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“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction Is
In a quantum computer’s
supported instruction set.

How do we know which
instructions a quantum
computer will support?

Quantum computer type 1 (QC1):
stores many “‘qubits’;

can efficiently perform
"Hadamard gate”’, “T gate’,
“controlled NOT gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”;
“Grover's algorithm”; etc.
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Quantum computer type 1 (QC1):

stores many “qubits”;

can efficiently perform
"Hadamard gate”’, “T gate’,
“controlled NOT gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”;
“Grover's algorithm™; etc.

Quantum computer type 2 (
stores a simulated universe:
efficiently simulates the
laws of quantum physics
with as much accuracy as di

This Is the original concept
quantum computers introdu
by 1982 Feynman “Simulati
physics with computers’ .
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Quantum computer type 1 (QC1):

stores many “qubits”;

can efficiently perform
"Hadamard gate”, T gate’,
“controlled NOT gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions
to compute “Toffoli gate”;

. “Simon’s algorithm”;

. “Shor’s algorithm”;

. "Grover's algorithm™; etc.

Quantum computer type 2 (QC2):
stores a simulated universe;
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .
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stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating
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General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
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“Quantum algorithms for
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Quantum computer type 2 (QC2):

stores a simulated universe:
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of
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Quantum computer type 2 (QC2): Quantum computer type 3 (QC3):
stores a simulated universe; efficiently computes anything
efficiently simulates the that any physical computer

laws of quantum physics can compute efficiently.
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Quantum computer type 3 (QC3):
efficiently computes anything
that any physical computer
can compute efficiently.

General belief: any QC2 is a QC3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.
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Quantum computer type 3 (QC3):
efficiently computes anything
that any physical computer
can compute efficiently.

General belief: any QC2 is a QC3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QCI.
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General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
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simulate any physical computer.
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Quantum computer type 3 (QC3):

efficiently computes anything
that any physical computer
can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
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Quantum computer type 3 (QC3): The state of an algorithm

efficiently computes anything Data (“state”) stored in n bits:

an element of {0, 1}", viewed as
an element of {0,1,...,2" — 1}

that any physical computer
can compute efficiently.

General belief: any QC2 is a QCS3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.
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Data ( “state”) stored in n bits:

an element of {0, 1}", viewed as
an element of {0,1,...,2" — 1}

that any physical computer
can compute efficiently.

General belief: any QC2 is a QCS3.

| State stored in n qubits:
Argument for belief:

n
| a nonzero element of C2 .
any physical computer must

Retrieving this vector Is tough!
follow the laws of quantum

physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
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efficiently computes anything
that any physical computer
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General belief: any QC2 is a QCS3.
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General belief: any QC3 is a QC1.
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The state of an algorithm

Data ( “state”) stored in n bits:

an element of {0, 1}", viewed as
an element of {0,1,...,2" — 1}

State stored in n qubits:
a nonzero element of C2 .

Retrieving this vector Is tough!

If n qubits have state

(ag, a1,...,a»_1) then
measuring the qubits produces
an element of {0,1,...,2" — 1}
and destroys the state.

Measurement produces element g
with probability |ag|?/ Y, |ar|?.
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The state of an algorithm

Data ( “state”) stored in n bits:
an element of {0, 1}", viewed as

an element of {0,1,...,2" — 1}

State stored in n qubits:
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Retrieving this vector Is tough!

If n qubits have state
(ao, al,..., aQn_l) then
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The state of an algorithm

Data ( “state”) stored in n bits:

an element of {0, 1}", viewed as
an element of {0,1,...,2" —1}.

State stored in n qubits:
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Retrieving this vector Is tough!
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The state of an algorithm Some examples of 3-qubit states:

Data ( “state”) stored in n bits: (1,0,0,0,0,0,0,0) is
an element of {0, 1}", viewed as “|0)" in standard notation.
an element of {0,1,...,2"7 — 1} Measurement produces 0.

State stored in n qubits:
a nonzero element of C2 .

Retrieving this vector Is tough!

If n qubits have state

(ag, a1,...,a»_1) then
measuring the qubits produces
an element of {0,1,...,2" — 1}
and destroys the state.

Measurement produces element g
with probability |ag|?/ Y, |ar|?.




The state of an algorithm Some examples of 3-qubit states:
Data ( “state”) stored in n bits: (1,0,0,0,0,0,0,0) is

an element of {0, 1}", viewed as “|0)" in standard notation.

an element of {0,1,...,2"7 — 1} Measurement produces 0.

State stored in n qubits: (O 0,0,0,0,0,1,0) is

a nonzero element of C2". “|6)" in standard notation.
Retrieving this vector Is tough! Measurement produces 6.
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and destroys the state.

Measurement produces element g
with probability |ag|?/ Y, |ar|?.
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Data ( “state”) stored in n bits: (1,0,0,0,0,0,0,0) is

an element of {0, 1}", viewed as “|0)" in standard notation.

an element of {0,1,...,2"7 — 1} Measurement produces 0.
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and destroys the state.
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with probability |ag|?/ Y, |ar|?.




