
Short generators without quantum computers:
the case of multiquadratics

Daniel J. Bernstein

University of Illinois at Chicago

31 July 2017

https://multiquad.cr.yp.to

Joint work with:
Jens Bauch & Henry de Valence & Tanja Lange & Christine van Vredendaal

Followup to my SIAM AG15 talk
“Computational algebraic number theory tackles lattice-based cryptography”:

https://cr.yp.to/talks.html#2015.08.06

Daniel J. Bernstein multiquad.cr.yp.to 1

https://multiquad.cr.yp.to
https://cr.yp.to/talks.html#2015.08.06

“Lattice-based crypto is secure because lattice problems are hard.”

— Everyone who works on lattice-based crypto

Really? How hard are they? Which problems are broken in time <2100?
Which cryptosystems are broken in time <2100?

2006 Silverman: “Lattices, SVP and CVP, have been intensively studied
for more than 100 years, both as intrinsic mathematical problems and for
applications in pure and applied mathematics, physics and cryptography.”

2014 Peikert: “Because finding short vectors in high-dimensional lattices
has been a notoriously hard algorithmic question for hundreds of
years—even when one allows for the power of quantum algorithms (see,
e.g., . . .)—we have solid and unique evidence that lattice-based
cryptoschemes are secure.”

Sounds like SVP is claimed to be a hard problem. How hard is it?

Daniel J. Bernstein multiquad.cr.yp.to 2

“Lattice-based crypto is secure because lattice problems are hard.”

— Everyone who works on lattice-based crypto

Really? How hard are they? Which problems are broken in time <2100?
Which cryptosystems are broken in time <2100?

2006 Silverman: “Lattices, SVP and CVP, have been intensively studied
for more than 100 years, both as intrinsic mathematical problems and for
applications in pure and applied mathematics, physics and cryptography.”

2014 Peikert: “Because finding short vectors in high-dimensional lattices
has been a notoriously hard algorithmic question for hundreds of
years—even when one allows for the power of quantum algorithms (see,
e.g., . . .)—we have solid and unique evidence that lattice-based
cryptoschemes are secure.”

Sounds like SVP is claimed to be a hard problem. How hard is it?

Daniel J. Bernstein multiquad.cr.yp.to 2

“Lattice-based crypto is secure because lattice problems are hard.”

— Everyone who works on lattice-based crypto

Really? How hard are they? Which problems are broken in time <2100?
Which cryptosystems are broken in time <2100?

2006 Silverman: “Lattices, SVP and CVP, have been intensively studied
for more than 100 years, both as intrinsic mathematical problems and for
applications in pure and applied mathematics, physics and cryptography.”

2014 Peikert: “Because finding short vectors in high-dimensional lattices
has been a notoriously hard algorithmic question for hundreds of
years—even when one allows for the power of quantum algorithms (see,
e.g., . . .)—we have solid and unique evidence that lattice-based
cryptoschemes are secure.”

Sounds like SVP is claimed to be a hard problem. How hard is it?

Daniel J. Bernstein multiquad.cr.yp.to 2

“Lattice-based crypto is secure because lattice problems are hard.”

— Everyone who works on lattice-based crypto

Really? How hard are they? Which problems are broken in time <2100?
Which cryptosystems are broken in time <2100?

2006 Silverman: “Lattices, SVP and CVP, have been intensively studied
for more than 100 years, both as intrinsic mathematical problems and for
applications in pure and applied mathematics, physics and cryptography.”

2014 Peikert: “Because finding short vectors in high-dimensional lattices
has been a notoriously hard algorithmic question for hundreds of
years—even when one allows for the power of quantum algorithms (see,
e.g., . . .)—we have solid and unique evidence that lattice-based
cryptoschemes are secure.”

Sounds like SVP is claimed to be a hard problem. How hard is it?

Daniel J. Bernstein multiquad.cr.yp.to 2

“Lattice-based crypto is secure because lattice problems are hard.”

