
wit
wit
wit

wit

N

N

N

N

olge
olge

olge

Do

N pro

N

N

with

olgo
olge

Dd
Dd
Dd
Dd
Dd

Dd

Dd

DI
DI
DI
DI

DI

DI

DI

ility 9/173;
lity 1/173;
ility 16/173;
lity 1/173;
ility 25/173;
lity 81/173;
ility 4/173;
orobability 36/173.

t likely outcome.

10

e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces

000 = 0 with probability O;
001 = 1 with probability O;
010 = 2 with probability O;
011 = 3 with probability O;
100 = 4 with probability O;
101 = 5 with probability 1;
110 = 6 with probability O;
111 = 7 with probability O.

b Is guaranteed outcome.

11

NOT ga

NOTq g
(3,1,4,:
(1,3, 1,

have state

luces
ability 9/173;
ability 1/173;

ability 1/173;

ability 4/173;

ability 36/173.

tcome.

ability 16/173;

ability 25/173;
ability 81/173;

10

11
e.g.: Say 3 qubits have state

(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

NOT gates

NOTp gate on 3 ¢
(3,1,4,1,5,9,2,6
(1,3,1,4,9,5,6,2

D

73;
73;

/173;

|7 3:

/173;
/173;

[73;

/173.

10

e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

b Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

12

e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

12

e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

12

e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

12

v 3 qubits have state
),0,1,0,0).

ment produces
with probability O;
with probability O;

with probability O;

with probability O;
with probability 0O;

with probability 1;

with probability O;
with probability O.

-anteed outcome.

11 12
NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

Operatic
NOTy, s
Operatic

flipping
Flip: ou

have state

).

luces

abl
abl
abl
abl
abl

abl

abl

ity O;
ity O;
ity O;
ity O;
ity O;
ity 1;
ity O;
ability 0.

tcome.

11 12
NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

Sstate
(1,0,0,0,0,0,0, (
(0,1,0,0,0,0,0, (
(0,0,1,0,0,0,0, (
(0,0,0,1,0,0,0, (
(0,0,0,0,1,0,0, (
(0,0,0,0,0,1,0,
(0,0,0,0,0,0,1, (
(0,0,0,0,0,0,0,

Operation on quail
NOTp, swapping |
Operation after m

flipping bit 0 of re
Flip: output iIs nof

D

12
NOT gates

state Measure

NOT, gate on 3 qubits: (1,0,0,0,0,0,0,0) 000
(3.1,4,1,5,9,2, 6) (0,1,0,0,0,0,0,0) 001
(1,3,1,4,9,5,6,2). (0,0,1,0,0,0,0,0) 010
NOTgy gate on 4 qubits: (0,0,0,1,0,0,0,0) 011
(314.1592653580793)— 0001000 100
(1,3,1,4,9,5.6.2,3,5,8,5,7,9,3,9) (0.0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110

NOT; gate on 3 qubits: (0,0,0,0,0,0,0, 1) 111

(3,1,4,1,5,9,2,6) —

(4,1,3,1,2,6,5,9). Operation on quantum state

NOTp, swapping pairs.
NOT> gate on 3 qubits: Operation after measuremer
(3,1,4,1,5,9,2,6) — flipping bit O of result.
(5,9,2,6,3,1,4,1). Flip: output Is not input.

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

12

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTp, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

tes

ate on 3 qubits:
,5,9,2,6) —
1,9,5,6,2).

ate on 4 qubits:
5,9,2,6,5,3,5,8,9,7,9,3) —
9,5,6,2,3,5,8,5,7,9,3,9).

ate on 3 qubits:
,5,9,2,6) —
[,2,6,5,9).

ate on 3 qubits:
,5,9,2,6) —
,3,1,4,1).

12

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTp, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controll

e.g. CN(
(3,1,4,:
(3,1,1,¢

ubits:
) —
).
ubits:

3,5,8,9,7,9,3)
5,8,5,7,9,3,9).

ubits:

12

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controlled-NOT g

eg.CNOTLm
(3,1,4,1,5,9,2,6
(3,1,1,4,5,9,6,2

12

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTp, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output Is not input.

