Modern ECC signatures

2011 Bernstein-Duif-Lange-Schwabe-Yang:
Ed25519 signature scheme =
EdDSA using conservative
Curve25519 elliptic curve.
https://ed25519.cr.yp.to

32-byte public keys, 64-byte signatures, $\approx 2^{125.8}$ security level.

Deployed in SSH, Signal, many more applications: https://ianix.com/pub/ed25519-deployment.html

Many papers have explored Curve25519/Ed25519 speed.

e.g. 2015 Chou software: on Intel Sandy Bridge (2011), 57164 cycles for keygen, 63526 cycles for signature, 205741 cycles for verification, 159128 cycles for ECDH.

Compare to, e.g., 2000 Brown–Hankerson–López–Menezes: on Intel Pentium II (1997), 1920000 cycles for ECDH using NIST P-256 curve.

ECC signatures

rnstein-Duif-Langee-Yang:

signature scheme = using conservative 519 elliptic curve.

//ed25519.cr.yp.to

public keys, signatures, security level.

d in SSH, Signal, ore applications:

//ianix.com/pub

19-deployment.html

Many papers have explored Curve25519/Ed25519 speed.

e.g. 2015 Chou software: on Intel Sandy Bridge (2011), 57164 cycles for keygen, 63526 cycles for signature, 205741 cycles for verification, 159128 cycles for ECDH.

Compare to, e.g., 2000 Brown-Hankerson-López-Menezes: on Intel Pentium II (1997), 1920000 cycles for ECDH using NIST P-256 curve.

 A_C : cyc Does A_{ℓ} A is bet uif–Lange–

e scheme = servative c curve.

O.cr.yp.to

S,

vel.

Signal, ations:

com/pub

ment.html

Many papers have explored Curve25519/Ed25519 speed.

e.g. 2015 Chou software: on Intel Sandy Bridge (2011), 57164 cycles for keygen, 63526 cycles for signature, 205741 cycles for verification, 159128 cycles for ECDH.

Compare to, e.g., 2000 Brown–Hankerson–López–Menezes: on Intel Pentium II (1997), 1920000 cycles for ECDH using NIST P-256 curve.

 A_C : cycles for alg Does $A_C < B_D$ pr A is better than E 1

Many papers have explored Curve25519/Ed25519 speed.

e.g. 2015 Chou software: on Intel Sandy Bridge (2011), 57164 cycles for keygen, 63526 cycles for signature, 205741 cycles for verification, 159128 cycles for ECDH.

Compare to, e.g., 2000 Brown–Hankerson–López–Menezes: on Intel Pentium II (1997), 1920000 cycles for ECDH using NIST P-256 curve.

 A_C : cycles for alg A on CPU Does $A_C < B_D$ prove that A is better than B?

U

n]

2

Many papers have explored Curve25519/Ed25519 speed.

e.g. 2015 Chou software: on Intel Sandy Bridge (2011), 57164 cycles for keygen, 63526 cycles for signature, 205741 cycles for verification, 159128 cycles for ECDH.

Compare to, e.g., 2000 Brown–Hankerson–López–Menezes: on Intel Pentium II (1997), 1920000 cycles for ECDH using NIST P-256 curve.

 A_C : cycles for alg A on CPU C. Does $A_C < B_D$ prove that A is better than B? Many papers have explored Curve25519/Ed25519 speed.

e.g. 2015 Chou software: on Intel Sandy Bridge (2011), 57164 cycles for keygen, 63526 cycles for signature, 205741 cycles for verification, 159128 cycles for ECDH.

Compare to, e.g., 2000 Brown–Hankerson–López–Menezes: on Intel Pentium II (1997), 1920000 cycles for ECDH using NIST P-256 curve.

 A_C : cycles for alg A on CPU C. Does $A_C < B_D$ prove that A is better than B?

No! Beware change in CPU.

Maybe $A_C > B_C$; $A_D > B_D$; C does more work per cycle than D, thanks to CPU manufacturer.

Sometimes people measure cost in seconds instead of cycles.

Then they benefit from more work per cycle and from more cycles per second.

apers have explored 519/Ed25519 speed.

5 Chou software:
Sandy Bridge (2011),
ycles for keygen,
ycles for signature,
cycles for verification,
cycles for ECDH.

e to, e.g., 2000 Brownon-López-Menezes: Pentium II (1997), cycles for ECDH ST P-256 curve. A_C : cycles for alg A on CPU C. Does $A_C < B_D$ prove that A is better than B?

No! Beware change in CPU.

Maybe $A_C > B_C$; $A_D > B_D$; C does more work per cycle than D, thanks to CPU manufacturer.

Sometimes people measure cost in seconds instead of cycles.

Then they benefit from more work per cycle and from more cycles per second.

Better c (still rais

(still not 1920000 832457

ECDH o

ECDH of 374000 (from 20

159128

Verificat 529000 (205741 (

explored 519 speed.

ftware:
dge (2011),
eygen,
gnature,
verification,
ECDH.