— Everyone who works on lattice-based crypto

Really? How hard are they? Which problems are broken in time <2100?
Which cryptosystems are broken in time <2100?

2006 Silverman: “Lattices, SVP and CVP, have been intensively studied
for more than 100 years, both as intrinsic mathematical problems and for
applications in pure and applied mathematics, physics and cryptography.”

2014 Peikert: “Because finding short vectors in high-dimensional lattices
has been a notoriously hard algorithmic question for hundreds of
years—even when one allows for the power of quantum algorithms (see,
e.g., . . .)—we have solid and unique evidence that lattice-based
cryptoschemes are secure.”

Sounds like SVP is claimed to be a hard problem. How hard is it?

Daniel J. Bernstein multiquad.cr.yp.to 2

How secure is SVP?

Best SVP algorithms known at the end of the 20th century:
time 2Θ(N log N) for almost all dimension-N lattices.

Best SVP algorithms known today: 2Θ(N), asymptotically much faster.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?
Is 2(0.1+o(1))N possible? 2Θ(N/ log N)? 2N

1/2+o(1)
?

Daniel J. Bernstein multiquad.cr.yp.to 3

How secure is SVP?

Best SVP algorithms known at the end of the 20th century:
time 2Θ(N log N) for almost all dimension-N lattices.

Best SVP algorithms known today: 2Θ(N), asymptotically much faster.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.

c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?
Is 2(0.1+o(1))N possible? 2Θ(N/ log N)? 2N

1/2+o(1)
?

Daniel J. Bernstein multiquad.cr.yp.to 3

How secure is SVP?

Best SVP algorithms known at the end of the 20th century:
time 2Θ(N log N) for almost all dimension-N lattices.

Best SVP algorithms known today: 2Θ(N), asymptotically much faster.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.

c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?
Is 2(0.1+o(1))N possible? 2Θ(N/ log N)? 2N

1/2+o(1)
?

Daniel J. Bernstein multiquad.cr.yp.to 3

How secure is SVP?

Best SVP algorithms known at the end of the 20th century:
time 2Θ(N log N) for almost all dimension-N lattices.

Best SVP algorithms known today: 2Θ(N), asymptotically much faster.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.

c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?
Is 2(0.1+o(1))N possible? 2Θ(N/ log N)? 2N

1/2+o(1)
?

Daniel J. Bernstein multiquad.cr.yp.to 3

How secure is SVP?

Best SVP algorithms known at the end of the 20th century:
time 2Θ(N log N) for almost all dimension-N lattices.

Best SVP algorithms known today: 2Θ(N), asymptotically much faster.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.

c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?
Is 2(0.1+o(1))N possible? 2Θ(N/ log N)? 2N

1/2+o(1)
?

Daniel J. Bernstein multiquad.cr.yp.to 3

How secure is SVP?

Best SVP algorithms known at the end of the 20th century:
time 2Θ(N log N) for almost all dimension-N lattices.

Best SVP algorithms known today: 2Θ(N), asymptotically much faster.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.

c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?
Is 2(0.1+o(1))N possible? 2Θ(N/ log N)? 2N

1/2+o(1)
?

Daniel J. Bernstein multiquad.cr.yp.to 3

How secure is SVP?

Best SVP algorithms known at the end of the 20th century:
time 2Θ(N log N) for almost all dimension-N lattices.

Best SVP algorithms known today: 2Θ(N), asymptotically much faster.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.

c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?
Is 2(0.1+o(1))N possible? 2Θ(N/ log N)? 2N

1/2+o(1)
?

Daniel J. Bernstein multiquad.cr.yp.to 3

How secure is SVP?

Best SVP algorithms known at the end of the 20th century:
time 2Θ(N log N) for almost all dimension-N lattices.

Best SVP algorithms known today: 2Θ(N), asymptotically much faster.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?
Is 2(0.1+o(1))N possible? 2Θ(N/ log N)? 2N

1/2+o(1)
?

Daniel J. Bernstein multiquad.cr.yp.to 3

How secure is SVP?