13

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

14

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

14
Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

Operation after measurement:
flipping bit 0 /f bit 1 is set; i.e.,

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

14
Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

Operation after measurement:
flipping bit 0 /f bit 1 is set; i.e.,
eg.CNOTZm

(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) — (92,91, g0 @ q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3,1,4,1,5,9,2,6) —
(3.9,4,6,5,1,2,1).

14

state measurement
0,0,0,0,0 000
0,0,0,0, O; 001 >
0,0,0,0,0 010

1 0,0,0,0; 011 >
0,1,0,0,0 100

0 O,l,0,0; 101>
0,0,0,1,0)

)n on quantum state:
wapping pairs.

n after measurement:
bit 0 of result.

tput Is not Iinput.

13

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) = (92, 91, g0 @ q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3,1,4,1,5,9,2,6) —
(3,9,4,6,5,1,2,1).

14

Toffoli g

Also knc
controlle

e.g. CCI
(3,1,4,:
(3,1,4,:

measurement

1tum state:
alrs.
easurement:
sult.

. Input.

13

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) — (92,91, 90 @ q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3,1,4,1,5,9,2,6) —
(3.9.4,6,5,1,2,1).

14

Toffoli gates

Also known as
controlled-controll

eg.CCNOTZLm
(3,1,4,1,5,9,2,6
(3,1,4,1,5,9,6,2

13 14

Controlled-NOT gates Toffoli gates
ment
> e.g. CNOT1 o: Also known as
(3,1,4,1,5,9,2,6) — controlled-controlled-NOT ¢
— (L145896.2) e.g. CCNOTo 1 0:
Operation after measurement: (3,1,4,1,5,9,2,6) —
"> flipping bit 0 if bit 1 is set; i.e. (3,1,4,1,5,9,6,2).
(92,91, 90) — (92, g1, G0 @ q1).
:::> eg.CNOTZm

(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3,1,4,1,5,9,2,6) —
(3,9,4,6,5,1,2,1).

—t

1T.

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6) —
(3.1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) — (92,91, g0 @ q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3,1,4,1,5,9,2,6) —
(3,9.4,6,5,1,2,1).

14

Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

15

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6) —
(3.1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) — (92,91, g0 @ q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3,1,4,1,5,9,2,6) —
(3,9.4,6,5,1,2,1).

14

Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:
(92, 91, 90) — (g2, 91, 90 @ q192).

15

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6) —
(3.1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) — (92,91, g0 @ q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3.1,4,1,5,9,2,6) —
(3,9.4,6,5,1,2,1).

14

Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

eg.CCNOTQLZ
(3,1,4,1,5,9,2,6) —
(3,1,4,6,5,9,2,1).

15

ed-NOT gates

JT10:
,5,9,2,6) —
1,5,9,6,2).

n after measurement:

bit O /f bit 1 is set: i.e.,
70) — (g2, 91,90 ® q1).

JT>p:
,5,9,2,6) —
[,9,5,6,2).

)T 2:
,5,9,2,6) —
,5,1,2,1).

14

15
Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6, 2).

Operation after measurement:
(92, 91, 90) — (92, 91, 90 @ q192).

eg.CCNOTQLZ
(3,1,4,1,5,9,2,6) —
(3,1,4,6,5,9,2,1).

More sh

Combine
to build

ates

) —
).

easurement:

t 1 1s set; I.e..
.q1, G0 D q1).

14

Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

eg.CCNOTQLZ
(3,1,4,1,5,9,2,6) —
(3,1,4,6,5,9,2,1).

15

More shuffling

Combine NOT, CI
to build other pert

1t:

l.e.,
71)-

14

Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

eg.CCNOTQLZ
(3,1,4,1,5,9,2,6) —
(3,1,4,6,5,9,2,1).

15

More shuftfling

Combine NOT, CNOT, Toff
to build other permutations.

Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

eg.CCNOTQLZ
(3,1,4,1,5,9,2,6) —
(3,1,4,6,5,9,2,1).

15

More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

16

Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

eg.CCNOTQLZ
(3,1,4,1,5,9,2,6) —
(3,1,4,6,5,9,2,1).