2000 Brown–
-Menezes:
I (1997),
- ECDH
curve.

 A_C : cycles for alg A on CPU C. Does $A_C < B_D$ prove that A is better than B?

No! Beware change in CPU.

Maybe $A_C > B_C$; $A_D > B_D$; C does more work per cycle than D, thanks to CPU manufacturer.

Sometimes people measure cost in seconds instead of cycles.

Then they benefit from more work per cycle and from more cycles per second.

Better comparison (still raising many

ECDH on Intel Pe (still not exactly to 1920000 cycles for 832457 cycles for

ECDH on Sandy E 374000 cycles for (from 2013 Guero 159128 cycles for

Verification on San 529000 cycles for 205741 cycles for

vn-

 A_C : cycles for alg A on CPU C. Does $A_C < B_D$ prove that A is better than B?

No! Beware change in CPU.

Maybe $A_C > B_C$; $A_D > B_D$; C does more work per cycle than D, thanks to CPU manufacturer.

Sometimes people measure cost in seconds instead of cycles. Then they benefit from more work per cycle and from more cycles per second.

Better comparisons (still raising many questions

ECDH on Intel Pentium II/I (still not exactly the same): 1920000 cycles for NIST P-2 832457 cycles for Curve2551

ECDH on Sandy Bridge: 374000 cycles for NIST P-25 (from 2013 Gueron-Krasnov 159128 cycles for Curve2551

Verification on Sandy Bridge 529000 cycles for ECDSA-P 205741 cycles for Ed25519. A_C : cycles for alg A on CPU C. Does $A_C < B_D$ prove that A is better than B?

No! Beware change in CPU.

Maybe $A_C > B_C$; $A_D > B_D$; C does more work per cycle than D, thanks to CPU manufacturer.

Sometimes people measure cost in seconds instead of cycles.

Then they benefit from more work per cycle and from more cycles per second.

Better comparisons (still raising many questions):

ECDH on Intel Pentium II/III (still not exactly the same): 1920000 cycles for NIST P-256, 832457 cycles for Curve25519.

ECDH on Sandy Bridge: 374000 cycles for NIST P-256 (from 2013 Gueron–Krasnov), 159128 cycles for Curve25519.

Verification on Sandy Bridge: 529000 cycles for ECDSA-P-256, 205741 cycles for Ed25519.

les for alg A on CPU C.

 $g < B_D$ prove that

ter than *B*?

vare change in CPU.

 $A_C > B_C$; $A_D > B_D$;

more work per cycle than

ks to CPU manufacturer.

nes people measure cost

ds instead of cycles.

ey benefit

re work per cycle and

re cycles per second.

Better comparisons (still raising many questions):

ECDH on Intel Pentium II/III (still not exactly the same): 1920000 cycles for NIST P-256, 832457 cycles for Curve25519.

ECDH on Sandy Bridge: 374000 cycles for NIST P-256 (from 2013 Gueron–Krasnov), 159128 cycles for Curve25519.

Verification on Sandy Bridge: 529000 cycles for ECDSA-P-256, 205741 cycles for Ed25519.

For each on each on each

Simplest are mucl

Question and soft How to

Ed25519

on, e.g.,

Answers design:

A on CPU C. ove that

ge in CPU.

 $A_D > B_D$; per cycle than manufacturer.

measure cost of cycles.

er cycle and per second. Better comparisons (still raising many questions):

ECDH on Intel Pentium II/III (still not exactly the same): 1920000 cycles for NIST P-256, 832457 cycles for Curve25519.

ECDH on Sandy Bridge: 374000 cycles for NIST P-256 (from 2013 Gueron–Krasnov), 159128 cycles for Curve25519.

Verification on Sandy Bridge: 529000 cycles for ECDSA-P-256, 205741 cycles for Ed25519.

For each of these on each of these on each of these of

Simplest implement are much, much, r

Questions in algorand software engine How to build the formal on, e.g., an ARM Ed25519 signature

Answers feed back design: e.g., choos

than

cost

urer.

nd

Better comparisons (still raising many questions):

ECDH on Intel Pentium II/III (still not exactly the same): 1920000 cycles for NIST P-256, 832457 cycles for Curve25519.

ECDH on Sandy Bridge: 374000 cycles for NIST P-256 (from 2013 Gueron-Krasnov), 159128 cycles for Curve25519.

Verification on Sandy Bridge: 529000 cycles for ECDSA-P-256, 205741 cycles for Ed25519.

For each of these operations on each of these curves, on each of these CPUs:

Simplest implementations are much, much, much slow

Questions in algorithm design

and software engineering: How to build the fastest sof on, e.g., an ARM Cortex-A8 Ed25519 signature verification

Answers feed back into cryp design: e.g., choosing fast c Better comparisons (still raising many questions):

ECDH on Intel Pentium II/III (still not exactly the same): 1920000 cycles for NIST P-256, 832457 cycles for Curve25519.

ECDH on Sandy Bridge: 374000 cycles for NIST P-256 (from 2013 Gueron–Krasnov), 159128 cycles for Curve25519.

