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“Lattice-based crypto is secure because lattice problems are hard.”

— Everyone who works on lattice-based crypto

Really? How hard are they? Which problems are broken in time <2100?
Which cryptosystems are broken in time <2100?

2006 Silverman: “Lattices, SVP and CVP, have been intensively studied
for more than 100 years, both as intrinsic mathematical problems and for
applications in pure and applied mathematics, physics and cryptography.”

2014 Peikert: “Because finding short vectors in high-dimensional lattices
has been a notoriously hard algorithmic question for hundreds of
years—even when one allows for the power of quantum algorithms (see,
e.g., . . . )—we have solid and unique evidence that lattice-based
cryptoschemes are secure.”

Sounds like SVP is claimed to be a hard problem. How hard is it?
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How secure is SVP?

Best SVP algorithms known at the end of the 20th century:
time 2Θ(N log N) for almost all dimension-N lattices.

Best SVP algorithms known today: 2Θ(N), asymptotically much faster.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?
Is 2(0.1+o(1))N possible? 2Θ(N/ log N)? 2N

1/2+o(1)
?
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How secure is approx SVP?

Public-key lattice-based crypto allows approximation factors.
How much does this damage security?

2002 Micciancio–Goldwasser (emphasis added): “To date, the best known
polynomial time (possibly randomized) approximation algorithms for SVP
and CVP achieve worst-case (over the choice of the input) approximation
factors γ(n) that are essentially exponential in the rank n.”

2007 Regev:

2013 Micciancio: “Smooth trade-off between running time and
approximation: γ ≈ 2O(n log log T/ log T )”
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Quantum attacks against cyclotomic lattice problems

STOC 2014 Eisenträger–Hallgren–Kitaev–Song:
poly-time quantum algorithm for K 7→ O×

K .

K : number field.
OK : ring of algebraic integers in K .
O×

K : group of units in OK .

2015 (and SODA 2016) Biasse–Song,
also using an idea from 2014 Campbell–Groves–Shepherd:
poly-time quantum algorithm for K , gOK 7→ ζ jmg for some j ,
assuming cyclotomic K = Q(ζm), small h+

m, very short g .

This recovers secret keys in, e.g.,
STOC 2009 Gentry homomorphic-encryption system using cyclotomics,
Eurocrypt 2013 Garg–Gentry–Halevi multilinear-map system, etc.
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Is the attack idea limited to very short generators?

More lattice problems of interest:
I 7→ shortest nonzero vector in I . (“Exact Ideal-SVP”.)
I 7→ close to shortest nonzero vector in I . (“Approximate Ideal-SVP”.)

Attack is against principal I with a very short generator .

2015 Peikert says technique is “useless” for more general principal ideals.
(“We simply hadn’t realized that the added guarantee of a short generator
would transform the technique from useless to devastatingly effective.”)

Counterargument: attack is poly time against arbitrary principal ideals
for approx factor 2N

1/2+o(1)
in degree-N cyclotomics, assuming small h+.

See, e.g., 2016 Cramer–Ducas–Peikert–Regev.

Daniel J. Bernstein multiquad.cr.yp.to 6



Is the attack idea limited to very short generators?

More lattice problems of interest:
I 7→ shortest nonzero vector in I . (“Exact Ideal-SVP”.)
I 7→ close to shortest nonzero vector in I . (“Approximate Ideal-SVP”.)

Attack is against principal I with a very short generator .

2015 Peikert says technique is “useless” for more general principal ideals.
(“We simply hadn’t realized that the added guarantee of a short generator
would transform the technique from useless to devastatingly effective.”)

Counterargument: attack is poly time against arbitrary principal ideals
for approx factor 2N

1/2+o(1)
in degree-N cyclotomics, assuming small h+.

See, e.g., 2016 Cramer–Ducas–Peikert–Regev.

Daniel J. Bernstein multiquad.cr.yp.to 6



Is the attack idea limited to very short generators?

More lattice problems of interest:
I 7→ shortest nonzero vector in I . (“Exact Ideal-SVP”.)
I 7→ close to shortest nonzero vector in I . (“Approximate Ideal-SVP”.)

Attack is against principal I with a very short generator .

2015 Peikert says technique is “useless” for more general principal ideals.
(“We simply hadn’t realized that the added guarantee of a short generator
would transform the technique from useless to devastatingly effective.”)

Counterargument: attack is poly time against arbitrary principal ideals
for approx factor 2N

1/2+o(1)
in degree-N cyclotomics, assuming small h+.

See, e.g., 2016 Cramer–Ducas–Peikert–Regev.

Daniel J. Bernstein multiquad.cr.yp.to 6



Is the attack idea limited to principal ideals?

2015 Peikert:
“Although cyclotomics have a lot of structure, nobody has yet found a
way to exploit it in attacking Ideal-SVP/BDD . . . For commonly used
rings, principal ideals are an extremely small fraction of all ideals. . . . The
weakness here is not so much due to the structure of cyclotomics, but
rather to the extra structure of principal ideals that have short generators.”

Counterargument, 2016 Cramer–Ducas–Wesolowski:
fast Ideal-SVP attack for approx factor 2N

1/2+o(1)
in degree-N cyclotomics,

under plausible assumptions about class-group generators etc.
Starts from Biasse–Song, uses more features of cyclotomic fields.