The state of an algorithm

Data ( “state”) stored in n bits:

an element of {0, 1}", viewed as
an element of {0, 1, ..., 27 — 1},

State stored in n qubits:
a nonzero element of C2 .

Retrieving this vector Is tough!

If n qubits have state

measuring the qublts produces
an element of {0, 1, ..., 2" — 1}
and destroys the state.

Measurement produces element g
with probability |ag|?/ Y, |ar|?.
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(0,0,4,0,0,0,8,0) = 4|2) + 8|6):
Measurement produces
2 with probability 20%,
6 with probability 80%.
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(O 0,0,0,0,0,1,0) is
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(0,0,4,0,0,0,8,0) = 4|2) + 8/6):

Measurement produces
2 with probability 20%,
6 with probability 80%.

Fast quantum ope

(ag, a1, a2, a3, ag, ¢
(a1, ag, a3, a2, as, ¢
Is complementing

hence “complemel



Its:
d as

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“|0)" in standard notation.

Measurement produces O.

(0,0,0,0,0,0,1,0) is
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.
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Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

(O 0,0,0,0,0,1,0) is
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4|2) + 8/6):

Measurement produces
2 with probability 20%,
6 with probability 80%.

Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ag)
Is complementing index bit O,

hence “complementing qubit 0.



Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

(OOOOOOlO)ls
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4|2) + 8/6):

Measurement produces
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6 with probability 80%.

Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ag)
Is complementing index bit O,

hence “complementing qubit 0.

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, a2, as, a4, a7, ap)
is measured as (qo @ 1, 91, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.
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Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ap)
Is complementing index bit O,

hence “complementing qubit 0.

(ag, a1, a», a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 4q»,
with probability |ag|?/ Y, |ar|*.

(a1, ag, a3, ao, as, a4, a7, ap)

is measured as (qo @ 1, g1, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.
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Fast quantum operations, part 1

(ao, a1, a2, a3, a4, as, ag, ay) —
(a1, ag, a3, ao, as, a4, a7, ap)

Is complementing index

nit O,

hence “complementing qubit 0.

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 4q»,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ap)
is measured as (qo @ 1, 91, g2),

representing g @ 1,

with probability |ag|?/ Y, |ar|?.

(a0, a1, a2, a3, as, as, ag, az)
(a4, as, ag, a7, ag, a1, a2, az)
is “complementing qubit 2"

(90, 91.92) — (90,91, G2 D



Fast quantum operations, part 1 (ag, a1, a2, a3, aa, as, a6, a7) —

(a4, as, ag, a7, ag, a1, a2, az)
Is ‘complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ap)
Is complementing index bit O,

hence “complementing qubit 0.

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ap)
is measured as (qo @ 1, 91, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.




Fast quantum operations, part 1 (ag, a1, a2, a3, aa, as, a6, a7) —
(a4, as, ag, a7, ag, a1, a2, az)
Is ‘complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ap)
Is complementing index bit O,

hence “complementing qubit 0". (ao, a1, a2, a3, aa, as, a6, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits 0 and 2" :

(0. g1, 92) = (92,91, q0).
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representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ap)

is measured as (qo @ 1, 91, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.
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Is complementing index bit O,

hence “complementing qubit 0.

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ap)

is measured as (qo @ 1, 91, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.

(ag, a1, a2, a3, aa, as, a6, a7) —
(a4, as, ag, a7, ag, a1, a2, az)
Is ‘complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ao, a1, a2, a3, aa, as, a6, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits 0 and 2" :

(90, 91, 92) — (92, 91, q0).
Complementing qubit 2
= swapping qubits 0 and 2

o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits 7, J.



intum operations, part 1

10, a3, a4, as, dp, A7) —

3, a2, as, a4, a7, a)
ementing index bit 0,

omplementing qubit 0.

2, a3, a4, as, ae, a7)

red as (qo, 91, 92),

ting g = qo + 291 + 4q2,
bability [ag|*/ Y, |ar|*.

33132135134137736)
red as (qo ® 1, q1, qz),
ting g @ 1,

bability |aq|?/S_, |ar|?.

(ag, a1, a2, a3, aa, as, ap, a7) —

(a4, as, ag, a7, ag, a1, az, az)
is “complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 ® 1).

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits O and 2":

(90,91, 92) = (92,91, q0).

Complementing qubit 2

= swapping qubits 0 and 2
o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits /, J.

(ag, a1, ¢
(ag, a1, ¢
IS a ‘rev
“control

(90, g1, ¢



rations, part 1

5, 3, a7)

4, a7, ap)
iIndex bit O,

1ting qubit 0.

5, A6, a7)
, g1, G2),
0o + 291 + 4q2,

Q‘Q/Zr ‘al"z'

)4,37,36)
D 1,q91,92),

Q‘z/Zr ‘al’|2'

(ag, a1, a2, a3, aa, as, a6, a7) —

(a4, as, ag, a7, ag, a1, az, az)
Is ‘complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits O and 2" :

(0. g1, 92) = (92,91, q0).

Complementing qubit 2

= swapping qubits 0 and 2
o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits 7, J.