Best SVP algorithms known at the end of the 20th century:
time 2Θ(N log N) for almost all dimension-N lattices.

Best SVP algorithms known today: 2Θ(N), asymptotically much faster.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?
Is 2(0.1+o(1))N possible? 2Θ(N/ log N)? 2N

1/2+o(1)
?

Daniel J. Bernstein multiquad.cr.yp.to 3

How secure is approx SVP?

Public-key lattice-based crypto allows approximation factors.
How much does this damage security?

2002 Micciancio–Goldwasser (emphasis added): “To date, the best known
polynomial time (possibly randomized) approximation algorithms for SVP
and CVP achieve worst-case (over the choice of the input) approximation
factors γ(n) that are essentially exponential in the rank n.”

2007 Regev:

2013 Micciancio: “Smooth trade-off between running time and
approximation: γ ≈ 2O(n log log T/ log T)”

Daniel J. Bernstein multiquad.cr.yp.to 4

How secure is approx SVP?

Public-key lattice-based crypto allows approximation factors.
How much does this damage security?

2002 Micciancio–Goldwasser (emphasis added): “To date, the best known
polynomial time (possibly randomized) approximation algorithms for SVP
and CVP achieve worst-case (over the choice of the input) approximation
factors γ(n) that are essentially exponential in the rank n.”

2007 Regev:

2013 Micciancio: “Smooth trade-off between running time and
approximation: γ ≈ 2O(n log log T/ log T)”

Daniel J. Bernstein multiquad.cr.yp.to 4

Quantum attacks against cyclotomic lattice problems

STOC 2014 Eisenträger–Hallgren–Kitaev–Song:
poly-time quantum algorithm for K 7→ O×

K .

K : number field.
OK : ring of algebraic integers in K .
O×

K : group of units in OK .

2015 (and SODA 2016) Biasse–Song,
also using an idea from 2014 Campbell–Groves–Shepherd:
poly-time quantum algorithm for K , gOK 7→ ζ jmg for some j ,
assuming cyclotomic K = Q(ζm), small h+

m, very short g .

This recovers secret keys in, e.g.,
STOC 2009 Gentry homomorphic-encryption system using cyclotomics,
Eurocrypt 2013 Garg–Gentry–Halevi multilinear-map system, etc.

Daniel J. Bernstein multiquad.cr.yp.to 5

Quantum attacks against cyclotomic lattice problems

STOC 2014 Eisenträger–Hallgren–Kitaev–Song:
poly-time quantum algorithm for K 7→ O×

K .

K : number field.
OK : ring of algebraic integers in K .
O×

K : group of units in OK .

2015 (and SODA 2016) Biasse–Song,
also using an idea from 2014 Campbell–Groves–Shepherd:
poly-time quantum algorithm for K , gOK 7→ ζ jmg for some j ,
assuming cyclotomic K = Q(ζm), small h+

m, very short g .

This recovers secret keys in, e.g.,
STOC 2009 Gentry homomorphic-encryption system using cyclotomics,
Eurocrypt 2013 Garg–Gentry–Halevi multilinear-map system, etc.

Daniel J. Bernstein multiquad.cr.yp.to 5

Quantum attacks against cyclotomic lattice problems

STOC 2014 Eisenträger–Hallgren–Kitaev–Song:
poly-time quantum algorithm for K 7→ O×

K .

K : number field.
OK : ring of algebraic integers in K .
O×

K : group of units in OK .

2015 (and SODA 2016) Biasse–Song,
also using an idea from 2014 Campbell–Groves–Shepherd:
poly-time quantum algorithm for K , gOK 7→ ζ jmg for some j ,
assuming cyclotomic K = Q(ζm), small h+

m, very short g .

This recovers secret keys in, e.g.,
STOC 2009 Gentry homomorphic-encryption system using cyclotomics,
Eurocrypt 2013 Garg–Gentry–Halevi multilinear-map system, etc.

Daniel J. Bernstein multiquad.cr.yp.to 5

Is the attack idea limited to very short generators?

