Quantum algorithms

Daniel J. Bernstein
University of lllinois at Chicago

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction Is
In a quantum computer’s
supported instruction set.

How do we know which
instructions a quantum
computer will support?

Quantum computer type 1 (QC1):
stores many “‘qubits’;

can efficiently perform
"Hadamard gate”’, “T gate’,
“controlled NOT gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”;
“Grover's algorithm”; etc.

n algorithms

. Bernstein
ty of lllinois at Chicago

im algorithm”
n algorithm that

Im computer can run.

juence of instructions,
ych Instruction Is
ntum computer’s
d Instruction set.

 we know which
ions a quantum
er will support?

Quantum computer type 1 (QC1):

stores many “qubits”;

can efficiently perform
"Hadamard gate”’, “T gate’,
“controlled NOT gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”;
“Grover's algorithm™; etc.

Quantur
stores a
efficientl
laws of ¢
with as

This i1s t
quantun
by 1982
physics

nsS

N

is at Chicago

m
m that
ter can run.

Instructions,
“tion Is
puter’s
lon set.

 which
antum
pport?

Quantum computer type 1 (QC1):

stores many “‘qubits’;

can efficiently perform
"Hadamard gate”, T gate’,
“controlled NOT gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”;
“Grover's algorithm”; etc.

Quantum compute
stores a simulated
efficiently simulate
laws of quantum g
with as much acclt

This Is the origina
quantum compute

by 1982 Feynman
physics with comg

120

1S,

Quantum computer type 1 (QC1):

stores many “qubits”;

can efficiently perform
"Hadamard gate”’, “T gate’,
“controlled NOT gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”;
“Grover's algorithm™; etc.

Quantum computer type 2 (
stores a simulated universe:
efficiently simulates the
laws of quantum physics
with as much accuracy as di

This Is the original concept
quantum computers introdu
by 1982 Feynman “Simulati
physics with computers’ .

Quantum computer type 1 (QC1):

stores many “qubits”;

can efficiently perform
"Hadamard gate”, T gate’,
“controlled NOT gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions
to compute “Toffoli gate”;

. “Simon’s algorithm”;

. “Shor’s algorithm”;

. "Grover's algorithm™; etc.

Quantum computer type 2 (QC2):
stores a simulated universe;
efficiently simulates the
laws of quantum physics
with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

Quantum computer type 1 (QC1):

stores many “qubits”;

can efficiently perform
"Hadamard gate”, T gate’,
“controlled NOT gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions
to compute “Toffoli gate”;

. “Simon’s algorithm”;

. “Shor’s algorithm”;

. "Grover's algorithm™; etc.

Quantum computer type 2 (QC2):
stores a simulated universe;
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

n computer type 1 (QC1):

any ‘qubits”;

lently perform
ard gate”, "I gate’,
led NOT gate”.

these instructions work
1ain goal of quantum-
er engineering.

> these Instructions
ute “Toffoli gate”;
1on’'s algorithm'™;

or's algorithm™;

ver's algorithm™ ; etc.

Quantum computer type 2 (QC2):
stores a simulated universe:
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,

2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories” .

3

Quantur
efficientl
that any
can com

r type 1 (QC1):

ts”;

orm

T gate’,
rate’ .

tructions work
of quantum-
ering.

tructions
|l gate’’;
rithm'

hm" :

rithm' : etc.

Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum compute
efficiently comput:
that any physical
can compute effici

QC1):

work
Im-

Quantum computer type 2 (QC2):

stores a simulated universe:
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 3 (
efficiently computes anythin
that any physical computer
can compute efficiently.

3 4

Quantum computer type 2 (QC2): Quantum computer type 3 (QC3):
stores a simulated universe; efficiently computes anything
efficiently simulates the that any physical computer

laws of quantum physics can compute efficiently.

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,

2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 3 (QC3):
efficiently computes anything
that any physical computer
can compute efficiently.

General belief: any QC2 is a QC3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 3 (QC3):
efficiently computes anything
that any physical computer
can compute efficiently.

General belief: any QC2 is a QC3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QCI.

n computer type 2 (QC2):

simulated universe;
y simulates the
juantum physics

much accuracy as desired.

he original concept of

' computers introduced
Feynman “Simulating

Nith computers’ .

belief: any QC1 is a QC2.

roof: see, e.g.,
dan—Lee—Preskill
im algorithms for
1 field theories™ .

Quantum computer type 3 (QC3):

efficiently computes anything
that any physical computer
can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

T he stat

Data (
an eleme
an eleme

r type 2 (QC2):

universe:
s the
hysics

Iracy as desired.

| concept of

rs introduced
“Simulating

uters’ .

vy QC1 is a QC2.

e.g.,
Preskill

1ms for
ories .

Quantum computer type 3 (QC3):

efficiently computes anything
that any physical computer
can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

The state of an al

Data (“state”) stc
an element of {0,
an element of {0,

QC2):

asired.

of
ced

ng

' QC2.

Quantum computer type 3 (QC3):

efficiently computes anything
that any physical computer
can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

The state of an algorithm

Data (“state”) stored in n Lk
an element of {0, 1}", viewe
an element of {0,1,...,2" -

Quantum computer type 3 (QC3): The state of an algorithm

efficiently computes anything Data (“state”) stored in n bits:

an element of {0, 1}", viewed as
an element of {0,1,...,2" — 1}

that any physical computer
can compute efficiently.

General belief: any QC2 is a QCS3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.

Quantum computer type 3 (QC3): The state of an algorithm
efficiently computes anything

Data (“state”) stored in n bits:

an element of {0, 1}", viewed as
an element of {0,1,...,2" — 1}

that any physical computer
can compute efficiently.

General belief: any QC2 is a QCS3.

| State stored in n qubits:
Argument for belief:

n
| a nonzero element of C2 .
any physical computer must

Retrieving this vector Is tough!
follow the laws of quantum

physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:

look, we're building a QC1.

Quantum computer type 3 (QC3):

efficiently computes anything
that any physical computer
can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

The state of an algorithm

Data (“state”) stored in n bits:

an element of {0, 1}", viewed as
an element of {0,1,...,2" — 1}

State stored in n qubits:
a nonzero element of C2 .

Retrieving this vector Is tough!

If n qubits have state

(ag, a1,...,a»_1) then
measuring the qubits produces
an element of {0,1,...,2" — 1}
and destroys the state.

Measurement produces element g
with probability |ag|?/ Y, |ar|?.

n computer type 3 (QC3):

y computes anything
- physical computer
pute efficiently:.

belief: any QC2 is a QC3.

1t for belief:

sical computer must

1e laws of quantum

so a QC2 can efficiently
any physical computer.

belief: any QC3 is a QC1.

1t for belief:
're building a QC1.

The state of an algorithm

Data (“state”) stored in n bits:

an element of {0, 1}", viewed as
an element of {0,1,...,2" —1}.

State stored in n qubits:
a nonzero element of C2 .

Retrieving this vector Is tough!

If n qubits have state
(a(), al, ..., azn_l) then
measuring the qubits produces

an element of {0,1,...,2" — 1}
and destroys the state.

Measurement produces element g
with probability |ag|?/ Y, |ar|?.

Some ex

(1,0,0,(
“10)" in
Measure

r type 3 (QC3):

25 anything
computer
ently.

vy QC2 is a QC3.

of:

uter must
quantum

can efficiently
cal computer.

vy QC3 is a QC1.

of:
g a QCI.

The state of an algorithm

Data (“state”) stored in n bits:
an element of {0, 1}", viewed as

an element of {0,1,...,2" — 1}

State stored in n qubits:
a nonzero element of C2 .

Retrieving this vector Is tough!

If n qubits have state
(ao, al,..., aQn_l) then
measuring the qubits produces

an element of {0,1,...,2" — 1}
and destroys the state.

Measurement produces element g
with probability |ag|?/ Y, |ar|?.

Some examples of

(1,0,0,0,0,0,0,0
“10)" in standard
Measurement proc

QC3):

' QC3.

ntly
Iter.

' QCL.

The state of an algorithm

Data (“state”) stored in n bits:

an element of {0, 1}", viewed as
an element of {0,1,...,2" —1}.

State stored in n qubits:
a nonzero element of C2 .

Retrieving this vector Is tough!

If n qubits have state

(ag, a1,...,a»_1) then
measuring the qubits produces
an element of {0,1,...,2" — 1}

and destroys the state.

Measurement produces element g
with probability |ag|?/ Y, |ar|?.

Some examples of 3-qubit s

(1,0,0,0,0,0,0,0) is
“|0)" in standard notation.

Measurement produces O.

The state of an algorithm Some examples of 3-qubit states:

Data (“state”) stored in n bits: (1,0,0,0,0,0,0,0) is
an element of {0, 1}", viewed as “|0)" in standard notation.
an element of {0,1,...,2"7 — 1} Measurement produces 0.

State stored in n qubits:
a nonzero element of C2 .

Retrieving this vector Is tough!

If n qubits have state

(ag, a1,...,a»_1) then
measuring the qubits produces
an element of {0,1,...,2" — 1}
and destroys the state.

Measurement produces element g
with probability |ag|?/ Y, |ar|?.

The state of an algorithm Some examples of 3-qubit states:
Data (“state”) stored in n bits: (1,0,0,0,0,0,0,0) is

an element of {0, 1}", viewed as “|0)" in standard notation.

an element of {0,1,...,2"7 — 1} Measurement produces 0.

State stored in n qubits: (O 0,0,0,0,0,1,0) is

a nonzero element of C2". “|6)" in standard notation.
Retrieving this vector Is tough! Measurement produces 6.

If n qubits have state

(ag, a1,...,a»_1) then
measuring the qubits produces
an element of {0,1,...,2" — 1}
and destroys the state.

Measurement produces element g
with probability |ag|?/ Y, |ar|?.

The state of an algorithm Some examples of 3-qubit states:

Data (“state”) stored in n bits: (1,0,0,0,0,0,0,0) is

an element of {0, 1}", viewed as “|0)" in standard notation.

an element of {0,1,...,2"7 — 1} Measurement produces 0.

State stored in n qubits: (O 0,0,0,0,0,1,0) is

a nonzero element of C2". “|6)" in standard notation.
Retrieving this vector Is tough! Measurement produces 6.

If n qubits have state (0,0,0,0,0,0,—7/,0) = —7i|6):
(ag, a1,...,a»_1) then Measurement produces 6.

measuring the qubits produces
an element of {0,1,...,2" — 1}
and destroys the state.

Measurement produces element g
with probability |ag|?/ Y, |ar|?.

The state of an algorithm

Data (“state”) stored in n bits:

an element of {0, 1}", viewed as
an element of {0, 1, ..., 27 — 1},

State stored in n qubits:
a nonzero element of C2 .

Retrieving this vector Is tough!

If n qubits have state

measuring the qublts produces
an element of {0, 1, ..., 2" — 1}
and destroys the state.

Measurement produces element g
with probability |ag|?/ Y, |ar|?.

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

(OOOOOOlO)ls
“l6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4|2) + 8|6):
Measurement produces
2 with probability 20%,
6 with probability 80%.

e of an algorithm

state”) stored in n bits:
nt of {0, 1}", viewed as
nt of {0, 1,..., 2" — 1},

ored in n qubits:
n
o element of C2 .

g this vector Is tough!

ts have state

.., aon_1) then

ng the qubits produces
nt of {0, 1,..., 2" — 1}
roys the state.

ment produces element g
bability |aq|?/S_, |ar|?.

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“|0)" in standard notation.

Measurement produces O.

(0,0,0,0,0,0,1,0) is
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4]2) + 8|6):

Measurement produces
2 with probability 20%,
6 with probability 80%.

Fast quc

(ag, a1,
(a1, ag, ¢
is compl

hence

“(

gorithm

red in n bits:
1}", viewed as

Jubits:
of C2".
tor 1s tough!

ate
then
bits produces

tate.
luces element ¢

Q‘Q/Zr ‘al’|2'

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

(O 0,0,0,0,0,1,0) is
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4|2) + 8/6):

Measurement produces
2 with probability 20%,
6 with probability 80%.

Fast quantum ope

(ag, a1, a2, a3, ag, ¢
(a1, ag, a3, a2, as, ¢
Is complementing

hence “complemel

Its:
d as

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“|0)" in standard notation.

Measurement produces O.

(0,0,0,0,0,0,1,0) is
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4]2) + 8/6):

Measurement produces
2 with probability 20%,
6 with probability 80%.

Fast quantum operations, p:

(301 a]_v 321 331 341 351 36' 37) |

(a1, ag, a3, ao, as, a4, a7, ap)
Is complementing index bit

hence “complementing qubr

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

(O 0,0,0,0,0,1,0) is
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4|2) + 8/6):

Measurement produces
2 with probability 20%,
6 with probability 80%.

Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ag)
Is complementing index bit O,

hence “complementing qubit 0.

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

(OOOOOOlO)ls
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4|2) + 8/6):

Measurement produces
2 with probability 20%,
6 with probability 80%.

Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ag)
Is complementing index bit O,

hence “complementing qubit 0.

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, a2, as, a4, a7, ap)
is measured as (qo @ 1, 91, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.

amples of 3-qubit states:

),0,0,0,0) is
standard notation.
ment produces 0.

),0,0,1,0) is
standard notation.
ment produces 6.

),0,0,—7i,0) = —7i|6):
ment produces 6.

),0,0,8,0) = 4[2) + 8/6):

ment produces
robability 20%,
robability 80%.

Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, ay) —
(a1, ag, a3, ao, as, a4, a7, ap)

Is complementing index

nit 0,

hence “complementing qubit 0.

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 4q»,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ap)
is measured as (qo @ 1, 91, g2),

representing g @ 1,

with probability |ag|?/ Y, |ar|?.

(ag, a1, ¢
(34, dg, c
s “‘com|

(g0, g1,

3-qubit states:

) is
notation.
luces O.

) is
notation.
luces 0.

,0) = —7i|6):
luces 0.

) = 4|2) + 8|6):

luces
20%,
80%.

Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ap)
Is complementing index bit O,

hence “complementing qubit 0.

(ag, a1, a», a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 4q»,
with probability |ag|?/ Y, |ar|*.

(a1, ag, a3, ao, as, a4, a7, ap)

is measured as (qo @ 1, g1, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.

(ag, a1, a2, a3, aa, ¢
(a4, as, ag, a7, ag, «
Is “‘complementing

(90, 91, 92) — (qo

ates:

16):

- 8(6):

Fast quantum operations, part 1

(ao, a1, a2, a3, a4, as, ag, ay) —
(a1, ag, a3, ao, as, a4, a7, ap)

Is complementing index

nit O,

hence “complementing qubit 0.

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 4q»,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ap)
is measured as (qo @ 1, 91, g2),

representing g @ 1,

with probability |ag|?/ Y, |ar|?.

(a0, a1, a2, a3, as, as, ag, az)
(a4, as, ag, a7, ag, a1, a2, az)
is “complementing qubit 2"

(90, 91.92) — (90,91, G2 D

Fast quantum operations, part 1 (ag, a1, a2, a3, aa, as, a6, a7) —

(a4, as, ag, a7, ag, a1, a2, az)
Is ‘complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ap)
Is complementing index bit O,

hence “complementing qubit 0.

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ap)
is measured as (qo @ 1, 91, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.

Fast quantum operations, part 1 (ag, a1, a2, a3, aa, as, a6, a7) —
(a4, as, ag, a7, ag, a1, a2, az)
Is ‘complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ap)
Is complementing index bit O,

hence “complementing qubit 0". (ao, a1, a2, a3, aa, as, a6, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits 0 and 2" :

(0. g1, 92) = (92,91, q0).

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ap)

is measured as (qo @ 1, 91, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.

Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ap)
Is complementing index bit O,

hence “complementing qubit 0.

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ap)

is measured as (qo @ 1, 91, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.

(ag, a1, a2, a3, aa, as, a6, a7) —
(a4, as, ag, a7, ag, a1, a2, az)
Is ‘complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ao, a1, a2, a3, aa, as, a6, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits 0 and 2" :

(90, 91, 92) — (92, 91, q0).
Complementing qubit 2
= swapping qubits 0 and 2

o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits 7, J.

intum operations, part 1

10, a3, a4, as, dp, A7) —

3, a2, as, a4, a7, a)
ementing index bit 0,

omplementing qubit 0.

2, a3, a4, as, ae, a7)

red as (qo, 91, 92),

ting g = qo + 291 + 4q2,
bability [ag|*/ Y, |ar|*.

33132135134137736)
red as (qo ® 1, q1, qz),
ting g @ 1,

bability |aq|?/S_, |ar|?.

(ag, a1, a2, a3, aa, as, ap, a7) —

(a4, as, ag, a7, ag, a1, az, az)
is “complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 ® 1).

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits O and 2":

(90,91, 92) = (92,91, q0).

Complementing qubit 2

= swapping qubits 0 and 2
o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits /, J.

(ag, a1, ¢
(ag, a1, ¢
IS a ‘rev
“control

(90, g1, ¢

rations, part 1

5, 3, a7)

4, a7, ap)
iIndex bit O,

1ting qubit 0.

5, A6, a7)
, g1, G2),
0o + 291 + 4q2,

Q‘Q/Zr ‘al"z'

)4,37,36)
D 1,q91,92),

Q‘z/Zr ‘al’|2'

(ag, a1, a2, a3, aa, as, a6, a7) —

(a4, as, ag, a7, ag, a1, az, az)
Is ‘complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits O and 2" :

(0. g1, 92) = (92,91, q0).

Complementing qubit 2

= swapping qubits 0 and 2
o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits 7, J.

(ag, a1, a2, a3, aa, ¢

(ag, a1, a3, a2, aa, ¢
s a "reversible XC

“controlled NOT |
(90, 91, g2) — (q0

(ag, a1, a2, a3, aa, as, ap, a7) —

(a4, as, ag, a7, ag, a1, az, az)
is “complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 ® 1).

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits O and 2":

(0. g1, 92) = (92,91, q0).

Complementing qubit 2

= swapping qubits 0 and 2
o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits /, J.

(30, di, d2,d3, d4, d5, 46, 37) |

(a0, a1, a3, a2, a4, as, a7, ag)
is a “reversible XOR gate” -

“controlled NOT gate”:
(90,91, 92) — (G0 ® g1, g1,

(ag, a1, a2, a3, aa, as, a6, a7) — (ag, a1, a2, a3, aa, as, a6, a7) —
(a4, as, ag, a7, ag, a1, a2, az) (ag, a1, a3, a2, aa, as, ay, ag)

is “complementing qubit 2" : is a “reversible XOR gate” =
(qo, a1, q2) —> (q(), di1, gy D 1). “controlled NOT gate”:

(a() ai, ap, as, a4, as, ag 37) — (QO1CI1,Q2) — (CIO@ql,ql,qg).

(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits O and 2" :

(90, 91, 92) — (92, 91, q0).
Complementing qubit 2
= swapping qubits 0 and 2

o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits 7, J.

(ag, a1, a2, a3, aa, as, a6, a7) —
(a4, as, ag, a7, ag, a1, a2, az)
Is ‘complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits O and 2" :

(90, 91, 92) — (92, 91, q0).
Complementing qubit 2
= swapping qubits 0 and 2

o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits 7, J.

(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(g0, g1, 92) — (g0 @ g1, 91, 2).

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15,
a16, a17, 18, @19, 20, 421, a22, a3,
a4, axs, axe, a27, a2, a9, a0, as1)
— (ag, a1, a3, a2, a4, as, ay, ag,

ag, ag, ai1, 410, @12, 413, a15, a4,
a16, a17, 419, @18, 20, 421, a23, a2,
aga, azs, 27, a6, A28, 29, a1, a3).-

10, a3, a4, as, ag, a7) —
6, a7, Ao, a1, a2, a3)
blementing qubit 27:

12) — (g0, g1, g2 D 1).

10, a3, a4, as, ag, a7)
2, ae, a1, a5, a3, ay)
ping qubits 0 and 2":

12) — (G2, q1. 90).
nenting qubit 2
ing qubits 0 and 2

iplementing qubit O
pping qubits 0 and 2.

. swapping qubits 1, J.

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(g0, g1, 92) — (g0 @ g1. 91, §2).

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 11, @12, 413, 14, 15,
a16, a17, 18, @19, a20, a1, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (ao, a1, a3, a2, as, as, ar, ae,

ag, a9, a11, 10, @12, 413, a15, a4,
a16, a17, a19, @18, a20, 421, a23, a2,
ans, axs, a7, axe, 28, a29, a1, a30).-

(ag, a1, ¢
(ag, a1, ¢
sa To
“control
(90, g1,

8 9

5, g, a7) (ag, a1, a2, a3, aa, as, a6, a7) — (ag, a1, a2, a3, aa, ¢
1, a2, a3) (ag, a1, a3, a, aa, as, ay, ag) (ag, a1, a2, a3, aa, ¢
- qubit 27 is a “reversible XOR gate’ = is a " Toffoli gate”
g1, qgo D 1). “controlled NOT gate”: “controlled contro
5. 36, 27) (90, g1, q2) — (qo @ q1, q1, q2). (90, 91, 92) — (g0
5, a3, a7) Example with more qubits:
s 0 and 2" (ag, a1, a2, a3, aa, as, ae, a7,
,q1,90)- ag, ag, @10, 411, a12, 13, a14, a15,
1bit 2 d16, d17, 418, 419, 420, d21, d22, d23,
0 and 2 an4, azs, axe, a27, @28, @29, a30, a31)
g qubit 0 — (a0, a1, a3, a2, as, as, az, ae,
< 0 and 2. ag, a9, a11, 410, 412, 413, 415, a14,

d16, d17, d19, d18, 420, d21, 423, 422,
g qubits /, /. a4, azs, @27, axe, a2g, a9, a31, a30)-

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(g0, g1, 92) — (g0 @ g1, 91, G2).

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 11, @12, 413, 14, a15,
a16, a17, 18, @19, a20, a1, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (ao, a1, a3, a2, as, as, ar, ae,

ag, a9, a11, 10, @12, 413, a15, a4,
a16, a17, a19, @18, a20, 421, a23, a2,
ans, axs, a7, a2, 28, a29, a1, a30).-

(30, di, d2, d3, d4, d5, 46, 37) |

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT
(90, 91.92) — (q0 ® q192, q

(ag, a1, a2, a3, aa, as, a6, a7) — (ag, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a3, a2, aa, as, ay, ag) (ag, a1, a», a3, aa, as, ay, ag)

is a “reversible XOR gate” = is a "“Toffoli gate” =

“controlled NOT gate”: “controlled controlled NOT gate”:
(90, g1, q2) — (G0 @ g1, 91, G2): (90, 91, q2) — (G0 @ q192, 91, G2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
a16, a17, 18, @19, 20, a21, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (ao, a1, a3, a2, as, as, ar, ae,

ag, a9, a11, 410, @12, 413, a15, a4,
a16, a17, 419, @18, 20, 421, a23, a2,
ans, axs, a7, axe, 28, a29, a1, a30)-

(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(g0, g1, q2) — (g0 @ q1. 91, 2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
a16, a17, 18, @19, 20, a21, a22, a3,
a4, axs, axe, a27, a2, a9, a0, as1)
— (ao, a1, a3, a2, as, as, ar, ae,

ag, a9, a11, 410, @12, 413, a15, a4,
a16, a17, 419, @18, 20, 421, a23, a2,

10
(ag, a1, a2, a3, aa, as, a6, a7) —

(a0, a1, a2, a3, a4, as, a7, ag)
is a " Toffoli gate” =
“controlled controlled NOT gate”:

(90,91, q2) — (g0 @ 9192, 91, G2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, a11, 12, 13, a4, 315,
a16, a17, a1, 419, a0, a21, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (ao, a1, a2, a3, as, as, az, ae,

ag, a9, a10, a11, 12, 13, a15, 314,
a16, a17, a1, 419, a0, a21, a23, a2,
aga, axs, axe, @27, a28, @29, a1, a30)-

10, a3, a4, as, ag, a7) —
13, a2, a4, as, az, a6)
ersible XOR gate” =
led NOT gate":

12) — (g0 ® g1, 91, G2)-

- with more qubits:

12, d3, d4, d5, d6, d7,

0, a11, a12, @13, 314, a15,
a1g, a19, 20, a1, a22, a3,
a6, a27, 28, @29, a3, a31)
1, a3, a2, a4, as, a7, ae,
1,d10, @12, 313, a15, a14,
a19, a18, 20, 421, a23, a2,

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a1, a2, a3, as, as, a7, ag)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, 92) — (g0 @ 9192, 91, G2).

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 11, @12, 413, 14, a1s,
a16, a17, 18, @19, a20, a1, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (a0, a1, a2, a3, a4, as, ar, ae,

ag, a9, a10, 11, @12, 413, a1, a14,
a16, a17, a18, @19, a20, 421, a23, a2,
ans, a5, aze, a27, @28, a29, a1, a30).-

10

Reversib

Say p is
of {0, 1,

General
these fa:
to obtai

(ag, a1, .
(3p-1(0)

e qubits:

5, d6, 47,

, 313, 314, a15,
20, @21, @22, a3,
28, 329, 30, a31)
4, as, ay, ap,

, 313, 315, 14,
20, @21, 423, a22,

(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a1, a2, a3, a4, as, a7, ag)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, 92) — (g0 @ 9192, 91, G2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15,
a16, a17, 18, @19, 20, a21, a22, a3,
a4, axs, axe, a27, a2, a9, a0, as1)
— (ag, a1, a2, a3, a4, as, ay, ag,

ag, a9, a10, 11, @12, 413, a1s5, a14,
a16, a17, 18, @19, a20, 421, a23, a2,
a4, azs, a2, a7, a2g, a9, as1, a30)-

10

Reversible comput

Say p is a permut.
of {0,1,...,2" —

General strategy t
these fast quantur
to obtain Index pe

(30, dl,..., aQn_l)
(3p-10) 3p1(1)"

12).

d15,

), 323,
), a31)
.
314,

3, 322,

L, 330).

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a1, a2, a3, a4, as, a7, ag)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, 92) — (g0 © 9192, 91, G2).

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 11, @12, 413, 14, a15,
a16, a17, 18, @19, a20, a1, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (ao, a1, a2, a3, as, as, ar, ae,

ag, a9, a10, 11, @12, 413, a1, a14,
a16, a17, 18, @19, a20, 421, a23, a2,
ana, axs, ae, 27, A28, 29, a31, a30).