(ag, a1, a2, a3, aa, ¢

(ag, a1, a3, a2, aa, ¢
s a "reversible XC

“controlled NOT |
(90, 91, g2) — (q0



(ag, a1, a2, a3, aa, as, ap, a7) —

(a4, as, ag, a7, ag, a1, az, az)
is “complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 ® 1).

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits O and 2":

(0. g1, 92) = (92,91, q0).

Complementing qubit 2

= swapping qubits 0 and 2
o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits /, J.

(30, di, d2,d3, d4, d5, 46, 37) |

(a0, a1, a3, a2, a4, as, a7, ag)
is a “reversible XOR gate” -

“controlled NOT gate”:
(90,91, 92) — (G0 ® g1, g1,



(ag, a1, a2, a3, aa, as, a6, a7) — (ag, a1, a2, a3, aa, as, a6, a7) —
(a4, as, ag, a7, ag, a1, a2, az) (ag, a1, a3, a2, aa, as, ay, ag)

is “complementing qubit 2" : is a “reversible XOR gate” =
(qo, a1, q2) —> (q(), di1, gy D 1). “controlled NOT gate”:

(a() ai, ap, as, a4, as, ag 37) — (QO1CI1,Q2) — (CIO@ql,ql,qg).

(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits O and 2" :

(90, 91, 92) — (92, 91, q0).
Complementing qubit 2
= swapping qubits 0 and 2

o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits 7, J.




(ag, a1, a2, a3, aa, as, a6, a7) —
(a4, as, ag, a7, ag, a1, a2, az)
Is ‘complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits O and 2" :

(90, 91, 92) — (92, 91, q0).
Complementing qubit 2
= swapping qubits 0 and 2

o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits 7, J.

(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(g0, g1, 92) — (g0 @ g1, 91, 2).

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15,
a16, a17, 18, @19, 20, 421, a22, a3,
a4, axs, axe, a27, a2, a9, a0, as1)
— (ag, a1, a3, a2, a4, as, ay, ag,

ag, ag, ai1, 410, @12, 413, a15, a4,
a16, a17, 419, @18, 20, 421, a23, a2,
aga, azs, 27, a6, A28, 29, a1, a3).-



10, a3, a4, as, ag, a7) —
6, a7, Ao, a1, a2, a3)
blementing qubit 27:

12) — (g0, g1, g2 D 1).

10, a3, a4, as, ag, a7)
2, ae, a1, a5, a3, ay)
ping qubits 0 and 2":

12) — (G2, q1. 90).
nenting qubit 2
ing qubits 0 and 2

iplementing qubit O
pping qubits 0 and 2.

. swapping qubits 1, J.

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(g0, g1, 92) — (g0 @ g1. 91, §2).

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 11, @12, 413, 14, 15,
a16, a17, 18, @19, a20, a1, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (ao, a1, a3, a2, as, as, ar, ae,

ag, a9, a11, 10, @12, 413, a15, a4,
a16, a17, a19, @18, a20, 421, a23, a2,
ans, axs, a7, axe, 28, a29, a1, a30).-

(ag, a1, ¢
(ag, a1, ¢
sa To
“control
(90, g1,
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5, g, a7) (ag, a1, a2, a3, aa, as, a6, a7) — (ag, a1, a2, a3, aa, ¢
1, a2, a3) (ag, a1, a3, a, aa, as, ay, ag) (ag, a1, a2, a3, aa, ¢
- qubit 27 is a “reversible XOR gate’ = is a " Toffoli gate”
g1, qgo D 1). “controlled NOT gate”: “controlled contro
5. 36, 27) (90, g1, q2) — (qo @ q1, q1, q2). (90, 91, 92) — (g0
5, a3, a7 ) Example with more qubits:
s 0 and 2" (ag, a1, a2, a3, aa, as, ae, a7,
,q1,90)- ag, ag, @10, 411, a12, 13, a14, a15,
1bit 2 d16, d17, 418, 419, 420, d21, d22, d23,
0 and 2 an4, azs, axe, a27, @28, @29, a30, a31)
g qubit 0 — (a0, a1, a3, a2, as, as, az, ae,
< 0 and 2. ag, a9, a11, 410, 412, 413, 415, a14,

d16, d17, d19, d18, 420, d21, 423, 422,
g qubits /, /. a4, azs, @27, axe, a2g, a9, a31, a30)-




(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(g0, g1, 92) — (g0 @ g1, 91, G2).