More lattice problems of interest:
I 7→ shortest nonzero vector in I . (“Exact Ideal-SVP”.)
I 7→ close to shortest nonzero vector in I . (“Approximate Ideal-SVP”.)

Attack is against principal I with a very short generator .

2015 Peikert says technique is “useless” for more general principal ideals.
(“We simply hadn’t realized that the added guarantee of a short generator
would transform the technique from useless to devastatingly effective.”)

Counterargument: attack is poly time against arbitrary principal ideals
for approx factor 2N

1/2+o(1)
in degree-N cyclotomics, assuming small h+.

See, e.g., 2016 Cramer–Ducas–Peikert–Regev.

Daniel J. Bernstein multiquad.cr.yp.to 6

Is the attack idea limited to very short generators?

More lattice problems of interest:
I 7→ shortest nonzero vector in I . (“Exact Ideal-SVP”.)
I 7→ close to shortest nonzero vector in I . (“Approximate Ideal-SVP”.)

Attack is against principal I with a very short generator .

2015 Peikert says technique is “useless” for more general principal ideals.
(“We simply hadn’t realized that the added guarantee of a short generator
would transform the technique from useless to devastatingly effective.”)

Counterargument: attack is poly time against arbitrary principal ideals
for approx factor 2N

1/2+o(1)
in degree-N cyclotomics, assuming small h+.

See, e.g., 2016 Cramer–Ducas–Peikert–Regev.

Daniel J. Bernstein multiquad.cr.yp.to 6

Is the attack idea limited to very short generators?

More lattice problems of interest:
I 7→ shortest nonzero vector in I . (“Exact Ideal-SVP”.)
I 7→ close to shortest nonzero vector in I . (“Approximate Ideal-SVP”.)

Attack is against principal I with a very short generator .

2015 Peikert says technique is “useless” for more general principal ideals.
(“We simply hadn’t realized that the added guarantee of a short generator
would transform the technique from useless to devastatingly effective.”)

Counterargument: attack is poly time against arbitrary principal ideals
for approx factor 2N

1/2+o(1)
in degree-N cyclotomics, assuming small h+.

See, e.g., 2016 Cramer–Ducas–Peikert–Regev.

Daniel J. Bernstein multiquad.cr.yp.to 6

Is the attack idea limited to principal ideals?

2015 Peikert:
“Although cyclotomics have a lot of structure, nobody has yet found a
way to exploit it in attacking Ideal-SVP/BDD . . . For commonly used
rings, principal ideals are an extremely small fraction of all ideals. . . . The
weakness here is not so much due to the structure of cyclotomics, but
rather to the extra structure of principal ideals that have short generators.”

Counterargument, 2016 Cramer–Ducas–Wesolowski:
fast Ideal-SVP attack for approx factor 2N

1/2+o(1)
in degree-N cyclotomics,

under plausible assumptions about class-group generators etc.
Starts from Biasse–Song, uses more features of cyclotomic fields.

This shreds the standard approx-Ideal-SVP tradeoff picture.

Daniel J. Bernstein multiquad.cr.yp.to 7

Is the attack idea limited to principal ideals?

2015 Peikert:
“Although cyclotomics have a lot of structure, nobody has yet found a
way to exploit it in attacking Ideal-SVP/BDD . . . For commonly used
rings, principal ideals are an extremely small fraction of all ideals. . . . The
weakness here is not so much due to the structure of cyclotomics, but
rather to the extra structure of principal ideals that have short generators.”

Counterargument, 2016 Cramer–Ducas–Wesolowski:
fast Ideal-SVP attack for approx factor 2N

1/2+o(1)
in degree-N cyclotomics,

under plausible assumptions about class-group generators etc.
Starts from Biasse–Song, uses more features of cyclotomic fields.

This shreds the standard approx-Ideal-SVP tradeoff picture.