10

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operatio
to obtain index permutation
(ao, al, ..., 32”—1) —>

(3p-1(0) 3p-1(1) -+ Fp1(2

10 11
(ag, a1, a2, a3, aa, as, a6, a7) — Reversible computation

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

Say p is a permutation

of {0,1,...,2" —1}.
“controlled controlled NOT gate”:

(90,91, 92) — (g0 ® q192, g1, 42). General strategy to compose

| | these fast quantum operations
Example with more qubits:

(ag, a1, a2, a3, aa, as, ae, a7,
ag, a9, a10, 411, 412, 413, a14, 315,
aie, 417, 418, 419, a0, @21, 422, a3,

a4, axs, axg, 27, axg, a29, asp, a1)
— (ag, a1, a2, a3, a4, as, a7, ag,

to obtain index permutation
(30, al, ..., azn_l) —

(3p-1(0) 3p-1(1) - 3p-L(2n-1))

dg8, d9, 410, 411, 412, 413, 415, 414,
d16, d17, d18, 419, 420, 421, 423, d22,

(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a1, a2, a3, a4, as, a7, ag)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(g0, g1, q2) — (g0 @ 9192, 91, G2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
a16, a17, 18, @19, 20, a21, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (ao, a1, a2, a3, a4, as, ar, ae,

ag, a9, a10, 11, @12, 413, a15, a14,
a16, a17, 18, @19, 20, 421, a23, a2,
ans, axs, aze, a27, @28, a29, a1, a30)-

10

11
Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(ao, a1, ..
(3p-1(0) 3p-1(1) - 3p-L(2n-1))

.,azn_l) —

1. Build a traditional circuit
to compute j — p(j)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

10, a3, a4, as, ag, a7) —

1, a3, a4, as, a7, ag)
ffoll gate” =

led controlled NOT gate”:

12) — (g0 ® q192, 91, 92).

- with more qubits:

12, d3, d4, d5, d6, d7,

0, a11, a12, @13, 314, a15,
a1g, a19, 20, a1, a22, a3,
a6, a27, 28, @29, a3, a31)
1,a2, a3, a4, as, a7, ae,

0, d11, @12, 313, d15, a14,
a1g, a19, 20, 421, a23, a2,

10

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(ao, al, ..., azn_l) —>
(3p-1(0) Bp1(1) -+ Fp-1(2n-1));
1. Build a traditional circuit

to compute j — p(J)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

11

Example
(ag, a1, ¢

(a7, ag,
permuta

1. Build
to comp

\

q0

go b 1

5, g, a7)
5, a7, a6)

lled NOT gate”:

e qubits:

5, d6, 47,

, 313, 314, a15,
20, @21, @22, a3,
28, 329, 30, a31)
4, as, ay, ap,

, 313, 315, 14,
20, @21, 423, a22,

10

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(30, al, ..., azn_l) —
(3p-1(0) 3p-1(1) - 3p-L(2n-1))
1. Build a traditional circuit

to compute j — p(j)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

11

Example: Let's co

(ag, a1, a2, a3, aa, ¢

(a7, ag, a1, a2, a3, ¢
permutation g —

1. Build a traditio
to compute g +— ¢

gate’ :

315,
), @23,
), @31)

14,
3, d22,

L, 330).

10

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(ao, al, ..., azn_l) —>
(3p-1(0) Bp1(1)r -+ Fp-1(2n-1));
1. Build a traditional circuit

to compute j — p(J)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

11

Example: Let's compute

(ao, ai, a2, as, a4, as, ae, 37) |

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 moc

1. Build a traditional circuit
to compute g — g + 1 mod

q0 qi1 G

N

1 = 4190

qo @1 g1 © qo g ¢

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(aog, a1, ..
(3p-1(0) 3p-1(1) - 3p-L(2n-1))

. 32n_1) —

1. Build a traditional circuit
to compute j — p(j)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

11

Example: Let's compute
(ag, a1, a2, a3, aa, as, a6, a7) —

(a7, a0, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

a2

12

le computation

a permutation
-1}

strategy to compose
st quantum operations
1 index permutation

L aon_1) —

Ap1(1)r -+ p-1(2n-1))
a traditional circuit

ute j — p(j)
DT /XOR/AND gates.

ert into reversible gates:
vert AND into Toffoli.

11

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q0 di1 q2

N

1 = 4190

qo @1 g1 © qo g2 D ¢y

12

2. Conv

Toffoli fi

(ag, a1, ¢
(ag, a1, ¢

ation

ation
1}

0O COMPOSE
n operations
rmutation
>

C ap_1(2n_1)):
nal circuit

()

AND gates.

versible gates:
into Toffoli.

11

Example: Let's compute
(ag, a1, a2, a3, aa, as, a6, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q2

12

2. Convert into re

Toffoli for go + g

(ag, a1, a2, a3, aa, ¢
(ag, a1, a2, a7, aa, ¢

7_1)):

S.

1tes:
ol

11

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ao, a1, a2, a3, a4, as, ag);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q0 di1 q2

N

1 = 4190

qo D1 g1 © qo g2 D ¢y

12

2. Convert into reversible g:

Toffoli for gy < g> & g19p:

(ag, a1, a2, a3, aa, as, ag, a7) |
(ag, a1, a2, a7, aa, as, ae, a3).

Example: Let's compute

(ag, a1, a2, a3, aa, as, a6, a7) —

(a7, a0, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit

to compute g — g + 1 mod 8.

a2

12

13
2. Convert into reversible gates.

Toffoli for g» < g> P g1 90p:
(a0, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Example: Let's compute

(ag, a1, a2, a3, aa, as, a6, a7) —

(a7, a0, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit

to compute g — g + 1 mod 8.

a2

12

2. Convert into reversible gates.

Toffoli for g» < g> P g1 90p:
(a0, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 < g1 @ qp:

(ag, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

13

Example: Let's compute
(ag, a1, a2, a3, aa, as, a6, a7) —

(a7, a0, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

a2

12

2. Convert into reversible gates.

Toffoli for g» < g> P g1 90p:
(a0, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 < g1 @ qp:

(ag, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ao, a7, a2, a1, a4, as, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag).

13

: Let's compute

10, a3, a4, as, ag, a7)

1, a2, a3, a4, as, 36);
tion g — g+ 1 mod 8.

a traditional cir

cuit

ute g — g+ 1 mod 8.

di1

O\

1 = 4190

d1 D qo

q2

g2 D C1

12

2. Convert into reversible gates.

Toffoli for gy < g> & g19p:
(ao, a1, a2, a3, aa, as, ap, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 + g1 @ qp:

(ag, a1, a2, a7, aa, as, ag, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1:
(ag, a7, a2, a1, a4, as, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag).

13

This per
was dec

It didn't

For largse
need ma
Really w

mpute
5, a6, a7)

)4,35,36);
g+ 1 mod 8.

nal circuit
1 + 1 mod 8.

a2

g> © 1

12

2. Convert into reversible gates.

Toffoli for g» < g> D g190p:
(a0, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 < g1 @ qp:

(ao, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, as, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag).

13

This permutation
was deceptively ea

It didn't need mar

For large n, most
need many operat
Really want fast c

| 3.

12

2. Convert into reversible gates.

Toffoli for gy < g> & g19p:
(ag, a1, a2, a3, aa, as, ap, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 + g1 @ qp:

(ag, a1, a2, a7, aa, as, ag, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1:
(ag, a7, a2, a1, a4, as, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag).

13

This permutation example
was deceptively easy.

It didn't need many operatic

For large n, most permutati
need many operations = slc
Really want fast circuits.

2. Convert into reversible gates.

Toffoli for g» <+ g> D g190p:
(a0, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a2, a7, aa, as, ae, az).

Controlled NOT for g1 < g1 @ qp:

(ao, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, as, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag).

13

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

14

2. Convert into reversible gates.

Toffoli for g» <+ g> D g190p:
(a0, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a2, a7, aa, as, ae, az).

Controlled NOT for g1 < g1 @ qp:

(ao, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, as, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag).

13

14
This permutation example

was deceptively easy.
It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, it didn't need extra storage:
circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < go D ¢y.

Typical circuits aren't in-place.

ert into reversible gates.

or g2 <— g2 @ 4140:
10, a3, a4, as, ag, a7)

12, d7, d4, dy, d6, 33).

ed NOT for g1 <+ g1 D qp:

10, a7, a4, as, ag, a3)
10, a1, a4, a3, ag, as).

" qo < qo & 1:

10, a1, a4, a3, 6, as5) —
11, 2, a3, a4, as, ag).

13

14
This permutation example

was deceptively easy.
It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, it didn't need extra storage:
circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < g» D ¢y.

Typical circuits aren't in-place.

Start frc
inputs b
b1 ="
bjio =

b = 1¢
specified

versible gates.

> D 4190
5, a6, A7)

5, 36, a3).

r g1 <— q1 D qo:

5, a6, 43)
3, 36, a5).
P 1

3, 36, d5)
4, as, 6).

13

14
This permutation example

was deceptively easy.
It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, it didn't need extra storage:
circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < go D ¢y.

Typical circuits aren't in-place.

Start from any cir
inputs by, by, ...,
biy1 =1 bf(j1
bit2 =1 br(jiyp

br = 1 & br(1)bgy
specified outputs.

1tes.

13

14
This permutation example

was deceptively easy.
It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, it didn't need extra storage:
circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < g» D ¢y.

Typical circuits aren't in-place.

Start from any circuit:
inputs by, by, ..., b;;

bi+1 =1 bf(j11)bg(it1)
bit2 = 1@ br(jy2)bg(it2);

br = 1 ® br(1)bg(7);
specified outputs.

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, it didn't need extra storage:
circuit operated “in place” after
computation ¢ < g1gg was
merged Into gy < g2 D ¢y.

Typical circuits aren't in-place.

14

Start from any circuit:
inputs b1, by, ..., b,';

bit1 =1 br(jy1)bg(it1):
bi2 = 1@ br(i12)bg(i12);

br = 1 ® (1) bg(7);
specified outputs.

15

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, it didn't need extra storage:
circuit operated “in place” after
computation ¢ < g1gg was
merged Into gy < g2 D ¢y.

Typical circuits aren't in-place.

14

Start from any circuit:
inputs b1, by, ..., b,';
bi+1 =1 bf(j11)bg(it1)3

bjy2 = 1@ br(jy2)bg(it2);

br = 1 ® (1) bg(7);
specified outputs.

Reversible but dirty:

inputs by, by, ..., bT;

bit1 < 1@ bit1 @ br(i11)bg(it1);
bit2 < 1@ bj12 @ br(i12)bg(i+2);

br <~ 1® b @ bf(T) bg(T)-
Same outputs if all of

bji1,...,br started as 0.

15

mutation example
ptively easy.

need many operations.

> n, most permutations p
ny operations = slow.
ant fast circuits.

didn’'t need extra storage:

perated “in place” after
ition ¢ < gi1qgp was

Into go < go» P 1.

circuits aren't in-place.

14 15
Start from any circuit:

inputs by, by, ..., b;;
bi+1 =1 bf(j11)bg(it1)
bit2 = 1@ bf(i12)bg(i12);

br = 1 br(1)bg(7);
specified outputs.

Reversible but dirty:

inputs by, by, ..., bT;

bit1 < 1 ® bit1 ® br(i11)bg(it1);
bit2 < 1@ bj12 @ br(i12)bg(it2);

br <~ 1® b1 @ bf(T) bg(T)-
Same outputs if all of
bji1, ..., by started as 0.

Reversib

after fin

set non-

by
on

repea

NON-(

Original

(inputs)
(inputs,

Dirty rey

(in
(in

outs,

Duts,

Clean re

(in
(in

outs,

Outs,

example

Sy.

1y operations.
permutations p

ions = slow.
IrCults.

d extra storage:

n place” after

- d14o Was
g2 © C1.

2n't in-place.

Start from any circuit:

inputs by, by, ...

biy1 =1 by

, bj;
1) bg (i

br = 1 ® (1) bg(7);
specified outputs.

Reversible but dirty:

inputs by, by, ..

., br;

bii1 4 1®bj1® bf(,-
b,'__2 — 16 b,'__2 D bf(,'_

1)

bjy2 = 1@ br(jy2)bg(it2);

1) bg(i+1)

2) bg(i+2)

br <~ 1® br @ bf(T) bg(T)-
Same outputs if all of

b,'_|_1, . -

., by started as 0.

15

Reversible and cle.
after finishing dirt
set non-outputs b:
by repeating same
on non-outputs In

Original computat
(inputs) +—
(inputs, dirt, outpu

Dirty reversible co
(inputs, zeros, zero

(inputs, dirt, outpu

Clean reversible cc
(inputs, zeros, zero

(inputs, zeros, outj

NS.

oNns p

W.

rage:

fter

CE.

14

b:.

inputs by, by, ...
1= 1@ briy1)bg(;

b:.

b:.

Start from any circuit:

, bj;

2 = 1@ br(jy2)bg(iv

inputs by, b, ..

1 16 b,

b:.

bi1, .

br = 1 br(1)bg(7);
specified outputs.

Reversible but dirty:

., br;

> < 16 b,

+1) bg (i

+2) b (i-

br <~ 1® br @ bf(T) bg(T)-
Same outputs if all of
., by started as 0.

15

Reversible and clean:

after finishing dirty computa

set non-outputs back to 0,

by
on

repeating same operation
non-outputs In reverse or

Original computation:

(inputs) —

(inputs, dirt, outputs).

Dirty reversible computation

(in
(in

outs, zeros, zeros) —

outs, dirt, outputs).

Clean reversible computatiol

(in
(in

outs, zeros, zeros) —

outs, zeros, outputs).