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 11, @12, 413, 14, a15,
a16, a17, 18, @19, a20, a1, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (ao, a1, a3, a2, as, as, ar, ae,

ag, a9, a11, 10, @12, 413, a15, a4,
a16, a17, a19, @18, a20, 421, a23, a2,
ans, axs, a7, a2, 28, a29, a1, a30).-

(30, di, d2, d3, d4, d5, 46, 37) |

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT
(90, 91.92) — (q0 ® q192, q



(ag, a1, a2, a3, aa, as, a6, a7) — (ag, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a3, a2, aa, as, ay, ag) (ag, a1, a», a3, aa, as, ay, ag)

is a “reversible XOR gate” = is a "“Toffoli gate” =

“controlled NOT gate”: “controlled controlled NOT gate”:
(90, g1, q2) — (G0 @ g1, 91, G2): (90, 91, q2) — (G0 @ q192, 91, G2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
a16, a17, 18, @19, 20, a21, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (ao, a1, a3, a2, as, as, ar, ae,

ag, a9, a11, 410, @12, 413, a15, a4,
a16, a17, 419, @18, 20, 421, a23, a2,
ans, axs, a7, axe, 28, a29, a1, a30)-




(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(g0, g1, q2) — (g0 @ q1. 91, 2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
a16, a17, 18, @19, 20, a21, a22, a3,
a4, axs, axe, a27, a2, a9, a0, as1)
— (ao, a1, a3, a2, as, as, ar, ae,

ag, a9, a11, 410, @12, 413, a15, a4,
a16, a17, 419, @18, 20, 421, a23, a2,

10
(ag, a1, a2, a3, aa, as, a6, a7) —

(a0, a1, a2, a3, a4, as, a7, ag)
is a " Toffoli gate” =
“controlled controlled NOT gate”:

(90,91, q2) — (g0 @ 9192, 91, G2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, a11, 12, 13, a4, 315,
a16, a17, a1, 419, a0, a21, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (ao, a1, a2, a3, as, as, az, ae,

ag, a9, a10, a11, 12, 13, a15, 314,
a16, a17, a1, 419, a0, a21, a23, a2,
aga, axs, axe, @27, a28, @29, a1, a30)-



10, a3, a4, as, ag, a7) —
13, a2, a4, as, az, a6)
ersible XOR gate” =
led NOT gate":

12) — (g0 ® g1, 91, G2)-

- with more qubits:

12, d3, d4, d5, d6, d7,

0, a11, a12, @13, 314, a15,
a1g, a19, 20, a1, a22, a3,
a6, a27, 28, @29, a3, a31)
1, a3, a2, a4, as, a7, ae,
1,d10, @12, 313, a15, a14,
a19, a18, 20, 421, a23, a2,

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a1, a2, a3, as, as, a7, ag)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, 92) — (g0 @ 9192, 91, G2).

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 11, @12, 413, 14, a1s,
a16, a17, 18, @19, a20, a1, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (a0, a1, a2, a3, a4, as, ar, ae,

ag, a9, a10, 11, @12, 413, a1, a14,
a16, a17, a18, @19, a20, 421, a23, a2,
ans, a5, aze, a27, @28, a29, a1, a30).-

10

Reversib

Say p is
of {0, 1,

General
these fa:
to obtai

(ag, a1, .
(3p-1(0)



e qubits:

5, d6, 47,

, 313, 314, a15,
20, @21, @22, a3,
28, 329, 30, a31)
4, as, ay, ap,

, 313, 315, 14,
20, @21, 423, a22,

(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a1, a2, a3, a4, as, a7, ag)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, 92) — (g0 @ 9192, 91, G2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15,
a16, a17, 18, @19, 20, a21, a22, a3,
a4, axs, axe, a27, a2, a9, a0, as1)
— (ag, a1, a2, a3, a4, as, ay, ag,

ag, a9, a10, 11, @12, 413, a1s5, a14,
a16, a17, 18, @19, a20, 421, a23, a2,
a4, azs, a2, a7, a2g, a9, as1, a30)-

10

Reversible comput

Say p is a permut.
of {0,1,...,2" —

General strategy t
these fast quantur
to obtain Index pe

(30, dl,..., aQn_l)
(3p-10) 3p1(1)"



12).

d15,

), 323,
), a31)
.
314,

3, 322,

L, 330).

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a1, a2, a3, a4, as, a7, ag)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, 92) — (g0 © 9192, 91, G2).

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 11, @12, 413, 14, a15,
a16, a17, 18, @19, a20, a1, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (ao, a1, a2, a3, as, as, ar, ae,

ag, a9, a10, 11, @12, 413, a1, a14,
a16, a17, 18, @19, a20, 421, a23, a2,
ana, axs, ae, 27, A28, 29, a31, a30).

10

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operatio
to obtain index permutation
(ao, al, ..., 32”—1) —>

(3p-1(0) 3p-1(1) -+ Fp1(2



10 11
(ag, a1, a2, a3, aa, as, a6, a7) — Reversible computation

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

Say p is a permutation

of {0,1,...,2" —1}.
“controlled controlled NOT gate”:

(90,91, 92) — (g0 ® q192, g1, 42). General strategy to compose

| | these fast quantum operations
Example with more qubits:

(ag, a1, a2, a3, aa, as, ae, a7,
ag, a9, a10, 411, 412, 413, a14, 315,
aie, 417, 418, 419, a0, @21, 422, a3,

a4, axs, axg, 27, axg, a29, asp, a1 )
— (ag, a1, a2, a3, a4, as, a7, ag,

to obtain index permutation
(30, al, ..., azn_l) —

(3p-1(0) 3p-1(1) - 3p-L(2n-1))

dg8, d9, 410, 411, 412, 413, 415, 414,
d16, d17, d18, 419, 420, 421, 423, d22,




(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a1, a2, a3, a4, as, a7, ag)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(g0, g1, q2) — (g0 @ 9192, 91, G2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
a16, a17, 18, @19, 20, a21, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (ao, a1, a2, a3, a4, as, ar, ae,

ag, a9, a10, 11, @12, 413, a15, a14,
a16, a17, 18, @19, 20, 421, a23, a2,
ans, axs, aze, a27, @28, a29, a1, a30)-