Daniel J. Bernstein multiquad.cr.yp.to 7

Non-cyclotomic lattice-based cryptography

Cyclotomics are scary. Let’s explore alternatives:

Eliminate the ideal structure.
e.g., use LWE instead of Ring-LWE.
But this limits the security achievable for key size K .

2016 Bernstein–Chuengsatiansup–Lange–van Vredendaal “NTRU
Prime” (preliminary announcement 2014.02, before these attacks):
as in discrete-log crypto, eliminate unnecessary ring morphisms.
Use prime degree, large Galois group: e.g., xp − x − 1.

This talk: Switch from cyclotomics to other Galois number fields.
Another popular example in algebraic-number-theory textbooks:
multiquadratics; e.g., Q(

√
2,
√

3,
√

5,
√

7,
√

11,
√

13,
√

17,
√

19,
√

23).

Daniel J. Bernstein multiquad.cr.yp.to 8

Non-cyclotomic lattice-based cryptography

Cyclotomics are scary. Let’s explore alternatives:

Eliminate the ideal structure.
e.g., use LWE instead of Ring-LWE.
But this limits the security achievable for key size K .

2016 Bernstein–Chuengsatiansup–Lange–van Vredendaal “NTRU
Prime” (preliminary announcement 2014.02, before these attacks):
as in discrete-log crypto, eliminate unnecessary ring morphisms.
Use prime degree, large Galois group: e.g., xp − x − 1.

This talk: Switch from cyclotomics to other Galois number fields.
Another popular example in algebraic-number-theory textbooks:
multiquadratics; e.g., Q(

√
2,
√

3,
√

5,
√

7,
√

11,
√

13,
√

17,
√

19,
√

23).

Daniel J. Bernstein multiquad.cr.yp.to 8

Non-cyclotomic lattice-based cryptography

Cyclotomics are scary. Let’s explore alternatives:

Eliminate the ideal structure.
e.g., use LWE instead of Ring-LWE.
But this limits the security achievable for key size K .

2016 Bernstein–Chuengsatiansup–Lange–van Vredendaal “NTRU
Prime” (preliminary announcement 2014.02, before these attacks):
as in discrete-log crypto, eliminate unnecessary ring morphisms.
Use prime degree, large Galois group: e.g., xp − x − 1.

This talk: Switch from cyclotomics to other Galois number fields.
Another popular example in algebraic-number-theory textbooks:
multiquadratics; e.g., Q(

√
2,
√

3,
√

5,
√

7,
√

11,
√

13,
√

17,
√

19,
√

23).

Daniel J. Bernstein multiquad.cr.yp.to 8

A reasonable multiquadratic cryptosystem

Case study of a lattice-based cryptosystem
that was already defined in detail for arbitrary number fields:
2010 Smart–Vercauteren, optimized version of 2009 Gentry.

Parameter: R = Z[α] for an algebraic integer α.
Secret key: very short g ∈ R.
Public key: gR.

To handle multiquadratics better,
we generalized beyond Z[α]; fixed a keygen speed problem;
used twisted Hadamard transforms as replacement for FFTs;
adapted 2011 Gentry–Halevi cyclotomic speedups to multiquadratics.

Like Smart–Vercauteren, we took N ∈ λ2+o(1) for target security 2λ.
Checked security against standard lattice attacks:
nothing better than exponential time.

Daniel J. Bernstein multiquad.cr.yp.to 9

A reasonable multiquadratic cryptosystem

Case study of a lattice-based cryptosystem
that was already defined in detail for arbitrary number fields:
2010 Smart–Vercauteren, optimized version of 2009 Gentry.

Parameter: R = Z[α] for an algebraic integer α.
Secret key: very short g ∈ R.
Public key: gR.

To handle multiquadratics better,
we generalized beyond Z[α]; fixed a keygen speed problem;
used twisted Hadamard transforms as replacement for FFTs;
adapted 2011 Gentry–Halevi cyclotomic speedups to multiquadratics.

Like Smart–Vercauteren, we took N ∈ λ2+o(1) for target security 2λ.
Checked security against standard lattice attacks:
nothing better than exponential time.