15 16

Start from any circuit: Reversible and clean:

inputs by, by, ..., b;; after finishing dirty computation,
bi+1 =1 bf(i11)bg(i+1); set non-outputs back to 0,

bit2 = 1@ br(iy2)bg(it2); by repeating same operations

on non-outputs in reverse order.

br = 1 ® (1) bg(7);

- Original computation:
specified outputs.

(inputs) +—

Reversible but dirty: (inputs, dirt, outputs).
nputs by, by, ..., br; Dirty reversible computation:
bit1 < 1@ bj11 @ br(ir1)bg(it1); (in

bit2 < 1@ bj12 @ br(i12)bg(it2); (in

Outs, zeros, zeros) —

outs, dirt, outputs).

br < 1@ by & b(1yby(7). C.Iean reversible computation:
Same outputs if all of (inputs, zeros, zeros) —
bji1,..., by started as 0. (inputs, zeros, outputs).

m any Circuit:

1, by, ..., bj;

L@ br(j11)bg(i+1);
LD br(i12)bg(i+2);

B br(1)bg(T);
| outputs.

le but dirty:

1,b2,...,b7';

1 ® b1 ® br(iy1)bg(it1);
1 @ b2 @ br(j2)bg(i12);

® br & bf(T) bg(T)-
itputs if all of
, bt started as 0.

15

Reversible and clean:

after finishing dirty computation,

set non-outputs back to 0,

by
on

repeating same operations
non-outputs in reverse order.

Original computation:

(inputs) —

(inputs, dirt, outputs).

Dirty reversible computation:

(in
(in

outs, zeros, zeros) —

outs, dirt, outputs).

Clean reversible computation:

(in
(in

outs, zeros, zeros) —

outs, zeros, outputs).

16

Given fa
and fast

build fas
(x, zeros

15

Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

16

Given fast circuit

dNcG

bui

fast circuit for
d fast reversibl

(x, zeros) — (p(x)

g (i

g (-

15

Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

16

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit f
(x, zeros) — (p(x), zeros).

Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

16

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

17

Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

16

17
Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is
(ag, a1,...,am_1) —

(3p-1(0) 3p-1(2)r -+ Bp-1(2-1))

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

le and clean:

shing dirty computation,

outputs back to O,
ting same operations
utputs In reverse order.

computation:
—
dirt, outputs).

/ersible computation:
ZEeros, Zeros)
dirt, outputs).

versible computation:
ZEeros, zeros) —
zeros, outputs).

16

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C

Permutation on first 2" entries is
(ag, a1,...,am_1) —
(3p-1(0): 3p-1(1)r -+ -+ Ap1(2n-1)):

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

17

Warning
~ numb

In origin

This car
than nut

In the ot

an:
y computation,
ack to 0,
operations
reverse order.

lon:

ts).

mputation:
s) —
ts).

ymputation:
S) —
uts).

16

17
Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is
(ag, a1,...,am_1) —

(3p-1(0) 3p-1(2)r++ Fp-1(20-1))

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

Warning: Number
~ number of bit ¢

in original p, p~1

This can be much
than number of bi
In the original circ

tion,

der.

16

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C

Permutation on first 2" entries is
(ag, a1,...,am_1) —
(3p-1(0) 3p-1(1)r -+ -+ Ap1(2n-1)):

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

17

Warning: Number of qubits
~ number of bit operation

—1

in original p, p~ " circuits.

This can be much larger
than number of bits stored
in the original circuits.

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is
(ag, a1,...,am_1) —

(3p-1(0) 3p-1(2)r++ Fp-1(20-1))

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

17

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~* circuits.

This can be much larger
than number of bits stored
In the original circuits.

18

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is

(ag, a1,...,am_1) —

(3p-1(0) 3p-1(2)r++ Fp-1(20-1))

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

17

18
Warning: Number of qubits

~ number of bit operations

—1

in original p, p~* circuits.

This can be much larger
than number of bits stored
In the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is

(ag, a1,...,am_1) —

(3p-1(0) 3p-1(2)r++ Fp-1(20-1))

Typically prepare vectors
supported on first 2" entries
so don't care how permutation
acts on last 27172 — 2" entries.

17

18
Warning: Number of qubits

~ number of bit operations

—1

in original p, p~* circuits.

This can be much larger
than number of bits stored
In the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

st circuit for p
circuit for p_l,

t reversible circuit for
) — (p(x), zeros).

reversible bit operations

foli gates etc.

n-+z n-+z
g C277° — C?

tion on first 2" entries is
, 32”—1) —>

Tp1(1)

/ prepare vectors

d on first 2" entries
care how permutation
last 277Z — 2" entries.

—1(2/7 1))

17

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~ " circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,

but often these lose time.
Many subtle tradeoftfs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

18

Fast quc

“Hadam
(20, a1)

for p : Warning: Number of qubits : Fast quantum ope
-p 1, ~ number of bit operations Hadamard”
e circuit for in original p, p~1 circuits. (a0, 21) > (a0 + 2
, Z€ros) This can be much larger
bit operations than number of bits stored
etc. . In the original circuits.
n+z

- C Many useful techniques
st 2" entries is to compress into fewer qubits,
> but often these lose time.

ap_l(Z”—l))' Many subtle tradeoffs.
rectors Crude “poly-time” analyses
2N antries don't care about this,
permutation but serious cryptanalysis
_ 2N antries. Is much more precise.

or

lons

1es 1S

1),

on

17

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~ " circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoftfs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

18

Fast quantum operations, p:

"Hadamard' :

(ao, 31) — (a() + a1,dg — 31:

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~* circuits.

This can be much larger
than number of bits stored
In the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

18

Fast quantum operations, part 2

“Hadamard'" :

(ao, 31) —> (ao + a1,d0 — 31).

19

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~* circuits.

This can be much larger
than number of bits stored
In the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

18

Fast quantum operations, part 2

“Hadamard'" :

(ao, 31) —> (ao + a1,d0 — 31).

(a0, a1, a2, a3)
(a() +a1,a0 — 31,32 + a3, ay — 33).

19

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~* circuits.

This can be much larger
than number of bits stored
In the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

18

19
Fast quantum operations, part 2

“Hadamard'" :

(ao, 31) —> (ao + a1,d0 — 31).

(a0, a1, a2, a3)
(a() +a1,a0 — 31,32 + a3, ay — 33).

Same for qubit 1:

(a0, a1, a2, a3) —
(a() +a2,a1 +a3,adg — a,al — 33).

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~* circuits.

This can be much larger
than number of bits stored
In the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

18

19
Fast quantum operations, part 2

“Hadamard'" :

(ao, 31) —> (ao + a1,d0 — 31).

(a0, a1, a2, a3)
(a() +a1,a0 — 31,32 + a3, ay — 33).

Same for qubit 1:
(a0, a1, a2, a3) —
(a() +a2,a1 +a3,adg — a,al — 33).

Qubit 0 and then qubit 1:
(ag, a1, a2, a3) —
(ao+al,ao—al,ag+33,ag—ag) —>
(ag+a1+ax+az, a0 —a1+apx—as,
ao——al—ag—ag,ao—al—ag+33).

: Number of qubits
er of bit operations

al p, p~ 1 circuits.

' be much larger
mber of bits stored
Iginal circuits.

eful techniques

ress into fewer qubits,
n these lose time.
btle tradeoffs.

noly-time” analyses
re about this,

us cryptanalysis
more precise.

18

19
Fast quantum operations, part 2

"Hadamard' :

(ao, 31) —> (a() + a1,a0 — 31).

(a0, a1, a2, a3) +
(ao +a1,a90 — 31,32 + 33,3y — 33).

Same for qubit 1:

(ag, a1, a2, a3) —
(ag + ap, a1 + a3, ag — a», a1 — a3).

Qubit 0 and then qubit 1:
(ag, a1, a2, a3) —
(ao+al,ao—al,ag+ag,ag—ag) —>
(ao+a1+ax+az, a0 —a1+ap—as,
ao——al—az—ag,ao—al—ag+a3).

Repeat |
(1,0,0,.

Measurii
always r

Measuri
can proc
Prloutpt

of qubits
yperations
Ircults.

larger
ts stored
uits.

ques
ewer qubits,

e time.
offs.

analyses
his,
nalysis
1S€.

18 19
Fast quantum operations, part 2

"Hadamard' :

(ao, 31) — (ao + a1,a0 — 31).

(ag, a1, a2, a3) —
(ap + a1, a9 — a1, ap + a3, ap — a3).

Same for qubit 1:

(a0, a1, a2, a3) =
(a() +a»,ad1 +a3,ap — an,al — 33).

Qubit 0 and then qubit 1:
(ag, a1, a2, a3) —
(ao+al,ao—al,ag+33,ag—ag) —>
(ag+a1+ax+az, a0 —a1+apx—as,
ao——al—ag—ag,ao—al—ag+33).

Repeat n times: e
(1,0,0,...,0) — 1

Measuring (1, 0, 0,
always produces 0

Measuring (1,1, 1,
can produce any ¢
Prloutput = q] =

S,

18

19
Fast quantum operations, part 2

"Hadamard' :

(ao, 31) — (a() + a1,a0 — 31).

(a0, a1, a2, a3) +
(ao +a1,a90 — 31,32 + 33,3y — 33).

Same for qubit 1:

(ag, a1, a2, a3) —
(ag + ap, a1 + a3, ag — ap, a1 — a3).

Qubit 0 and then qubit 1:
(ag, a1, a2, a3) —
(ao+al,ao—al,ag+ag,ag—ag) —>
(ao+a1+ax+az, a0 —a1+ap—as,
ao——al—ag—ag,ao—al—ag+a3).

Repeat n times: e.g.,

(1,0,0,...,0) — (1,1,1,...

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = g = 1/2".

19
Fast quantum operations, part 2

"Hadamard' :

(ao, 31) —> (ao + a1,49 — 31).

(ag, a1, a2, a3) —
(ag + a1, ap — a1, a» + a3, a» — a3).

Same for qubit 1:

(ag, a1, a2, a3) —
(ag + ap, a1 + a3, ag — a», a1 — a3).

Qubit 0 and then qubit 1:
(ag, a1, a2, a3) —
(ao+al,ao—al,ag+33,ag—ag) —>
(ag+a1+ax+az, a0 —a1+apx—as,
ao——al—ag—ag,ao—al—ag+33).

Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

20

19
Fast quantum operations, part 2

"Hadamard' :

(ao, 31) —> (ao + a1,d0 — 31).

(a0, a1, a2, a3) +
(a() +a1,a0 — 31,32 + a3, ay — 33).

Same for qubit 1:

(a0, a1, a2, a3) —
(a() +a2,a1 +a3,adp — a,al — 33).

Qubit 0 and then qubit 1:
(ag, a1, a2, a3) —
(ao+al,ao—al,ag+33,ag—ag) —>
(ag+a1+ax+az, a0 —a1+apx—as,
ao——al—ag—ag,ao—al—ag+33).

Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard !,
so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

20

19
intum operations, part 2

ard’’ :
— (ap + a1, a0 — a1).

92,33) —
,d) — d1,4d2 + a3, ay — 33).

r qubit 1:
92,33) —
,a1+as, ap — ap, a1 — az).

and then qubit 1:

92,33) —>
ao—al,ag+ag,ag—33) —>
+a+as,dg—ai+az— as,
—32—33,80—81—32—|—33).

Repeat n times: e.g.,

(1,0,0,...,0) — (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = g = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard !,
so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

20

Simon's

Assume:
satisfies
for every
Can we
given a -

19
rations, part 2

1,40 — a].)

» + a3, ap — az).

0 — a2, 31 — a3).

qubit 1:

+az, ap—az) —
ap —ai +az — as,
ag — a1 —32—|—33).

Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard !,
so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

20

Simon’s algorithm

Assume: nonzero
satisfies f(x) = f(
for every x € {0, 1
Can we find this p
given a fast circuif

33) —>

42 — a3,

19

2o + a3).

Repeat n times: e.g.,

(1,0,0,...,0) — (1,1,1,..

Measuring (1,0,0, ..., 0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q| = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard_l,

so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”

(1,0,0,...,0).

20

Simon’s algorithm

Assume: nonzero s € {0, 1}
satisfies f(x) = f(x @ s)
for every x € {0, 1}".

Can we find this period s,
given a fast circuit for 7

Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0, ..., 0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),

have Hadamard = Hadamard_l,

so easily work backwards
from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

20

Simon’s algorithm

Assume: nonzero s € {0, 1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for 7

21

Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0, ..., 0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),

have Hadamard = Hadamard_l,

so easily work backwards
from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

20

Simon’s algorithm

Assume: nonzero s € {0, 1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for 7

We don't have enough data
if £ has many periods.

Assume: {periods} = {0, s}.

21

Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0, ..., 0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),

have Hadamard = Hadamard_l,

so easily work backwards
from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

20

Simon’s algorithm

Assume: nonzero s € {0, 1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for 7

We don't have enough data
if £ has many periods.

Assume: {periods} = {0, s}.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low

until #inputs approaches 2"/2.

21

n times: e.g.,

0= (1,1,1,...,1).

g (1,0,0,...,0)
roduces 0.

g (1,1,1,...,1)
luce any output:
t=gq|=1/2".

om ‘normalization”

nt to measurement),
damard = Hadamard 1,
~work backwards

niform superposition”
.., 1) to “pure state”

.,0).

20

Simon’s algorithm

Assume: nonzero s € {0, 1}"
satisfies f(x) = f(x @ s)

for every x € {0, 1}".

Can we find this period s,
given a fast circuit for 7

We don't have enough data
if £ has many periods.

Assume: {periods} = {0, s}.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low

until #inputs approaches 2"/2.