10

11
Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(ao, a1, ..
(3p-1(0) 3p-1(1) - 3p-L(2n-1))

.,azn_l) —

1. Build a traditional circuit
to compute j — p(j)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.



10, a3, a4, as, ag, a7) —

1, a3, a4, as, a7, ag)
ffoll gate” =

led controlled NOT gate”:

12) — (g0 ® q192, 91, 92).

- with more qubits:

12, d3, d4, d5, d6, d7,

0, a11, a12, @13, 314, a15,
a1g, a19, 20, a1, a22, a3,
a6, a27, 28, @29, a3, a31)
1,a2, a3, a4, as, a7, ae,

0, d11, @12, 313, d15, a14,
a1g, a19, 20, 421, a23, a2,

10

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(ao, al, ..., azn_l) —>
(3p-1(0) Bp1(1) -+ Fp-1(2n-1));
1. Build a traditional circuit

to compute j — p(J)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

11

Example
(ag, a1, ¢

(a7, ag,
permuta

1. Build
to comp

\

q0

go b 1



5, g, a7)
5, a7, a6 )

lled NOT gate”:

e qubits:

5, d6, 47,

, 313, 314, a15,
20, @21, @22, a3,
28, 329, 30, a31)
4, as, ay, ap,

, 313, 315, 14,
20, @21, 423, a22,

10

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(30, al, ..., azn_l) —
(3p-1(0) 3p-1(1) - 3p-L(2n-1))
1. Build a traditional circuit

to compute j — p(j)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

11

Example: Let's co

(ag, a1, a2, a3, aa, ¢

(a7, ag, a1, a2, a3, ¢
permutation g —

1. Build a traditio
to compute g +— ¢




gate’ :

315,
), @23,
), @31)

14,
3, d22,

L, 330).

10

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(ao, al, ..., azn_l) —>
(3p-1(0) Bp1(1)r -+ Fp-1(2n-1));
1. Build a traditional circuit

to compute j — p(J)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

11

Example: Let's compute

(ao, ai, a2, as, a4, as, ae, 37) |

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 moc

1. Build a traditional circuit
to compute g — g + 1 mod

q0 qi1 G

N

1 = 4190

qo @1 g1 © qo g ¢



Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(aog, a1, ..
(3p-1(0) 3p-1(1) - 3p-L(2n-1))

. 32n_1) —

1. Build a traditional circuit
to compute j — p(j)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

11

Example: Let's compute
(ag, a1, a2, a3, aa, as, a6, a7) —

(a7, a0, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

a2

12



le computation

a permutation
-1}

strategy to compose
st quantum operations
1 index permutation

L aon_1) —

Ap1(1)r -+ p-1(2n-1))
a traditional circuit

ute j — p(j)
DT /XOR/AND gates.

ert into reversible gates:
vert AND into Toffoli.

11

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q0 di1 q2

N

1 = 4190

qo @1 g1 © qo g2 D ¢y

12

2. Conv

Toffoli fi

(ag, a1, ¢
(ag, a1, ¢



ation

ation
1}

0O COMPOSE
n operations
rmutation
>

C ap_1(2n_1)):
nal circuit

()

AND gates.

versible gates:
into Toffoli.

11

Example: Let's compute
(ag, a1, a2, a3, aa, as, a6, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
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n + 10 times.
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ably) find s.
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Example, 3 bits to 3 bits:
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Complete table shows that
f(x) = f(x & 5) for all x.

Let's watch Simon's algorithm
for f, using 6 qubits.
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Step 1.

1,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
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permutation Example, 3 bits to 3 bits: Step 1. Set up pu
”z)p“tat"’”: £(0) = 4 1,0,0,0,0,0,0,0,
0) F(1) = 7 0,0,0,0,0,0,0,0,
(9. (). 0) N

A f(2) = 2. N\ , N\ ; 0,0,0,0,0,0,0,0,
tween f(3) =3. 0,0,0,0,0,0,0,0,
1d f(4) =7 7\ 4\ 0,0,0,0,0,0,0,0,
). f(5) =4 3 2 0,0,0,0,0,0,0,0,
ard f(6) =3 0,0,0,0,0,0,0,0,

| f(7) =2 0,0,0,0,0,0,0,0.
metry,
Al to Complete table shows that
| f(x) = f(x&5) for all x.

€s.
- tion Let’'s watch Simon's algorithm

. for f, using 6 qubits.
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Example, 3 bits to 3 bits:
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Complete table shows that
f(x) = f(x @ 5) for all x.