Daniel J. Bernstein multiquad.cr.yp.to 9

Our main multiquadratic results

See https://multiquad.cr.yp.to for paper and software:

Huge parameter range for this cryptosystem is now broken.

Applicability: Attack is non-quantum. Works on your PC.

Verifiability: We implemented the attack. It works as predicted.

Fits the pattern motivating the “NTRU prime” recommendations:
subfields and automorphisms tend to damage security.

Speed: Quasipoly for Q(
√
d1, . . . ,

√
dn) if d1, . . . , dn are quasipoly.

(Quasipoly as function of 2n: i.e., logs are bounded by nO(1).)

Analysis assuming standard heuristics:
I Attack always finds unit group O×

L .
I Attack always finds some generator of input ideal.
I Attack always finds short generator if d1, . . . , dn > 21.03n.

Experiments find short generator even for much smaller d ’s.
Some failures for tiny d ’s—presumably should do better BDD.

Daniel J. Bernstein multiquad.cr.yp.to 10

Conventional techniques to find generators

Want to find g given gR.

Lattice-basis-reduction algorithms find fairly short nonzero vectors α ∈ gR.
Could α be as small as g? Extremely rare in high dimensions.

Much more common: can factor (α/g)R into prime ideals.
Multiply and divide these equations sensibly.

Example from SIAM AG15 talk:
If α1R = gR · P2 · Q2 and α2R = gR · P · Q3 and α3R = gR · P · Q2

then P = α1α
−1
3 R and Q = α2α

−1
3 R and gR = α−1

1 α−2
2 α4

3R.

This is the core of the conventional methods of
computing units (find two generators of same ideal; divide);
computing class group (obstruction to all ideals having generators);
computing discrete logarithms by NFS; factoring by NFS; etc.

Daniel J. Bernstein multiquad.cr.yp.to 11

Conventional techniques to find generators

Want to find g given gR.

Lattice-basis-reduction algorithms find fairly short nonzero vectors α ∈ gR.
Could α be as small as g? Extremely rare in high dimensions.

Much more common: can factor (α/g)R into prime ideals.
Multiply and divide these equations sensibly.

Example from SIAM AG15 talk:
If α1R = gR · P2 · Q2 and α2R = gR · P · Q3 and α3R = gR · P · Q2

then P = α1α
−1
3 R and Q = α2α

−1
3 R and gR = α−1

1 α−2
2 α4

3R.

This is the core of the conventional methods of
computing units (find two generators of same ideal; divide);
computing class group (obstruction to all ideals having generators);
computing discrete logarithms by NFS; factoring by NFS; etc.

Daniel J. Bernstein multiquad.cr.yp.to 11

Some ways to exploit subfields and automorphisms

1. Well known: In many geometric cases, such as elliptic curves, use
automorphisms for much faster class-group (“point-counting”) methods.

2. Factorization of α ⇒ factorization of σ(α)
for each automorphism σ of R.

Special case: obtain “cyclotomic units” from α = 1− ζN .
Analogous: “multiquadratic units” from units of quadratic subfields.

3. How to obtain all units of a multiquadratic field?
(Can’t find all units of “hard” cyclotomics without solving this!)

1966 Wada: Use subfield relation u2 = Nσ(u)Nτ (u)/σ(Nστ (u)).
First solve same problem recursively for the σ, τ, στ subfields;
then try square roots of exponential number of products of generators.

Better: find squares using quadratic chars, as in 1991 Adleman NFS.

4. Similarly find generators starting with generators of norms.

Daniel J. Bernstein multiquad.cr.yp.to 12

Some ways to exploit subfields and automorphisms

1. Well known: In many geometric cases, such as elliptic curves, use
automorphisms for much faster class-group (“point-counting”) methods.

2. Factorization of α ⇒ factorization of σ(α)
for each automorphism σ of R.

Special case: obtain “cyclotomic units” from α = 1− ζN .
Analogous: “multiquadratic units” from units of quadratic subfields.