21

Simon'’s
far fewel
if nis la
reversibi

utput:
1/2"

alization”
surement),
Hadamard 1,
kwards
erposition”
“pure state”

20

Simon’s algorithm

Assume: nonzero s € {0, 1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for f7

We don't have enough data
if f has many periods.

Assume: {periods} = {0, s}.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low
until #inputs approaches 2"/2.

21

Simon’s algorithm
far fewer qubit op
if nis large and

reversibility overhe

20

Simon’s algorithm

Assume: nonzero s € {0, 1}"
satisfies f(x) = f(x @ s)

for every x € {0, 1}".

Can we find this period s,
given a fast circuit for 7

We don't have enough data
if £ has many periods.

Assume: {periods} = {0, s}.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low
until #inputs approaches 2"/2.

21

Simon’s algorithm uses

far fewer qubit operations
if nis large and

reversibility overhead is low.

Simon’s algorithm

Assume: nonzero s € {0, 1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for f7

We don't have enough data
if f has many periods.

Assume: {periods} = {0, s}.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low

until #inputs approaches 2"/2.

21

Simon’s algorithm uses

far fewer qubit operations
if nis large and

reversibility overhead is low.

22

Simon’s algorithm

Assume: nonzero s € {0, 1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for f7

We don't have enough data
if f has many periods.

Assume: {periods} = {0, s}.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low
until #inputs approaches 2"/2.

21

22
Simon'’s algorithm uses

far fewer qubit operations
if nis large and
reversibility overhead is low.

Say f maps n bits to m bits using
z “ancilla” bits for reversibility.

Prepare n+ m + z qubits

In pure zero state:
vector (1,0,0,...).

Simon’s algorithm

Assume: nonzero s € {0, 1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for f7

We don't have enough data
if f has many periods.

Assume: {periods} = {0, s}.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low

until #inputs approaches 2"/2.

21

Simon’s algorithm uses

far fewer qubit operations
if nis large and

reversibility overhead is low.

Say f maps n bits to m bits using
z “ancilla” bits for reversibility.

Prepare n+ m + z qubits
In pure zero state:

vector (1,0,0,...).

Use n-fold Hadamard
to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others 0.

22

algorithm

nonzero s € {0,1}"
f(x)=f(x®s)
' x €40,1}".
find this period s,
fast circuit for f7

t have enough data
many periods.

{periods} = {0, s}.

1al solution:

= f for many inputs,
lyze collisions.
probability Is very low

1puts approaches on/2.

21

22
Simon’s algorithm uses

far fewer qubit operations
if nis large and
reversibility overhead is low.

Say f maps n bits to m bits using
z “ancilla” bits for reversibility.

Prepare n+ m + z qubits
In pure zero state:

vector (1,0,0,...).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others 0.

Apply fa
for rever
1 Iin pos
moves T«

Note syr
1 at (q,
1 at (g ¢

s € {0,1}"
X @ s)

1.

eriod s,

- for 7

bugh data
ods

L — {05}

n:
ny inputs,
lons.

/ 1S very low

-oaches 21/2.

21

22
Simon’s algorithm uses

far fewer qubit operations
if nis large and
reversibility overhead is low.

Say f maps n bits to m bits using
z “ancilla” bits for reversibility.

Prepare n+ m + z qubits
In pure zero state:

vector (1,0,0,...).

Use n-fold Hadamard
to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others 0.

Apply fast vector
for reversible f col
1 in position (g, 0,
moves to position

Note symmetry be

1 at (q,f(qg),0) ai
1 at (g® s, f(q),!

W

Simon’s algorithm uses

far fewer qubit operations
if nis large and

reversibility overhead is low.

Say f maps n bits to m bits using
z “ancilla” bits for reversibility.

Prepare n+ m + z qubits

In pure zero state:
vector (1,0,0,...).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others O.

22

Apply fast vector permutatic
for reversible f computation
1 in position (g, 0, 0)

moves to position (q, f(q), (

Note symmetry between
1 at (q,f(qg),0) and
1 at (g®s,f(q),0).

Simon’s algorithm uses

far fewer qubit operations
if nis large and

reversibility overhead is low.

Say f maps n bits to m bits using
z “ancilla” bits for reversibility.

Prepare n+ m + z qubits
In pure zero state:

vector (1,0,0,...).

Use n-fold Hadamard
to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others 0.

22

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1 at (g®s,f(q),0).

23

Simon’s algorithm uses

far fewer qubit operations
if nis large and

reversibility overhead is low.

Say f maps n bits to m bits using
z “ancilla” bits for reversibility.

Prepare n+ m + z qubits
In pure zero state:

vector (1,0,0,...).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others 0.

22

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1 at (g®s,f(q),0).

Apply n-fold Hadamard.

23

Simon’s algorithm uses

far fewer qubit operations
if nis large and

reversibility overhead is low.

Say f maps n bits to m bits using
z “ancilla” bits for reversibility.

Prepare n+ m + z qubits
In pure zero state:

vector (1,0,0,...).

Use n-fold Hadamard
to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others 0.

22

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1 at (g®s,f(q),0).

Apply n-fold Hadamard.

Measure. By symmetry,
output Is orthogonal to s.

23

Simon’s algorithm uses

far fewer qubit operations

if nis large and

reversibility overhead is low.

Say f maps n bits to m bits using

z “ancilla” bits for reversibility.

Prepare n

m

Z qubits

In pure zero state:
vector (1,0,0,...).

Use n-fold Hadamard
to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others 0.

22

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1 at (g®s,f(q),0).

Apply n-fold Hadamard.

Measure. By symmetry,
output Is orthogonal to s.

Repeat n + 10 times.
Use Gaussian elimination
to (probably) find s.

23

algorithm uses

- qubit operations
rge and

lity overhead is low.

aps n bits to m bits using
a" bits for reversibility.

) nm

Z qubits
7ero state:
,0,0,..)

ld Hadamard

first n qubits

orm superposition:
..,1,0,0,...)
entries 1, others O.

22

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1 at (g®s,f(q),0).

Apply n-fold Hadamard.

Measure. By symmetry,
output Is orthogonal to s.

Repeat n + 10 times.
Use Gaussian elimination
to (probably) find s.

23

Example

|
N

a
-

g
p—t

a
N

a
o

N o | (« \ N DY - |

a

AN TN N N N N N N
(@ 2 NN

a
(@)

NS (

—H
~

22 23

uses Apply fast vector permutation Example, 3 bits tc

erations f0|-r rever.5|.ble f computation: £(0) = 4
1 in position (g, 0, 0) F(1) = 7

ad is low. moves to position (g, f(q),0). F(2) = 2

to m bits using Note symmetry between f(3) =3.

- reversibility. 1 at (q,f(q),0) and f(4)=T1.

, qubits 1at (g@s,f(q),0). ?(2) ::
Apply n-fold Hadamard. (6) =

f(7) =2

Measure. By symmetry,

ard output is orthogonal to s.

bits

Repeat n + 10 times.

Use Gaussian elimination

to (probably) find s.
others 0. (p y)

position:

using

22

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1 at (g®s,f(q),0).

Apply n-fold Hadamard.

Measure. By symmetry,
output Is orthogonal to s.

Repeat n + 10 times.
Use Gaussian elimination
to (probably) find s.

23

Example, 3 bits to 3 bits:

a
-

g
p—t

a)
N

—H

a)
O

a
(@)

|
W AN w AN e

a a
/\/\/\/\a/\/\/\

~ P
— — — — — — — —

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1l at (g®s,f(q),0).

Apply n-fold Hadamard.

Measure. By symmetry,
output Is orthogonal to s.

Repeat n + 10 times.
Use Gaussian elimination
to (probably) find s.

23

Example, 3 bits to 3 bits:

24

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1l at (g®s,f(q),0).

Apply n-fold Hadamard.

Measure. By symmetry,
output Is orthogonal to s.

Repeat n + 10 times.
Use Gaussian elimination
to (probably) find s.

23

Example, 3 bits to 3 bits:

24

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1l at (g®s,f(q),0).

Apply n-fold Hadamard.

Measure. By symmetry,
output Is orthogonal to s.

Repeat n + 10 times.
Use Gaussian elimination
to (probably) find s.

23

Example, 3 bits to 3 bits:

Complete table shows that
f(x) = f(x @ 5) for all x.

Let’'s watch Simon's algorithm
for f, using 6 qubits.

24

st vector permutation
sible f computation:

tion (g, 0,0)

> position (q, f(g), 0).

nmetry between
f(g),0) and
bs,f(q),0).

fold Hadamard.

. By symmetry,
s orthogonal to s.

n + 10 times.
ssian elimination

ably) find s.

23

Example, 3 bits to 3 bits:

a
-

g
p—t

a
N

a
o

a)

AN N N N N N N N
(@ 2 NN

a
(@)

|
W AN w AN e

—H
~

Complete table shows that
f(x) = f(x & 5) for all x.

Let's watch Simon's algorithm
for f, using 6 qubits.

24

Step 1.

1,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0

23 24

permutation Example, 3 bits to 3 bits: Step 1. Set up pu
”z)p“tat"’”: £(0) = 4 1,0,0,0,0,0,0,0,
0) F(1) = 7 0,0,0,0,0,0,0,0,
(9. (). 0) N

A f(2) = 2. N\ , N\ ; 0,0,0,0,0,0,0,0,
tween f(3) =3. 0,0,0,0,0,0,0,0,
1d f(4) =7 7\ 4\ 0,0,0,0,0,0,0,0,
). f(5) =4 3 2 0,0,0,0,0,0,0,0,
ard f(6) =3 0,0,0,0,0,0,0,0,

| f(7) =2 0,0,0,0,0,0,0,0.
metry,
Al to Complete table shows that
| f(x) = f(x&5) for all x.

€s.
- tion Let’'s watch Simon's algorithm

. for f, using 6 qubits.

on

23

Example, 3 bits to 3 bits:

a
-

g
p—t

a
N

a
o

a

AN TN N N N N N N
o1 D

a
(@)

|
W AN w b ANe

—H
~

Complete table shows that
f(x) = f(x @ 5) for all x.

Let's watch Simon's algorithm
for f, using 6 qubits.

24

Step 1. Set up pure zero st:

1,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,

0

O O O O O O O

0,

24
Example, 3 bits to 3 bits: Step 1. Set up pure zero state:

f(0) = 4. 1,0,0,0,0,0,0,0,
f(1)=7. 4 v 0,0,0,0,0,0,0,0,
f(2) = 2. N\ , N\ ; 0,0,0,0,0,0,0,0,
f(3) =3. 0,0,0,0,0,0,0,0,
f(4)=7. 7\ 4\ 0,0,0,0,0,0,0,0,
f(5) = 4. 3 y 0,0,0,0,0,0,0,0,
f(6) = 3. 0,0,0,0,0,0,0,0,
f(7) = 2. 0,0,0,0,0,0,0,0.

Complete table shows that
f(x) = f(x @ 5) for all x.

Let’'s watch Simon's algorithm
for f, using 6 qubits.

24
Example, 3 bits to 3 bits: Step 2. Hadamard on qubit O:

f(0) = 4. 1,1,0,0,0,0,0,0,
f(1)=7. 4 v 0,0,0,0,0,0,0,0,
f(2) = 2. N\ , N\ ; 0,0,0,0,0,0,0,0,
f(3) =3. 0,0,0,0,0,0,0,0,
f(4)=7. 7\ 4\ 0,0,0,0,0,0,0,0,
f(5) = 4. 3 y 0,0,0,0,0,0,0,0,
f(6) = 3. 0,0,0,0,0,0,0,0,
f(7) = 2. 0,0,0,0,0,0,0,0.

Complete table shows that
f(x) = f(x @ 5) for all x.

Let’'s watch Simon's algorithm
for f, using 6 qubits.

24
Example, 3 bits to 3 bits: Step 3. Hadamard on qubit 1:

f(0) = 4. 1,1,1,1,0,0,0,0,
f(1)=7. 4 v 0,0,0,0,0,0,0,0,
f(2) = 2. N\ , N\ ; 0,0,0,0,0,0,0,0,
f(3) =3. 0,0,0,0,0,0,0,0,
f(4)=7. 7\ 4\ 0,0,0,0,0,0,0,0,
f(5) = 4. 3 y 0,0,0,0,0,0,0,0,
f(6) = 3. 0,0,0,0,0,0,0,0,
f(7) = 2. 0,0,0,0,0,0,0,0.

Complete table shows that
f(x) = f(x @ 5) for all x.

Let’'s watch Simon's algorithm
for f, using 6 qubits.

24
Example, 3 bits to 3 bits: Step 4. Hadamard on qubit 2:

f(0) = 4. 1,1,1,1,1,1,1,1,
f(1)=7. 4 v 0,0,0,0,0,0,0,0,
f(2) = 2. N\ , N\ ; 0,0,0,0,0,0,0,0,
f(3) =3. 0,0,0,0,0,0,0,0,
f(4)=7. 7\ 4\ 0,0,0,0,0,0,0,0,
f(5) = 4. 3 y 0,0,0,0,0,0,0,0,
f(6) = 3. 0,0,0,0,0,0,0,0,
f(7) = 2. 0,0,0,0,0,0,0,0.

Complete table shows that
f(x) = f(x @ 5) for all x.

Let’'s watch Simon's algorithm
for f, using 6 qubits.