15

16
More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CCNOTg 10
31465921

CNOTQl ><j ></

36415129

NO Ty >< >< >< ><

6 3141592

ates

Wn as
d-controlled-NOT gates.

NOT> 1 0:
,5,9,2,6) —
[,5,9,6,2).

n after measurement:

10) — (92,91, 90 ® q192).

NOTg 1 2:
,5,9,2,6) —
,5,9,2,1).

15

More shuftfling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CCNOTp 10
31465921

CNOTO’l >< ><

364151209

NO Ty >< >< >< ><

6 3141592

16

Hadama

Hadama

(a, b) —

3 1
X |
4 2

ed-NOT gates.

) —
).

easurement:

g1, 90 D q192).

) —

).

15

More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CCNOTO,LQ
31465921

CNOTO,l >< ><

36415129

NOTo >< >< >< ><

6 3141592

16

Hadamard gates

Hadamardp:

(a,b) — (a+ b, a

3 1 4 1
XX
4 2 5 3

ates.

1t
7192)-

15

More shuftfling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CCNOTp 10
31465921

CNOTO’l >< ><

364151209

NO Ty >< >< >< ><

6 3141592

16

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1
XX
4 2 5 3

ﬂ

5 0
X

14 —4 ¢

More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CCNOTO,LQ
31465921

CNOTO,l >< ><

364151209

NOTo >< >< >< ><

6 3141592

16

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1
XX
4 2 5 3

2

X TX

14 —4 8

6

—4

17

More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CCNOTO,LQ
31465921

X X

364151209

X XX X

6 3141592

CNOTO,l

NOT,

16

17
Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX IXT X
4 2 5 3 14 -4 38 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

k]

1

KK

S8

uffling

> NOT, CNOT, Toffoli

other

permutations.

s of gates to

positions by distance 1:

314159 26

P

659 21

i

3 1

%

o
@)
O

6 3141592

16

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
X IXT X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K]

17

Simon's

p
—t
o O
~ ©
p—

e
O OO O O O o O

O O 0O O O O o W
e e

16 17

Hadamard gates Simon'’s algorithm
NOT, Toffoli Hadamardp: Step 1. Set up pu
mutations. (a,b) > (a+ b,a— b). 1,0,0,0,0,0,0,0,
o 0,0,0,0,0,0,0,0,
by distance 1. 3 1 4 1 5 9 2 6 0,0,0,0,0,0,0,0,
XX IXE X eoasoo
4159 26

>< 4 2 5 3 14 —4 8 —4 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0
Hadamard;y: | T
Ao 92 0,0,0,0,0,0,0,0,
>< >< (a,b, ¢, d) = 0,0,0,0,0,0,0,0.

» 4 1 5129 (a+c,b+d,a—c,b—d)

1

' 141509 2 T>’<>‘<‘
!

S8

K]

oli

e
N

16

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX IXT X
4 2 5 3 14 -4 8 -4
Hadamards:
(a, b, c,d) —

(a+c,b+d,a—c,b—d).

K
KK

KK

K]

17

Simon’s algorithm

Step 1. Set up pure zero st:

1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,00,0,0,0,0,
0,0,00,0,0,0,0,
0,0,0,0,0,0,0,0.

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

18
Simon’s algorithm

Step 1. Set up pure zero state:

O OO OO O O
& &

O OO OO O o o

O OO OO O o o

O OO OO O o o

O OO O O O o O

17
Hadamard gates Simon'’s algorithm

Hadamardp: Step 2. Hadamardp:
(a, b) — (a+ b,a— b). 1.1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
3 1 4 1 5 90 2 6 0,0,0,0,0,0,0,0,
NI IX] XX oonsoos
4 2 5 3 14 -4 8 —4 0,0,0,0,0,0,0,0,
Hadamardj: 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
(a,b,c,d)— 0,0,0,0,0,0,0,0.

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17
Hadamard gates Simon'’s algorithm

Hadamardp: Step 3. Hadamardj:
(a, b) — (a+ b,a— b). 1 1,1,1,0,0,0,0,
0,0,0,0,0,0,0,0,
3 1 4 1 5 9 2 6 0,0,0,0,0,0,0,0,
NI IX] X IX] eesoooo
4 2 5 3 14 —4 8 —4 0,0,0,0,0,0,0,0,
Hadamard;: 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
(a,b,c,d)— 0,0,0,0,0,0,0,0.