3. How to obtain all units of a multiquadratic field?
(Can’t find all units of “hard” cyclotomics without solving this!)

1966 Wada: Use subfield relation u2 = Nσ(u)Nτ (u)/σ(Nστ (u)).
First solve same problem recursively for the σ, τ, στ subfields;
then try square roots of exponential number of products of generators.

Better: find squares using quadratic chars, as in 1991 Adleman NFS.

4. Similarly find generators starting with generators of norms.

Daniel J. Bernstein multiquad.cr.yp.to 12

Some ways to exploit subfields and automorphisms

1. Well known: In many geometric cases, such as elliptic curves, use
automorphisms for much faster class-group (“point-counting”) methods.

2. Factorization of α ⇒ factorization of σ(α)
for each automorphism σ of R.

Special case: obtain “cyclotomic units” from α = 1− ζN .
Analogous: “multiquadratic units” from units of quadratic subfields.

3. How to obtain all units of a multiquadratic field?
(Can’t find all units of “hard” cyclotomics without solving this!)

1966 Wada: Use subfield relation u2 = Nσ(u)Nτ (u)/σ(Nστ (u)).
First solve same problem recursively for the σ, τ, στ subfields;
then try square roots of exponential number of products of generators.

Better: find squares using quadratic chars, as in 1991 Adleman NFS.

4. Similarly find generators starting with generators of norms.

Daniel J. Bernstein multiquad.cr.yp.to 12

Some ways to exploit subfields and automorphisms

1. Well known: In many geometric cases, such as elliptic curves, use
automorphisms for much faster class-group (“point-counting”) methods.

2. Factorization of α ⇒ factorization of σ(α)
for each automorphism σ of R.

Special case: obtain “cyclotomic units” from α = 1− ζN .
Analogous: “multiquadratic units” from units of quadratic subfields.

3. How to obtain all units of a multiquadratic field?
(Can’t find all units of “hard” cyclotomics without solving this!)

1966 Wada: Use subfield relation u2 = Nσ(u)Nτ (u)/σ(Nστ (u)).
First solve same problem recursively for the σ, τ, στ subfields;
then try square roots of exponential number of products of generators.

Better: find squares using quadratic chars, as in 1991 Adleman NFS.

4. Similarly find generators starting with generators of norms.

Daniel J. Bernstein multiquad.cr.yp.to 12

Coefficients for MQ lattice

Vertical axis: Average absolute coefficients of Log g on MQ basis.
Horizontal axis: 1.11/(2n/2 log(uD)).

Daniel J. Bernstein multiquad.cr.yp.to 13

Success for MQ lattice

Vertical axis: Success probability of simple rounding (in the MQ lattice).
Horizontal axis: d1, using n consecutive primes for (d1, . . . , dn).

Daniel J. Bernstein multiquad.cr.yp.to 14

Time (in seconds) to find full lattice and generator

Sage Sage
tower absolute new new new new

2n units units units units2 gen gen2

8 0.05 0.03 0.90 0.91 0.07 0.07
16 0.48 0.24 2.33 2.39 0.20 0.19
32 6.75 4.73 6.61 7.36 0.56 0.51
64 >700000 >700000 23.30 37.51 1.51 1.51

128 93.02 1560.49 4.95 7.29
256 463.91 31469.23 27.95 100.65

Table: Observed time to compute (once) the units of Q(
√
d1, . . . ,

√
dn); and to

find a generator for the public key in the cryptosystem.

Daniel J. Bernstein multiquad.cr.yp.to 15

Success at finding short generator of ideal

n 3 4 5 6 7 8

psuc(L1) 0.122 0.137 0.132 0.036 0.001 0.000

psuc(Ln) 0.203 0.490 0.648 0.936 0.631 0.423

psuc(Ln2) 0.784 0.981 1.000 1.000 1.000 1.000

Table: Observed attack success probabilities for various multiquadratic fields.

Daniel J. Bernstein multiquad.cr.yp.to 16