24
Example, 3 bits to 3 bits: Step 5. (q9,0) — (q,f(q)):

f(0) = 4. 0,0,0,0,0,0,0,0,
f(1)=T7. 4 v 0,0,0,0,0,0,0,0,
f(2) = 2. N\ , N\ ; 0,0,1,0,0,0,0,1,
f(3) = 3. 0,0,0,1,0,0,1,0,
f(4)=T1. 7\ 4\ 1,0,0,0,0,1,0,0,
f(5) = 4. 3 2 0,0,0,0,0,0,0,0,
f(6) = 3. 0,0,0,0,0,0,0,0,
f(7) = 2. 0,1,0,0,1,0,0,0.

Complete table shows that
f(x) = f(x @ 5) for all x.

Let’'s watch Simon's algorithm
for f, using 6 qubits.

Example, 3 bits to 3 bits:

Complete table shows that
f(x) = f(x @ 5) for all x.

Let’'s watch Simon's algorithm
for f, using 6 qubits.

24

Step 6. Hadamard on qubit O:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,1,1,0,0,1,1,

0,0,1,1,0,0,1,1,
1,1,0,0,1,1,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,

1,1,0,0,1,1,0,0.

Notation: 1 = —1.

25

Example, 3 bits to 3 bits:

Complete table shows that
f(x) = f(x @ 5) for all x.

Let’'s watch Simon's algorithm
for f, using 6 qubits.

24

Step 7. Hadamard on qubit 1:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,

1,1,1,1,1,1,1,1.

25

24

Example, 3 bits to 3 bits: Step 8. Hadamard on qubit 2:
f(0) = 4. 0,0,0,0,0,0,0,0,
f(l)=T7. A 7 0,0,0,0,0,0,0,0,
f(2) = 2. \2 \3 2,0,2,0,0,2,0,2,
f(3) =3. 2,0,2,0,0,2,0, 2,
f(4)=T1. 7\ 4\ 2,0,2,0,0,2,0,2,
f(5) =4 3 2 0,0,0,0,0,0,0,0,
f(6) =3. 0,0,0,0,0,0,0,0,
f(7) =2 2,0,2,0,0,2,0,2.

Complete table shows that
f(x) = f(x @ 5) for all x.

Let’'s watch Simon's algorithm
for f, using 6 qubits.

Example, 3 bits to 3 bits:

Complete table shows that
f(x) = f(x @ 5) for all x.

Let’'s watch Simon's algorithm
for f, using 6 qubits.

24

25
Step 8. Hadamard on qubit 2:

,0,0,0,0,0,0,0,
,0,0,0,0,0,0,0,
.0,2,0,0,2,0,2
.0,2,0,0,2
,0,2,0,0, 2,
,0,0,0,0,0,
,0,0,0,0,0

D O O N N DN O O

Step 9. Measure.
First 3 qubits are uniform random
vector orthogonal to 101: i.e.,

000, 010, 101, or 111.

3 bits to 3 bits:

- 4 7
). N N\
2
,
7 7 4
\ \
l 3

e table shows that
“(x @ 5) for all x.

tch Simon’s algorithm
Ing 6 qubits.

24

25
Step 8. Hadamard on qubit 2:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0, 2,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2.

O O DN

Step 9. Measure.
First 3 qubits are uniform random
vector orthogonal to 101: I1.e.,

000, 010, 101, or 111.

Grover's

Assume:
has f(s)

Traditiol
compute
hope to

Success
until 1

3 bits:

ows that
or all x.

's algorithm
ts.

24

25
Step 8. Hadamard on qubit 2:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2.

Step 9. Measure.
First 3 qubits are uniform random
vector orthogonal to 101: i.e.,

000, 010, 101, or 111.

Grover's algorithm

Assume: unique s
has f(s) = 0.

Traditional algorit

compute f for ma

hope to find outpt

Success pro

vabilit

until #£inputs appt

| M

24

25
Step 8. Hadamard on qubit 2:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0, 2,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2.

O O NN

Step 9. Measure.
First 3 qubits are uniform random

vector orthogonal to 101: i.e.,
000, 010, 101, or 111.

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to finc
compute f for many inputs,
hope to find output O.

Success probability is very Ic
until #inputs approaches 2"

Step 8. Hadamard on qubit 2:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2

2,0,2,0,0,2
2,0,2,0,0, 2,
0,0,0,0,0,0,
0,0,0,0,0,0

Step 9. Measure.
First 3 qubits are uniform random
vector orthogonal to 101: i.e.,

000, 010, 101, or 111.

25

26

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output O.

Success pro

nability 1s very low

until #inputs approaches 2",

Step 8. Hadamard on qubit 2:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,

2,0,2,0,0,2,0,2

Step 9. Measure.
First 3 qubits are uniform random
vector orthogonal to 101: i.e.,

000, 010, 101, or 111.

25

26
Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only on/2
reversible computations of f.

Typically: reversibility overhead
Is small enough that this

easily beats traditional algorithm.

25 26

Hadamard on qubit 2: Grover's algorithm Start frc
0,0,0,0, Assume: unique s € {0, 1}" over al
.0,0,0,0, has f(s) = 0. Step 1:
,0,5,0,5, bq:—c’

_ Traditional algorithm to find s:

0,2,0,2 . . by = ag
compute f for many inputs,

0,2,0,2 hope to find output O. This is 1

8 8 8 8 Success probability is very low Step 2:
'0'5' 0'5' until #inputs approaches 2". Negate .
Grover's algorithm takes only 2n/2 This s @
Measure. . . <
| | reversible computations of f. Repeat !
ubits are uniform random . .
| Typically: reversibility overhead about O.
rthogonal to 101: I.e., . .
is small enough that this
), 101, or 111. . iy . Measure
easily beats traditional algorithm.

With hig

| on qubit 2:

uniform random
to 101: 1.e.,
111.

25

26
Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only on/2
reversible computations of f.

Typically: reversibility overhead
Is small enough that this

easily beats traditional algorithm.

Start from uniforn
over all n-bit strin

Step 1: Set a <+ I

bg = —aq if f(q)
bg = aq otherwise
This i1s fast.

Step 2: “Grover d
Negate a around |
This is also fast.

Repeat Step 1 +
about 0.58 - 2027

Measure the n qul
With high probabi

ndom

25

26
Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only on/2
reversible computations of f.
Typically: reversibility overhead

Is small enough that this

easily beats traditional algorithm.

Start from uniform superpos
over all n-bit strings g.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this fii

26 27
Grover's algorithm Start from uniform superposition

Assume: unique s € {0, 1} over all n-bit strings q.

has f(s) = 0. Step 1: Set a < b where
bg = —aq if f(q) =0,

Traditional algorithm to find s: |
by = aq otherwise.

compute f for many inputs,

. This is fast.
hope to find output O. S 15 Tast
Success probability is very low Step 2: “Grover diffusion”.
until #inputs approaches 2". Negate a around Its average.

Grover's algorithm takes only on/2 This is also fast.

reversible computations of f. Repeat Step 1 + Step 2

Typically: reversibility overhead about 0.58 - 2927 times.

Is small enough that this .
& Measure the n qubits.

With high probability this finds s.

easily beats traditional algorithm.

“algorithm

unique s € {0, 1}"
= 0.

1al algorithm to find s:
 f for many inputs,
find output O.

probability is very low
1puts approaches 2.

algorithm takes only 2//2
e computations of f.

/. reversibility overhead
enough that this

ats traditional algorithm.

26

Start from uniform superposition
over all n-bit strings g.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

27

Normali;
for an e
after O s

1.0—

—0.5+

-1.0—

26 27
|_ Start from uniform superposition Normalized graph

c {0,117 over all n-bit strings q. for an example wi

Step 1: Set a < b where after O steps:

A _ 1.0
hm to find s: bg = —aq 1t f(q) 0 |
. by = aq otherwise.
Ny INputs, o
it 0. This is fast. 05l
/ 1S very low Step 2: “Grover diffusion”.
-0aches 2" Negate a around Its average. 00

takes only n/2 This is also fast.

itions of f. Repeat Step 1 4+ Step 2 05
ility overhead about 0.58 - 2927 times.

at this | Measure the n qubits. ~1.0!
onal algorithm.

With high probability this finds s.

| s:

W

26

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

27

Normalized graph of g — a,

for an example with n = 12

after O steps:

1.0

0.5

0.0

—-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12

after O steps:

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after Step 1:

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after Step 1 + Step 2:

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after Step 1 + Step 2 + Step 1:

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 2 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 3 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 4 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 5 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 6 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 7 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 8 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 9 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 10 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 11 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 12 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 13 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 14 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 15 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 16 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 17 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 18 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 19 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 20 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 25 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 30 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

28
Normalized graph of g — aq

for an example with n = 12
after 35 x (Step 1 + Step 2):

1.0

0.5+ -

OO N E—————————— -

-0.5+ -

-1.0

Good moment to stop, measure.

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 40 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

28
Normalized graph of g — aq

for an example with n = 12
after 45 x (Step 1 + Step 2):

1.0

0.5+ -

0.0

-0.5+ -

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq
for an example with n = 12

after 50 x (Step 1 + Step 2):

1.0

0.5+

0.0

-0.5+

-1.0

Traditional stopping point.

23

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 60 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 70 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 80 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 90 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.5+

-0.5+

-1.0

10710) o

Very bad stopping point.

23

m uniform superposition
n-bit strings g.

Set a « b where

g if f(q) =0,
otherwise.
ast.

“Grover diffusion” .
3 around Its average.
Iso fast.

>tep 1 + Step 2
58 - 2097 times.

' the n qubits.

rh probability this finds s.

27

28
Normalized graph of g — aq

for an example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.5+ -

0.0 b o |

—0.5+ -

-1.0

Very bad stopping point.

g — aq
by a vec
(with fix
(1) ag f
(2) aq f

Step 1 -
act linea

Easily cc
and pow
to under
of state
= Prob.
after ~(

1 superposition
gs g.

) where
- O,

iffusion” .
LS average.

Step 2
times.

JItS.

lity this finds s.

21

28
Normalized graph of g — ag

for an example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.0 b o |

-1.0

Very bad stopping point.

g — aq Is complet
by a vector of two
(with fixed multip
(1) ag for roots g;
(2) ag for non-roo

Step 1 + Step 2
act linearly on this

Easily compute eig
and powers of this
to understand evo
of state of Grover’
= Probability Is 7
after ~(7/4)20->"

1tion

1ds s.

27

28
Normalized graph of g — aq

for an example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.0 b o |

-1.0

Very bad stopping point.

g — aq Is completely descril
by a vector of two numbers
(with fixed multiplicities):
(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear ma

to understand evolution

of state of Grover's algorithi
= Probability 1s ~1

after ~(7/4)2°°>" iterations

Normalized graph of g — ag
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.0 b o

-0.5+

-1.0

Very bad stopping point.

23

g — aq Is completely described

by a vector of two numbers
(with fixed multiplicities):
(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.

= Probability i1s =1
after ~(7/4)2%°>" iterations.

29

zed graph of g — aq
<ample with n = 12
) X (Step 1 + Step 2):

1 stopping point.

28

g — aq Is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) ag for roots g;

2) ag for non-roots q.
q

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues

and powers o

- this linear map

to understand

evolution

of state of Grover's algorithm.
= Probability i1s =1
after ~(7/4)2%°" iterations.

29

Textboo

"WHAT

of g — aq
th n=12
1 4 Step 2):

point.

23

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

29

Textbook algorithi

“WHAT is your al

I\J
v

28

g — aq Is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues

and powers o

- this linear map

to understand

evolution

of state of Grover's algorithm.
= Probability i1s =1
after ~(7/4)2%°" iterations.

29

Textbook algorithm analysis

"WHAT s your algorithm?”

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

29

Textbook algorithm analysis

"WHAT s your algorithm?”

30

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

29

Textbook algorithm analysis

"WHAT s your algorithm?”

"Heapsort. Here's the code.”

30

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

29

30
Textbook algorithm analysis

"WHAT s your algorithm?”
"Heapsort. Here's the code.”

"WHAT does it accomplish?”

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

29

30
Textbook algorithm analysis

"WHAT s your algorithm?”
"Heapsort. Here's the code.”
"WHAT does it accomplish?”

"It sorts the input array in place.
Here's a proof.”

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

29

30
Textbook algorithm analysis

"WHAT s your algorithm?”
"Heapsort. Here's the code.”
"WHAT does it accomplish?”

"It sorts the input array in place.
Here's a proof.”

"WHAT s its run time?”

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

29

30
Textbook algorithm analysis

"WHAT s your algorithm?”
"Heapsort. Here's the code.”
"WHAT does it accomplish?”

"It sorts the input array in place.
Here's a proof.”

"WHAT s its run time?”

“O(nlg n) comparisons;
and ©(nlgn) comparisons
for most inputs. Here's a proof.”

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

29

30
Textbook algorithm analysis

"WHAT s your algorithm?”
"Heapsort. Here's the code.”
"WHAT does it accomplish?”

"It sorts the input array in place.
Here's a proof.”

"WHAT s its run time?”

“O(nlg n) comparisons;
and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”

Is completely described

tor of two numbers

ed multiplicities):

I roots q;

DI NON-roots q.

- Step 2
rly on this vector.

ympute eigenvalues

I€rsS O]

- this linear map

stana

evolution

of Grover's algorithm.

ability I1s =1
7 /4)20-°" iterations.

29

30
Textbook algorithm analysis

"WHAT s your algorithm?”
"Heapsort. Here's the code.”

"WHAT does it accomplish?”

"It sorts the Input array In place.
Here's a proof.”

"WHAT s its run time?”