Let's watch Simon's algorithm
for f, using 6 qubits.
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Step 1. Set up pure zero st:

1,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,

0

O O O O O O O

0,



24
Example, 3 bits to 3 bits: Step 1. Set up pure zero state:

f(0) = 4. 1,0,0,0,0,0,0,0,
f(1)=7. 4 v 0,0,0,0,0,0,0,0,
f(2) = 2. N\ , N\ ; 0,0,0,0,0,0,0,0,
f(3) =3. 0,0,0,0,0,0,0,0,
f(4)=7. 7\ 4\ 0,0,0,0,0,0,0,0,
f(5) = 4. 3 y 0,0,0,0,0,0,0,0,
f(6) = 3. 0,0,0,0,0,0,0,0,
f(7) = 2. 0,0,0,0,0,0,0,0.

Complete table shows that
f(x) = f(x @ 5) for all x.

Let’'s watch Simon's algorithm
for f, using 6 qubits.
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Example, 3 bits to 3 bits: Step 2. Hadamard on qubit O:

f(0) = 4. 1,1,0,0,0,0,0,0,
f(1)=7. 4 v 0,0,0,0,0,0,0,0,
f(2) = 2. N\ , N\ ; 0,0,0,0,0,0,0,0,
f(3) =3. 0,0,0,0,0,0,0,0,
f(4)=7. 7\ 4\ 0,0,0,0,0,0,0,0,
f(5) = 4. 3 y 0,0,0,0,0,0,0,0,
f(6) = 3. 0,0,0,0,0,0,0,0,
f(7) = 2. 0,0,0,0,0,0,0,0.

Complete table shows that
f(x) = f(x @ 5) for all x.

Let’'s watch Simon's algorithm
for f, using 6 qubits.
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Example, 3 bits to 3 bits: Step 3. Hadamard on qubit 1:

f(0) = 4. 1,1,1,1,0,0,0,0,
f(1)=7. 4 v 0,0,0,0,0,0,0,0,
f(2) = 2. N\ , N\ ; 0,0,0,0,0,0,0,0,
f(3) =3. 0,0,0,0,0,0,0,0,
f(4)=7. 7\ 4\ 0,0,0,0,0,0,0,0,
f(5) = 4. 3 y 0,0,0,0,0,0,0,0,
f(6) = 3. 0,0,0,0,0,0,0,0,
f(7) = 2. 0,0,0,0,0,0,0,0.

Complete table shows that
f(x) = f(x @ 5) for all x.

Let’'s watch Simon's algorithm
for f, using 6 qubits.
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Example, 3 bits to 3 bits: Step 4. Hadamard on qubit 2:

f(0) = 4. 1,1,1,1,1,1,1,1,
f(1)=7. 4 v 0,0,0,0,0,0,0,0,
f(2) = 2. N\ , N\ ; 0,0,0,0,0,0,0,0,
f(3) =3. 0,0,0,0,0,0,0,0,
f(4)=7. 7\ 4\ 0,0,0,0,0,0,0,0,
f(5) = 4. 3 y 0,0,0,0,0,0,0,0,
f(6) = 3. 0,0,0,0,0,0,0,0,
f(7) = 2. 0,0,0,0,0,0,0,0.

Complete table shows that
f(x) = f(x @ 5) for all x.

Let’'s watch Simon's algorithm
for f, using 6 qubits.
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Example, 3 bits to 3 bits: Step 5. (q9,0) — (q,f(q)):

f(0) = 4. 0,0,0,0,0,0,0,0,
f(1)=T7. 4 v 0,0,0,0,0,0,0,0,
f(2) = 2. N\ , N\ ; 0,0,1,0,0,0,0,1,
f(3) = 3. 0,0,0,1,0,0,1,0,
f(4)=T1. 7\ 4\ 1,0,0,0,0,1,0,0,
f(5) = 4. 3 2 0,0,0,0,0,0,0,0,
f(6) = 3. 0,0,0,0,0,0,0,0,
f(7) = 2. 0,1,0,0,1,0,0,0.

Complete table shows that
f(x) = f(x @ 5) for all x.

Let’'s watch Simon's algorithm
for f, using 6 qubits.




Example, 3 bits to 3 bits:

Complete table shows that
f(x) = f(x @ 5) for all x.

Let’'s watch Simon's algorithm
for f, using 6 qubits.

24

Step 6. Hadamard on qubit O:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,1,1,0,0,1,1,

0,0,1,1,0,0,1,1,
1,1,0,0,1,1,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,

1,1,0,0,1,1,0,0.

Notation: 1 = —1.

25



Example, 3 bits to 3 bits:

Complete table shows that
f(x) = f(x @ 5) for all x.

Let’'s watch Simon's algorithm
for f, using 6 qubits.

24

Step 7. Hadamard on qubit 1:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,

1,1,1,1,1,1,1,1.

25
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Example, 3 bits to 3 bits: Step 8. Hadamard on qubit 2:
f(0) = 4. 0,0,0,0,0,0,0,0,
f(l)=T7. A 7 0,0,0,0,0,0,0,0,
f(2) = 2. \2 \3 2,0,2,0,0,2,0,2,
f(3) =3. 2,0,2,0,0,2,0, 2,
f(4)=T1. 7\ 4\ 2,0,2,0,0,2,0,2,
f(5) =4 3 2 0,0,0,0,0,0,0,0,
f(6) =3. 0,0,0,0,0,0,0,0,
f(7) =2 2,0,2,0,0,2,0,2.