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 4. Hadamards:

1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,00,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0.

Each column is a parallel universe.

18

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5. CNOTg 3:
1,0, 1,
0,1,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,

p—t

O O O O O O +H O ;¢

O O O O O O O =+
O O O O O O = O
O O O O O O O
O O O O O O = O
O O O O O O O

Each column is a parallel universe
performing its own computations.

18

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5b. More shuffling:

1,0,0,0,1,0,0,0,
0,1,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,1,0,0,0,1,0,
0,0,0,10,0,0,1,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0.

Each column is a parallel universe
performing its own computations.

18

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5c. More shuffling:

1,0,0,0,0,0,0,0,
0,1,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,0,1,0,0,
0,0,1,0,0,0,0,0,
0,0,0,1,0,0,0,0,
0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,1.

Each column is a parallel universe
performing its own computations.

18

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5d. More shuffling:

1,0,0,0,0,0,0,0,
0,0,000,1,0,0,
0,0,0,0,1,0,0,0,
0,1,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,
0,0,00,0,0,0,1,
0,0,0,0,0,0,1,0,
0,0,0,1,0,0,0,0.

Each column is a parallel universe
performing its own computations.

18

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5e. More shuffling:

1,0,0,0,0,0,0,0,
0,0,000,1,0,0,
0,0,0,0,1,0,0,0,
0,1,0,0,0,0,0,0,
0,0,1,0,0,0,0,1,
0,0,00,0,0,0,0,
0,0,0,1,0,0,1,0,
0,0,0,0,0,0,0,0.

Each column is a parallel universe
performing its own computations.

18

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5f. More shuffling:
0,0,
1,0,
0,1,
0,0,
0,0,
0,0,
0,0,
0,0,

O O B O O O O O

Each column is a parallel universe
performing its own computations.

18

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5g. More shuffling:

0,1,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,0,1,0,0,
1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,010,0,1,0,
0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,1.

Each column is a parallel universe
performing its own computations.

18

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5h. More shuffling:
0,0,0,0,
0,0,
0,0,
0,0,
0,1,
0,0,
0,0,
1,0,

OO O O O rBr O O O
O O O O O O =
O O = O O O O O

Each column is a parallel universe
performing its own computations.

18

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step bi.
0,0,
0,0,
0,0,
0,0,
0,1,
0,0,
0,0,
1,0,

More shutfling:
,0,1,0,

O O O O +r O O O
O O O O O O = O
O O = O O O O O
O = O O O O O
O O O O O O O B
o O O O O = O

Each column is a parallel universe
performing its own computations.

18

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5j. Final shuffling:
0,0,0,0,0,0,0,0,
0,0,0,1,0,0,1,0,
0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,1,
0,1,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
1,0000,1,0,O0.

Each column is a parallel universe
performing its own computations.

18

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 5j. Final shuffling:
0,0,0,0,0,0,0,0,
0,0,0,1,0,0,1,0,
0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,1,
0,1,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
1,0000,1,0,O0.

Each column is a parallel universe
performing its own computations.
Surprise: u and u @ 101 match.

18

17
Hadamard gates Simon'’s algorithm

Hadamardp: Step 6. Hadamardp:
0,0,0,0,0,0,0,0,

a,b) — (a+ b,a—b). T
(a, b) = () 001710011

0
3 1 4 1 5 90 2 6 0,0,0,0,0,0,0,0,
X IX] IXI IX] eontoont
4 2 5 3 14 —4 8 —4 1.1,0,0,1,1,0,0,
Hadamardl: O'O'O'O’O’O’O’O’
0,0,0,0,0,0,0,0,
(a,b,c,d)— 1.1,0,0,1,1,0,0.

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

Simon’s algorithm

Step 7. Hadamards:

0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
0,0,00,0,0,0,0,
0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1.

18

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

18
Simon’s algorithm

Step 8. Hadamardo:

0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,00,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0, 2.

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

17

18
Simon’s algorithm

Step 8. Hadamardo:

0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,00,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0, 2.

Step 9: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