“O(nlg n) comparisons;
and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”

Algorith

Critical «
How har

ely described
numbers

licities):

ts q.

, vector.

renvalues

- linear map
lution

s algorithm.
-1
iterations.

29

Textbook algorithm analysis

"WHAT s your algorithm?”
"Heapsort. Here's the code.”

"WHAT does it accomplish?”

"It sorts the input array in place.

Here's a proof.”
"WHAT s its run time?”

“O(nlg n) comparisons;
and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”

30

Algorithms to atts

Critical question f
How hard is ECDI

yed

29

Textbook algorithm analysis

"WHAT s your algorithm?”
"Heapsort. Here's the code.”

"WHAT does it accomplish?”

"It sorts the Input array In place.

Here's a proof.”
"WHAT s its run time?”

“O(nlg n) comparisons;
and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”

30

Algorithms to attack crypto

Critical question for ECC se
How hard is ECDLP?

Textbook algorithm analysis

"WHAT is your algorithm?”
"Heapsort. Here's the code.”

"WHAT does it accomplish?”

"It sorts the input array in place.
Here's a proof.”

"WHAT s its run time?”

“O(nlg n) comparisons;
and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”

30

Algorithms to attack crypto

Critical question for ECC security:
How hard is ECDLP?

31

30 31
Textbook algorithm analysis Algorithms to attack crypto

“"WHAT is your algorithm?” Critical question for ECC security:

' ?
"Heapsort. Here's the code.” How hard is ECDLP:

“WHAT does it accomplish?” Standard estimate for “strong”

ECC groups of prime order £:

"It sorts the input array in place. Latest “negating” variants of
Here's a proof.” “distinguished point” rho methods
AWHAT is its run time?” break an average ECDLP instance

using ~0.886+/£ additions.
“O(nlg n) comparisons;

and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”

Textbook algorithm analysis

"WHAT is your algorithm?”
"Heapsort. Here's the code.”

"WHAT does it accomplish?”

"It sorts the input array in place.

Here's a proof.”
"WHAT s its run time?”

“O(nlg n) comparisons;
and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”

30

31
Algorithms to attack crypto

Critical question for ECC security:
How hard is ECDLP?

Standard estimate for “strong”
ECC groups of prime order £:
Latest “negating’ variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/£ additions.
Is this proven? Nol

Is this provable? Maybe not!

Textbook algorithm analysis

"WHAT is your algorithm?”
"Heapsort. Here's the code.”

"WHAT does it accomplish?”

"It sorts the input array in place.

Here's a proof.”
"WHAT s its run time?”

“O(nlg n) comparisons;
and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”

30

31
Algorithms to attack crypto

Critical question for ECC security:
How hard is ECDLP?

Standard estimate for “strong”
ECC groups of prime order £:
Latest “negating’ variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/£ additions.
Is this proven? Nol
Is this provable? Maybe not!

So why do we think it's true?

k algorithm analysis

is your algorithm?”
rt. Here's the code.”

does it accomplish?”

the input array in place.

proof.”
IS Its run time?"

1) comparisons;
g n) comparisons
“inputs. Here's a proof.”

)y pass.’

30

Algorithms to attack crypto

Critical question for ECC security:
How hard is ECDLP?

Standard estimate for “strong”
ECC groups of prime order £:
Latest “negating’ variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/¢ additions.
Is this proven? No!
Is this provable? Maybe not!

So why do we think it's true?

31

2000 Ga

Inadequiz
of a neg

30 31
M _analysis Algorithms to attack crypto 2000 Gallant—Lam

gorithm?” Critical question for ECC security: inadequately speci

How hard is ECDLP? of a negating rho

the code.”
o Standard estimate for “strong”
~complish? |
ECC groups of prime order £:
array in place. Latest “negating” variants of
“distinguished point” rho methods

break an average ECDLP instance

time?"
using ~0.886+/£ additions.
ISONS; |
parisons Is this proven? Nol
lere’'s a proof.” s this provable? Maybe not!

So why do we think it's true?

30 31
Algorithms to attack crypto 2000 Gallant—Lambert—Vans

inadequately specified stater

Critical question for ECC security: f | et
’ How hard is ECDLP? of a negating rho algorithm.

o Standard estimate for “strong”
ECC groups of prime order £:
lace. Latest “negating” variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/¢ additions.
Is this proven? No!

oof. Is this provable? Maybe not!

So why do we think it's true?

Algorithms to attack crypto

Critical question for ECC security:
How hard is ECDLP?

Standard estimate for “strong”
ECC groups of prime order £:
Latest “negating’ variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/£ additions.
Is this proven? Nol
Is this provable? Maybe not!

So why do we think it's true?

31

2000 Gallant—Lambert—Vanstone:
inadequately specified statement
of a negating rho algorithm.

32

Algorithms to attack crypto

Critical question for ECC security:
How hard is ECDLP?

Standard estimate for “strong”
ECC groups of prime order £:
Latest “negating’ variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/£ additions.
Is this proven? Nol
Is this provable? Maybe not!

So why do we think it's true?

31

2000 Gallant—Lambert—Vanstone:

inadequately specified statement
of a negating rho algorithm.

2010 Bos—Kleinjung—Lenstra:
a plausible interpretation of

that algorithm is non-functional.

32

Algorithms to attack crypto

Critical question for ECC security:
How hard is ECDLP?

Standard estimate for “strong”
ECC groups of prime order £:
Latest “negating’ variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/£ additions.
Is this proven? Nol
Is this provable? Maybe not!

So why do we think it's true?

31

2000 Gallant—Lambert—Vanstone:

inadequately specified statement
of a negating rho algorithm.

2010 Bos—Kleinjung—Lenstra:
a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein—Lange—
Schwabe for more history
and better algorithms.

32

Algorithms to attack crypto

Critical question for ECC security:
How hard is ECDLP?

Standard estimate for “strong”
ECC groups of prime order £:
Latest “negating’ variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/£ additions.
Is this proven? Nol
Is this provable? Maybe not!

So why do we think it's true?

31

2000 Gallant—Lambert—Vanstone:

inadequately specified statement
of a negating rho algorithm.

2010 Bos—Kleinjung—Lenstra:
a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein—Lange—
Schwabe for more history
and better algorithms.

Why do we believe that
the latest algorithms work
at the claimed speeds?
Experiments!

32

ms to attack crypto

question for ECC security:
d is ECDLP?

1 estimate for “strong”
ups of prime order £:
negating’ variants of
lished point” rho methods
 average ECDLP instance

).886+/£ additions.
roven? No!
rovable? Maybe not!

do we think it's true?

31

2000 Gallant—Lambert—Vanstone:

inadequately specified statement
of a negating rho algorithm.

2010 Bos—Kleinjung—Lenstra:
a plausible interpretation of
that algorithm is non-functional.

See 2011 Bernstein—Lange-—
Schwabe for more history
and better algorithms.

Why do we believe that
the latest algorithms work
at the claimed speeds?
Experiments!

32

Similar ¢
we don'1
best fac:

ck crypto

or ECC security:
P?

for “strong”
me order £:
variants of

nt" rho methods

~CDLP instance
dditions.

)|
Viaybe not!

Kk 1t's true?

31

2000 Gallant—Lambert—Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos—Kleinj

ung—Lenstra:

a plausible inter

bretation of

that algorithm is non-functional.

See 2011 Bernstein—Lange—

Schwabe for more history

and better algorithms.

Why do we believe that
the latest algorithms work

at the claimed speeds?

Experiments!

32

Similar story for R
we don't have pro
best factoring algc

curity:

g

):

f
ethods

stance

7

31

2000 Gallant—Lambert—Vanstone:

inadequately specified statement
of a negating rho algorithm.

2010 Bos—Kleinjung—Lenstra:
a plausible interpretation of
that algorithm is non-functional.

See 2011 Bernstein—Lange-—
Schwabe for more history
and better algorithms.

Why do we believe that
the latest algorithms work
at the claimed speeds?
Experiments!

32

Similar story for RSA securi
we don't have proofs for the
best factoring algorithms.

2000 Gallant—Lambert—Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos—Kleinj

ung—Lenstra:

a plausible inter

bretation of

that algorithm is non-functional.

See 2011 Bernstein—Lange—

Schwabe for more history

and better algorithms.

Why do we believe that
the latest algorithms work

at the claimed speeds?

Experiments!

32

Similar story for RSA security:
we don’'t have proofs for the
best factoring algorithms.

33

2000 Gallant—Lambert—Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos—Kleinj

ung—Lenstra:

a plausible inter

bretation of

that algorithm is non-functional.

See 2011 Bernstein—Lange—

Schwabe for more history

and better algorithms.

Why do we believe that
the latest algorithms work

at the claimed speeds?

Experiments!

32

Similar story for RSA security:

we don’'t have proofs for the
best factoring algorithms.

Code-based cryptography:
we don’'t have proofs for the
best decoding algorithms.

33

2000 Gallant—Lambert—Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos—Kleinj

ung—Lenstra:

a plausible inter

bretation of

that algorithm is non-functional.

See 2011 Bernstein—Lange—

Schwabe for more history

and better algorithms.

Why do we believe that
the latest algorithms work

at the claimed speeds?

Experiments!

32

33
Similar story for RSA security:

we don’'t have proofs for the
best factoring algorithms.

Code-based cryptography:
we don’'t have proofs for the
best decoding algorithms.

Lattice-based cryptography:
we don’'t have proofs for the
best lattice algorithms.

2000 Gallant—Lambert—Vanstone:

inadequately specified statement
of a negating rho algorithm.

2010 Bos—Kleinjung—Lenstra:
a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein—Lange—
Schwabe for more history
and better algorithms.

Why do we believe that
the latest algorithms work
at the claimed speeds?
Experiments!

32

33
Similar story for RSA security:

we don’'t have proofs for the
best factoring algorithms.

Code-based cryptography:
we don’'t have proofs for the
best decoding algorithms.

Lattice-based cryptography:
we don’'t have proofs for the
best lattice algorithms.

MQ-based cryptography:
we don’'t have proofs for the
best system-solving algorithms.

2000 Gallant—Lambert—Vanstone:

inadequately specified statement
of a negating rho algorithm.

2010 Bos—Kleinjung—Lenstra:
a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein—Lange—
Schwabe for more history
and better algorithms.

Why do we believe that
the latest algorithms work
at the claimed speeds?
Experiments!

32

33
Similar story for RSA security:

we don’'t have proofs for the
best factoring algorithms.

Code-based cryptography:
we don’'t have proofs for the
best decoding algorithms.

Lattice-based cryptography:
we don’'t have proofs for the
best lattice algorithms.

MQ-based cryptography:
we don’'t have proofs for the
best system-solving algorithms.

Confidence relies on experiments.

llant—Lambert—Vanstone:

tely specified statement
ating rho algorithm.

s—Kleinjung—Lenstra:
le interpretation of
orithm is non-functional.

| Bernstein—Lange—
> for more history
er algorithms.

we believe that

t algorithms work
aimed speeds?
1ents!

32

Similar story for RSA security:
we don't have proofs for the
best factoring algorithms.

Code-based cryptography:
we don’'t have proofs for the
best decoding algorithms.

Lattice-based cryptography:
we don’'t have proofs for the
best lattice algorithms.

MQ-based cryptography:
we don’'t have proofs for the
best system-solving algorithms.

Confidence relies on experiments.

33

Where's

Quantur
IS movin

into algc

Example
exponen
Bernstel

Don't e
for the t
to attac

How do
in analy:
Quantur

bert—Vanstone:

fied statement
algorithm.

1g—Lenstra:
~tation of
1on-functional.

n—Lange—
history

1MmSs.

> that

ns work
eds?

32

Similar story for RSA security:
we don’'t have proofs for the
best factoring algorithms.

Code-based cryptography:
we don’'t have proofs for the
best decoding algorithms.

Lattice-based cryptography:
we don’'t have proofs for the
best lattice algorithms.

MQ-based cryptography:
we don’'t have proofs for the
best system-solving algorithms.

Confidence relies on experiments.

33

Where's my quant

Quantum-algorithi
IS moving beyond
into algorithms wi

Example: subset-s
exponent ~0.241
Bernstein—Jeffery-

Don't expect proo
for the best quant
to attack post-qus

How do we obtain
in analysis of thes

Quantum experim

tone:

nent

onal.

32

Similar story for RSA security:

we don't have proofs for the
best factoring algorithms.

Code-based cryptography:
we don’'t have proofs for the
best decoding algorithms.

Lattice-based cryptography:
we don’'t have proofs for the
best lattice algorithms.

MQ-based cryptography:
we don’'t have proofs for the

best system-solving algorithms.

Confidence relies on experiments.

33

Where's my quantum compi

Quantum-algorithm design
Is moving beyond textbook
into algorithms without proc

Example: subset-sum
exponent ~0.241 from 2013
Bernstein—Jeffery—Lange—M¢

Don't expect proofs or prov:
for the best quantum algorit
to attack post-quantum cry

How do we obtain confidenc
in analysis of these algorithr
Quantum experiments are h

Similar story for RSA security:
we don’'t have proofs for the
best factoring algorithms.

Code-based cryptography:
we don’'t have proofs for the
best decoding algorithms.

Lattice-based cryptography:
we don’'t have proofs for the
best lattice algorithms.

MQ-based cryptography:
we don’'t have proofs for the
best system-solving algorithms.

Confidence relies on experiments.

33

34
Where's my quantum computer?

Quantum-algorithm design
Is moving beyond textbook stage
into algorithms without proofs.