Complete table shows that
f(x) = f(x @ 5) for all x.

Let’'s watch Simon's algorithm
for f, using 6 qubits.




Example, 3 bits to 3 bits:

Complete table shows that
f(x) = f(x @ 5) for all x.

Let’'s watch Simon's algorithm
for f, using 6 qubits.

24
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Step 8. Hadamard on qubit 2:

,0,0,0,0,0,0,0,
,0,0,0,0,0,0,0,
.0,2,0,0,2,0,2
.0,2,0,0,2
,0,2,0,0, 2,
,0,0,0,0,0,
,0,0,0,0,0

D O O N N DN O O

Step 9. Measure.
First 3 qubits are uniform random
vector orthogonal to 101: i.e.,

000, 010, 101, or 111.
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Step 8. Hadamard on qubit 2:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0, 2,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2.

O O DN

Step 9. Measure.
First 3 qubits are uniform random
vector orthogonal to 101: I1.e.,

000, 010, 101, or 111.

Grover's

Assume:
has f(s)

Traditiol
compute
hope to

Success
until 1
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Step 8. Hadamard on qubit 2:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2.

Step 9. Measure.
First 3 qubits are uniform random
vector orthogonal to 101: i.e.,

000, 010, 101, or 111.

Grover's algorithm

Assume: unique s
has f(s) = 0.

Traditional algorit

compute f for ma

hope to find outpt

Success pro

vabilit

until #£inputs appt
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Step 8. Hadamard on qubit 2:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0, 2,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2.

O O NN

Step 9. Measure.
First 3 qubits are uniform random

vector orthogonal to 101: i.e.,
000, 010, 101, or 111.

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to finc
compute f for many inputs,
hope to find output O.

Success probability is very Ic
until #inputs approaches 2"



Step 8. Hadamard on qubit 2:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2

2,0,2,0,0,2
2,0,2,0,0, 2,
0,0,0,0,0,0,
0,0,0,0,0,0

Step 9. Measure.
First 3 qubits are uniform random
vector orthogonal to 101: i.e.,

000, 010, 101, or 111.

25
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Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output O.

Success pro

nability 1s very low

until #inputs approaches 2",



Step 8. Hadamard on qubit 2:

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,

2,0,2,0,0,2,0,2

Step 9. Measure.
First 3 qubits are uniform random
vector orthogonal to 101: i.e.,

000, 010, 101, or 111.

25

26
Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only on/2
reversible computations of f.

Typically: reversibility overhead
Is small enough that this

easily beats traditional algorithm.
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Hadamard on qubit 2: Grover's algorithm Start frc
0,0,0,0, Assume: unique s € {0, 1}" over al
.0,0,0,0, has f(s) = 0. Step 1:
,0,5,0,5, bq:—c’

_ Traditional algorithm to find s:

0,2,0,2 . . by = ag
compute f for many inputs,

0,2,0,2 hope to find output O. This is 1

8 8 8 8 Success probability is very low Step 2:
'0'5' 0'5' until #inputs approaches 2". Negate .
Grover's algorithm takes only 2n/2 This s @
Measure. . . <
| | reversible computations of f. Repeat !
ubits are uniform random . .
| Typically: reversibility overhead about O.
rthogonal to 101: I.e., . .
is small enough that this
), 101, or 111. . iy . Measure
easily beats traditional algorithm.

With hig




| on qubit 2:

uniform random
to 101: 1.e.,
111.
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Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only on/2
reversible computations of f.

Typically: reversibility overhead
Is small enough that this

easily beats traditional algorithm.

Start from uniforn
over all n-bit strin

Step 1: Set a <+ I

bg = —aq if f(q)
bg = aq otherwise
This i1s fast.

Step 2: “Grover d
Negate a around |
This is also fast.

Repeat Step 1 +
about 0.58 - 2027

Measure the n qul
With high probabi
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Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only on/2
reversible computations of f.
Typically: reversibility overhead

Is small enough that this

easily beats traditional algorithm.

Start from uniform superpos
over all n-bit strings g.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this fii



26 27
Grover's algorithm Start from uniform superposition

Assume: unique s € {0, 1} over all n-bit strings q.

has f(s) = 0. Step 1: Set a < b where
bg = —aq if f(q) =0,

Traditional algorithm to find s: |
by = aq otherwise.

compute f for many inputs,

. This is fast.
hope to find output O. S 15 Tast
Success probability is very low Step 2: “Grover diffusion”.
until #inputs approaches 2". Negate a around Its average.

Grover's algorithm takes only on/2 This is also fast.

reversible computations of f. Repeat Step 1 + Step 2

Typically: reversibility overhead about 0.58 - 2927 times.

Is small enough that this .
& Measure the n qubits.

With high probability this finds s.

easily beats traditional algorithm.




“algorithm

unique s € {0, 1}"
= 0.

1al algorithm to find s:
 f for many inputs,
find output O.

probability is very low
1puts approaches 2.

algorithm takes only 2//2
e computations of f.