This shreds the standard approx-Ideal-SVP tradeoff picture.
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Non-cyclotomic lattice-based cryptography

Cyclotomics are scary. Let’s explore alternatives:

Eliminate the ideal structure.
e.g., use LWE instead of Ring-LWE.
But this limits the security achievable for key size K .

2016 Bernstein–Chuengsatiansup–Lange–van Vredendaal “NTRU
Prime” (preliminary announcement 2014.02, before these attacks):
as in discrete-log crypto, eliminate unnecessary ring morphisms.
Use prime degree, large Galois group: e.g., xp − x − 1.

This talk: Switch from cyclotomics to other Galois number fields.
Another popular example in algebraic-number-theory textbooks:
multiquadratics; e.g., Q(

√
2,
√

3,
√

5,
√

7,
√

11,
√

13,
√

17,
√

19,
√

23).
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A reasonable multiquadratic cryptosystem

Case study of a lattice-based cryptosystem
that was already defined in detail for arbitrary number fields:
2010 Smart–Vercauteren, optimized version of 2009 Gentry.

Parameter: R = Z[α] for an algebraic integer α.
Secret key: very short g ∈ R.
Public key: gR.

To handle multiquadratics better,
we generalized beyond Z[α]; fixed a keygen speed problem;
used twisted Hadamard transforms as replacement for FFTs;
adapted 2011 Gentry–Halevi cyclotomic speedups to multiquadratics.

Like Smart–Vercauteren, we took N ∈ λ2+o(1) for target security 2λ.
Checked security against standard lattice attacks:
nothing better than exponential time.
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Our main multiquadratic results

See https://multiquad.cr.yp.to for paper and software:

Huge parameter range for this cryptosystem is now broken.

Applicability: Attack is non-quantum. Works on your PC.

Verifiability: We implemented the attack. It works as predicted.

Fits the pattern motivating the “NTRU prime” recommendations:
subfields and automorphisms tend to damage security.

Speed: Quasipoly for Q(
√
d1, . . . ,

√
dn) if d1, . . . , dn are quasipoly.

(Quasipoly as function of 2n: i.e., logs are bounded by nO(1).)

Analysis assuming standard heuristics:
I Attack always finds unit group O×

L .
I Attack always finds some generator of input ideal.
I Attack always finds short generator if d1, . . . , dn > 21.03n.

Experiments find short generator even for much smaller d ’s.
Some failures for tiny d ’s—presumably should do better BDD.
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Conventional techniques to find generators

Want to find g given gR.

Lattice-basis-reduction algorithms find fairly short nonzero vectors α ∈ gR.
Could α be as small as g? Extremely rare in high dimensions.

Much more common: can factor (α/g)R into prime ideals.
Multiply and divide these equations sensibly.

Example from SIAM AG15 talk:
If α1R = gR · P2 · Q2 and α2R = gR · P · Q3 and α3R = gR · P · Q2

then P = α1α
−1
3 R and Q = α2α

−1
3 R and gR = α−1

1 α−2
2 α4

3R.

This is the core of the conventional methods of
computing units (find two generators of same ideal; divide);
computing class group (obstruction to all ideals having generators);
computing discrete logarithms by NFS; factoring by NFS; etc.
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Some ways to exploit subfields and automorphisms

1. Well known: In many geometric cases, such as elliptic curves, use
automorphisms for much faster class-group (“point-counting”) methods.

2. Factorization of α ⇒ factorization of σ(α)
for each automorphism σ of R.

Special case: obtain “cyclotomic units” from α = 1− ζN .
Analogous: “multiquadratic units” from units of quadratic subfields.

3. How to obtain all units of a multiquadratic field?
(Can’t find all units of “hard” cyclotomics without solving this!)

1966 Wada: Use subfield relation u2 = Nσ(u)Nτ (u)/σ(Nστ (u)).
First solve same problem recursively for the σ, τ, στ subfields;
then try square roots of exponential number of products of generators.

Better: find squares using quadratic chars, as in 1991 Adleman NFS.

4. Similarly find generators starting with generators of norms.
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Coefficients for MQ lattice

Vertical axis: Average absolute coefficients of Log g on MQ basis.
Horizontal axis: 1.11/(2n/2 log(uD)).
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Success for MQ lattice

Vertical axis: Success probability of simple rounding (in the MQ lattice).
Horizontal axis: d1, using n consecutive primes for (d1, . . . , dn).
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Time (in seconds) to find full lattice and generator

Sage Sage
tower absolute new new new new

2n units units units units2 gen gen2

8 0.05 0.03 0.90 0.91 0.07 0.07
16 0.48 0.24 2.33 2.39 0.20 0.19
32 6.75 4.73 6.61 7.36 0.56 0.51
64 >700000 >700000 23.30 37.51 1.51 1.51

128 93.02 1560.49 4.95 7.29
256 463.91 31469.23 27.95 100.65

Table: Observed time to compute (once) the units of Q(
√
d1, . . . ,

√
dn); and to

find a generator for the public key in the cryptosystem.

Daniel J. Bernstein multiquad.cr.yp.to 15



Success at finding short generator of ideal

n 3 4 5 6 7 8

psuc(L1) 0.122 0.137 0.132 0.036 0.001 0.000

psuc(Ln) 0.203 0.490 0.648 0.936 0.631 0.423

psuc(Ln2) 0.784 0.981 1.000 1.000 1.000 1.000

Table: Observed attack success probabilities for various multiquadratic fields.
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