Example: subset-sum
exponent ~0.241 from 2013
Bernstein—Jeffery—Lange—Meurer.

Don't expect proofs or provability
for the best quantum algorithms
to attack post-quantum crypto.

How do we obtain confidence
in analysis of these algorithms?
Quantum experiments are hard.

tory for RSA security:
- have proofs for the
toring algorithms.

sed cryptography:
- have proofs for the
oding algorithms.

based cryptography:
- have proofs for the
ice algorithms.

ed cryptography:
- have proofs for the
tem-solving algorithms.

1ce relies on experiments.

33

Where's my quantum computer?

Quantum-algorithm design
Is moving beyond textbook stage
into algorithms without proofs.

Example: subset-sum
exponent ~0.241 from 2013
Bernstein—Jeffery—Lange—Meurer.

Don't expect proofs or provability
for the best quantum algorithms
to attack post-quantum crypto.

How do we obtain confidence
in analysis of these algorithms?

Quantum experiments are hard.

34

Where's

Analogy
a 280 NI

SA security:
ofs for the
rithmes.

graphy:
ofs for the
rithms.

tography:
ofs for the
hms.

raphy:
ofs for the
g algorithms.

n experiments.

33

Where's my quantum computer?

Quantum-algorithm design
Is moving beyond textbook stage
into algorithms without proofs.

Example: subset-sum
exponent ~0.241 from 2013
Bernstein—Jeffery—Lange—Meurer.

Don't expect proofs or provability
for the best quantum algorithms
to attack post-quantum crypto.

How do we obtain confidence
in analysis of these algorithms?
Quantum experiments are hard.

34

Where's my big cc

Analogy: Public h
a 259 NFS RSA-1(

NS.

1ents.

33

Where's my quantum computer?

Quantum-algorithm design
Is moving beyond textbook stage
into algorithms without proofs.

Example: subset-sum
exponent ~0.241 from 2013
Bernstein—Jeffery—Lange—Meurer.

Don't expect proofs or provability
for the best quantum algorithms
to attack post-quantum crypto.

How do we obtain confidence
in analysis of these algorithms?

Quantum experiments are hard.

34

Where's my big computer?

Analogy: Public hasn't carri
a 280 NFS RSA-1024 experi

Where's my quantum computer?

Quantum-algorithm design
Is moving beyond textbook stage
into algorithms without proofs.

Example: subset-sum
exponent ~0.241 from 2013
Bernstein—Jeffery—Lange—Meurer.

Don't expect proofs or provability
for the best quantum algorithms
to attack post-quantum crypto.

How do we obtain confidence
in analysis of these algorithms?

Quantum experiments are hard.

34

Where's my big computer?

Analogy: Public hasn't carried out
a 289 NFS RSA-1024 experiment.

35

Where's my quantum computer?

Quantum-algorithm design
Is moving beyond textbook stage
into algorithms without proofs.

Example: subset-sum
exponent ~0.241 from 2013
Bernstein—Jeffery—Lange—Meurer.

Don't expect proofs or provability
for the best quantum algorithms
to attack post-quantum crypto.

How do we obtain confidence
in analysis of these algorithms?

Quantum experiments are hard.

34

35
Where's my big computer?

Analogy: Public hasn't carried out
a 289 NFS RSA-1024 experiment.

But public has carried out

250 260 570 NFS experiments.
Hopefully not too much
extrapolation error for 259

Where's my quantum computer?

Quantum-algorithm design
Is moving beyond textbook stage
into algorithms without proofs.

Example: subset-sum
exponent ~0.241 from 2013
Bernstein—Jeffery—Lange—Meurer.

Don't expect proofs or provability
for the best quantum algorithms
to attack post-quantum crypto.

How do we obtain confidence
in analysis of these algorithms?
Quantum experiments are hard.

34

Where's my big computer?

Analogy: Public hasn't carried out
a 289 NFS RSA-1024 experiment.

But public has carried out
250 260 570 NFS experiments.

Hopefully not too much

extrapolation error for 259

Vastly larger extrapolation

for the quantum situation.
Imagine attacker performing
230 operations on 249 qubits;

compare to today's challenges
of 21,22 23 24 25 20 qubits.

‘my quantum computer?

n-algorithm design
g beyond textbook stage
rithms without proofs.

: subset-sum
t =~0.241 from 2013
n—Jeffery—Lange—Meurer.

(pect proofs or provability
yest quantum algorithms
kK post-quantum crypto.

we obtain confidence
5is of these algorithms?
n experiments are hard.

Where's my big computer?

Analogy: Public hasn't carried out
a 289 NFS RSA-1024 experiment.

But public has carried out
220 260 570 NFS experiments.

Hopefully not too much

extrapolation error for 259

Vastly larger extrapolation

for the quantum situation.
Imagine attacker performing
280 operations on 240 qubits:

compare to today's challenges
of 21,22 23 24 25 20 qubits.

35

Simulati

2014.04
Simulati
proof of
distinctr

um computer?

M design
textbook stage
thout proofs.

um
from 2013
Lange—Meurer.

fs or provability
um algorithms
\ntum crypto.

confidence
> algorithms?
ents are hard.

Where's my big computer?

Analogy: Public hasn't carried out
a 289 NFS RSA-1024 experiment.

But public has carried out
250 260 570 NFS experiments.

Hopefully not too much

extrapolation error for 259

Vastly larger extrapolation

for the quantum situation.
Imagine attacker performing
230 operations on 249 qubits;

compare to today's challenges
of 21,22 23 24 25 20 qubits.

35

Simulations

2014.04 Chou — .
Simulation shows
proof of 2003 Am
distinctness algorr

Iter?

stage
fs.

=urer.

ability
hms
OTo.

e
ns?
ard.

Where's my big computer?

Analogy: Public hasn't carried out
a 289 NFS RSA-1024 experiment.

But public has carried out
220 2060 570 NFS experiments.

Hopefully not too much

extrapolation error for 259

Vastly larger extrapolation

for the quantum situation.
Imagine attacker performing
280 operations on 240 qubits:

compare to today's challenges
of 21,22 23 24 25 20 qubits.

35

Simulations

2014.04 Chou — Ambainis:
Simulation shows error in
proof of 2003 Ambainis
distinctness algorithm.

35
Where's my big computer?

Analogy: Public hasn't carried out
a 289 NFS RSA-1024 experiment.

But public has carried out
250 260 570 NFS experiments.

Hopefully not too much

extrapolation error for 259

Vastly larger extrapolation

for the quantum situation.
Imagine attacker performing
230 operations on 249 qubits;

compare to today's challenges
of 21,22 23 2% 25 20 qubits.

Simulations

2014.04 Chou — Ambainis:
Simulation shows error in
proof of 2003 Ambainis
distinctness algorithm.

36

Where's my big computer?

Analogy: Public hasn't carried out
a 289 NFS RSA-1024 experiment.

But public has carried out
250 260 570 NFS experiments.

Hopefully not too much

extrapolation error for 259

Vastly larger extrapolation

for the quantum situation.
Imagine attacker performing
230 operations on 249 qubits;

compare to today's challenges
of 21,22 23 2% 25 20 qubits.

35

Simulations

2014.04 Chou — Ambainis:
Simulation shows error in
proof of 2003 Ambainis
distinctness algorithm.

Ambainis: Yes, thanks, will fix.

36

Where's my big computer?

Analogy: Public hasn't carried out
a 289 NFS RSA-1024 experiment.

But public has carried out
250 260 570 NFS experiments.

Hopefully not too much
extrapolation error for 259

Vastly larger extrapolation

for the quantum situation.

Imagine attacker performing

230 operations on 249 qubits;

compare to today's challenges
of 21,22 23 2% 25 20 qubits.

35

36
Simulations

2014.04 Chou — Ambainis:
Simulation shows error in
proof of 2003 Ambainis
distinctness algorithm.

Ambainis: Yes, thanks, will fix.

2014.04 Chou — Childs:
Simulation shows that 2003
Childs—Eisenberg distinctness

algorithm is non-functional;
need to take half angle.

Where's my big computer?

Analogy: Public hasn't carried out
a 289 NFS RSA-1024 experiment.

But public has carried out
250 260 570 NFS experiments.

Hopefully not too much
extrapolation error for 259

Vastly larger extrapolation

for the quantum situation.

Imagine attacker performing

230 operations on 249 qubits;

compare to today's challenges
of 21,22 23 2% 25 20 qubits.

35

36
Simulations

2014.04 Chou — Ambainis:
Simulation shows error in
proof of 2003 Ambainis
distinctness algorithm.

Ambainis: Yes, thanks, will fix.

2014.04 Chou — Childs:
Simulation shows that 2003
Childs—Eisenberg distinctness

algorithm is non-functional;
need to take half angle.

Childs: Yes. Typo, already
fixed in 2005 journal version.

‘my big computer?

- Public hasn't carried out
-S RSA-1024 experiment.

lic has carried out
270 NFS experiments.
y not too much

ation error for 289

rger extrapolation
jJuantum situation.
attacker performing

240

ations on qubits;

to today's challenges
', 23,24 25 26 qubits.

35

36
Simulations

2014.04 Chou — Ambainis:
Simulation shows error in
proof of 2003 Ambainis
distinctness algorithm.

Ambainis: Yes, thanks, will fix.

2014.04 Chou — Childs:
Simulation shows that 2003
Childs—Eisenberg distinctness

algorithm is non-functional;
need to take half angle.

Childs: Yes. Typo, already
fixed in 2005 journal version.

Do we k

Maybe,

How ma
looked f

ymputer?

asn't carried out
)24 experiment.

ried out
experiments.

much
- for 280

polation
ituation.
yerforming
240 qubits;

s challenges
2 26 qubits.

35

36
Simulations

2014.04 Chou — Ambainis:
Simulation shows error in
proof of 2003 Ambainis
distinctness algorithm.

Ambainis: Yes, thanks, will fix.

2014.04 Chou — Childs:
Simulation shows that 2003
Childs—Eisenberg distinctness

algorithm is non-functional;
need to take half angle.

Childs: Yes. Typo, already
fixed in 2005 journal version.

Do we know the b

Maybe, maybe nof

How many researc
looked for better -

ed out

ment.

1tS.

es
Its.

35

36
Simulations

2014.04 Chou — Ambainis:
Simulation shows error in
proof of 2003 Ambainis
distinctness algorithm.

Ambainis: Yes, thanks, will fix.

2014.04 Chou — Childs:
Simulation shows that 2003
Childs—Eisenberg distinctness

algorithm is non-functional;
need to take half angle.

Childs: Yes. Typo, already
fixed in 2005 journal version.

Do we know the best attack

Maybe, maybe not.

How many researchers have
looked for better attacks?

Simulations

2014.04 Chou — Ambainis:
Simulation shows error in
proof of 2003 Ambainis
distinctness algorithm.

Ambainis: Yes, thanks, will fix.

2014.04 Chou — Childs:
Simulation shows that 2003
Childs—Eisenberg distinctness

algorithm is non-functional;
need to take half angle.

Childs: Yes. Typo, already
fixed in 2005 journal version.

36

Do we know the best attacks?

Maybe, maybe not.

How many researchers have
looked for better attacks?

37

Simulations

2014.04 Chou — Ambainis:
Simulation shows error in
proof of 2003 Ambainis
distinctness algorithm.

Ambainis: Yes, thanks, will fix.

2014.04 Chou — Childs:
Simulation shows that 2003
Childs—Eisenberg distinctness

algorithm is non-functional;
need to take half angle.

Childs: Yes. Typo, already
fixed in 2005 journal version.

36

Do we know the best attacks?

Maybe, maybe not.

How many researchers have
looked for better attacks?

Do those researchers
have the right experience?

37

Simulations

2014.04 Chou — Ambainis:
Simulation shows error in
proof of 2003 Ambainis
distinctness algorithm.

Ambainis: Yes, thanks, will fix.

2014.04 Chou — Childs:
Simulation shows that 2003
Childs—Eisenberg distinctness

algorithm is non-functional;
need to take half angle.

Childs: Yes. Typo, already
fixed in 2005 journal version.

36

Do we know the best attacks?

Maybe, maybe not.

How many researchers have
looked for better attacks?

Do those researchers
have the right experience?

Did they carefully study
all possible avenues of attack?

37

Simulations

2014.04 Chou — Ambainis:
Simulation shows error in
proof of 2003 Ambainis
distinctness algorithm.

Ambainis: Yes, thanks, will fix.

2014.04 Chou — Childs:
Simulation shows that 2003
Childs—Eisenberg distinctness

algorithm is non-functional;
need to take half angle.

Childs: Yes. Typo, already
fixed in 2005 journal version.

36

Do we know the best attacks?

Maybe, maybe not.

How many researchers have
looked for better attacks?

Do those researchers
have the right experience?

Did they carefully study
all possible avenues of attack?

Is this auditable and audited?

37

Simulations

2014.04 Chou — Ambainis:
Simulation shows error in
proof of 2003 Ambainis
distinctness algorithm.

Ambainis: Yes, thanks, will fix.

2014.04 Chou — Childs:
Simulation shows that 2003
Childs—Eisenberg distinctness

algorithm is non-functional;
need to take half angle.

Childs: Yes. Typo, already
fixed in 2005 journal version.

36

Do we know the best attacks?

Maybe, maybe not.

How many researchers have
looked for better attacks?

Do those researchers
have the right experience?

Did they carefully study
all possible avenues of attack?

Is this auditable and audited?

Real-world security systems
cannot avoid these questions.

37