/. reversibility overhead
enough that this

ats traditional algorithm.

26

Start from uniform superposition
over all n-bit strings g.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

27

Normali;
for an e
after O s

1.0—

—0.5+

-1.0—
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|_ Start from uniform superposition Normalized graph

c {0,117 over all n-bit strings q. for an example wi

Step 1: Set a < b where after O steps:

A _ 1.0
hm to find s: bg = —aq 1t f(q) 0 |
. by = aq otherwise.
Ny INputs, o
it 0. This is fast. 05l
/ 1S very low Step 2: “Grover diffusion”.
-0aches 2" Negate a around Its average. 00

takes only n/2 This is also fast.

itions of f. Repeat Step 1 4+ Step 2 05
ility overhead about 0.58 - 2927 times.

at this | Measure the n qubits. ~1.0!
onal algorithm.

With high probability this finds s.
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

27

Normalized graph of g — a,

for an example with n = 12

after O steps:
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0.5

0.0

—-0.5

-1.0




Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12

after O steps:
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-0.5

-1.0




Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after Step 1:
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0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after Step 1 + Step 2:
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after Step 1 + Step 2 + Step 1:
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 2 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 3 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 4 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 5 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 6 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 7 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 8 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

21

Normalized graph of g — aq

for an example with n = 12
after 9 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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after 50 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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for an example with n = 12

after 100 x (Step 1 + Step 2):
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(1) ag for roots g;

(2) ag for non-roots q.
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"WHAT s your algorithm?”
"Heapsort. Here's the code.”
"WHAT does it accomplish?”

"It sorts the input array in place.
Here's a proof.”

"WHAT s its run time?”
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and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”
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Textbook algorithm analysis

"WHAT is your algorithm?”
"Heapsort. Here's the code.”

"WHAT does it accomplish?”

"It sorts the input array in place.
Here's a proof.”

"WHAT s its run time?”

“O(nlg n) comparisons;
and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”
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31



30 31
Textbook algorithm analysis Algorithms to attack crypto

“"WHAT is your algorithm?” Critical question for ECC security:

' ?
"Heapsort. Here's the code.” How hard is ECDLP:

“WHAT does it accomplish?” Standard estimate for “strong”

ECC groups of prime order £:

"It sorts the input array in place. Latest “negating” variants of
Here's a proof.” “distinguished point” rho methods
AWHAT is its run time?” break an average ECDLP instance

using ~0.886+/£ additions.
“O(nlg n) comparisons;

and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”




Textbook algorithm analysis

"WHAT is your algorithm?”
"Heapsort. Here's the code.”

"WHAT does it accomplish?”

"It sorts the input array in place.

Here's a proof.”
"WHAT s its run time?”

“O(nlg n) comparisons;
and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”

30

31
Algorithms to attack crypto

Critical question for ECC security:
How hard is ECDLP?

Standard estimate for “strong”
ECC groups of prime order £:
Latest “negating’ variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/£ additions.
Is this proven? Nol

Is this provable? Maybe not!



Textbook algorithm analysis

"WHAT is your algorithm?”
"Heapsort. Here's the code.”

"WHAT does it accomplish?”

"It sorts the input array in place.

Here's a proof.”
"WHAT s its run time?”

“O(nlg n) comparisons;
and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”

30

31
Algorithms to attack crypto

Critical question for ECC security:
How hard is ECDLP?

Standard estimate for “strong”
ECC groups of prime order £:
Latest “negating’ variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/£ additions.
Is this proven? Nol
Is this provable? Maybe not!

So why do we think it's true?



k algorithm analysis

is your algorithm?”
rt. Here's the code.”

does it accomplish?”

the input array in place.

proof.”
IS Its run time?"

1) comparisons;
g n) comparisons
“inputs. Here's a proof.”

)y pass.’

30

Algorithms to attack crypto

Critical question for ECC security:
How hard is ECDLP?

Standard estimate for “strong”
ECC groups of prime order £:
Latest “negating’ variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/¢ additions.
Is this proven? No!
Is this provable? Maybe not!

So why do we think it's true?

31

2000 Ga

Inadequiz
of a neg



30 31
M _analysis Algorithms to attack crypto 2000 Gallant—Lam

gorithm?” Critical question for ECC security: inadequately speci

How hard is ECDLP? of a negating rho

the code.”
o Standard estimate for “strong”
~complish? |
ECC groups of prime order £:
array in place. Latest “negating” variants of
“distinguished point” rho methods

break an average ECDLP instance

time?"
using ~0.886+/£ additions.
ISONS; |
parisons Is this proven? Nol
lere’'s a proof.” s this provable? Maybe not!

So why do we think it's true?




30 31
Algorithms to attack crypto 2000 Gallant—Lambert—Vans

inadequately specified stater

Critical question for ECC security: f | et
’ How hard is ECDLP? of a negating rho algorithm.

o Standard estimate for “strong”
ECC groups of prime order £:
lace. Latest “negating” variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/¢ additions.
Is this proven? No!

oof. Is this provable? Maybe not!

So why do we think it's true?
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Critical question for ECC security:
How hard is ECDLP?
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