Verification on Sandy Bridge: 529000 cycles for ECDSA-P-256, 205741 cycles for Ed25519.

For each of these operations, on each of these curves, on each of these CPUs:

Simplest implementations are much, much, much slower.

Questions in algorithm design and software engineering:
How to build the fastest software on, e.g., an ARM Cortex-A8 for Ed25519 signature verification?

Answers feed back into crypto design: e.g., choosing fast curves.

omparisons sing many questions):

n Intel Pentium II/III exactly the same): cycles for NIST P-256, cycles for Curve25519.

n Sandy Bridge: cycles for NIST P-256)13 Gueron-Krasnov), cycles for Curve25519.

ion on Sandy Bridge: cycles for ECDSA-P-256, cycles for Ed25519.

For each of these operations, on each of these curves, on each of these CPUs:

Simplest implementations are much, much, much slower.

Questions in algorithm design and software engineering: How to build the fastest software on, e.g., an ARM Cortex-A8 for Ed25519 signature verification?

Answers feed back into crypto design: e.g., choosing fast curves. Several

ECC verify S

> **Point** P, Q

Field $x_1, x_2 \vdash$

Machin 32-bit r

Gat

questions):

ntium II/III he same): NIST P-256, Curve25519.

3ridge:

NIST P-256 n–Krasnov), Curve25519.

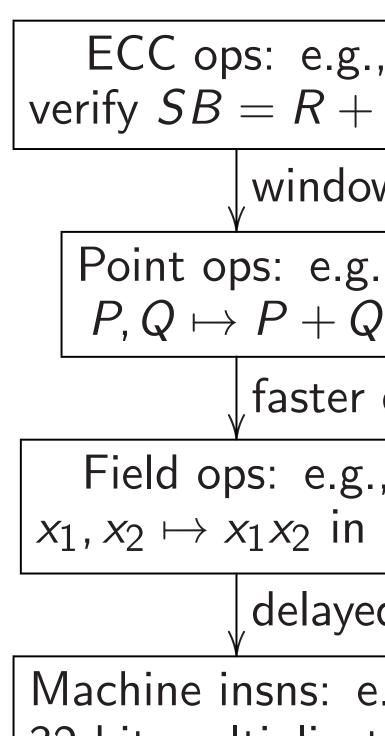
ndy Bridge: ECDSA-P-256, Ed25519.

For each of these operations, on each of these curves, on each of these CPUs:

Simplest implementations are much, much, much slower.

Questions in algorithm design and software engineering: How to build the fastest software on, e.g., an ARM Cortex-A8 for Ed25519 signature verification?

Answers feed back into crypto design: e.g., choosing fast curves. Several levels to o



Machine insns: e. 32-bit multiplicat

pipelin

Gates: e.g., AND, OR, XOF 256,

56 ')

9.

-256,

For each of these operations, on each of these curves, on each of these CPUs:

Simplest implementations are much, much, much slower.

Questions in algorithm design and software engineering: How to build the fastest software on, e.g., an ARM Cortex-A8 for Ed25519 signature verification?

Answers feed back into crypto design: e.g., choosing fast curves.

Several levels to optimize:

ECC ops: e.g., verify
$$SB = R + hA$$
 windowing etc.

Point ops: e.g., $P, Q \mapsto P + Q$

faster doubling e

Field ops: e.g., $x_1, x_2 \mapsto x_1 x_2$ in \mathbf{F}_p

delayed carries e

Machine insns: e.g., 32-bit multiplication

pipelining etc.

Gates: e.g., AND, OR, XOR

For each of these operations, on each of these curves, on each of these CPUs:

Simplest implementations are much, much, much slower.

Questions in algorithm design and software engineering: How to build the fastest software on, e.g., an ARM Cortex-A8 for Ed25519 signature verification?

Answers feed back into crypto design: e.g., choosing fast curves.

Several levels to optimize:

ECC ops: e.g., verify
$$SB = R + hA$$

windowing etc.

Point ops: e.g., $P, Q \mapsto P + Q$

faster doubling etc.

Field ops: e.g., $X_1, X_2 \mapsto X_1X_2$ in \mathbf{F}_p

delayed carries etc.

Machine insns: e.g., 32-bit multiplication

pipelining etc.

Gates: e.g., AND, OR, XOR

of these operations, of these curves, of these CPUs:

implementations h, much, much slower.

ns in algorithm design ware engineering:

build the fastest software an ARM Cortex-A8 for signature verification?

feed back into crypto e.g., choosing fast curves.

Several levels to optimize:

ECC ops: e.g.,
verify
$$SB = R + hA$$

windowing etc.
Point ops: e.g.,
 $P, Q \mapsto P + Q$
faster doubling etc.
Field ops: e.g.

Field ops: e.g., $x_1, x_2 \mapsto x_1 x_2$ in \mathbf{F}_p delayed carries etc.

Machine insns: e.g., 32-bit multiplication

pipelining etc.

Gates: e.g.,

AND, OR, XOR

Single-so

Fundam $n, P \mapsto n$

Input n $\{0, 1, \dots$

Input P

Will buil using ad and subt

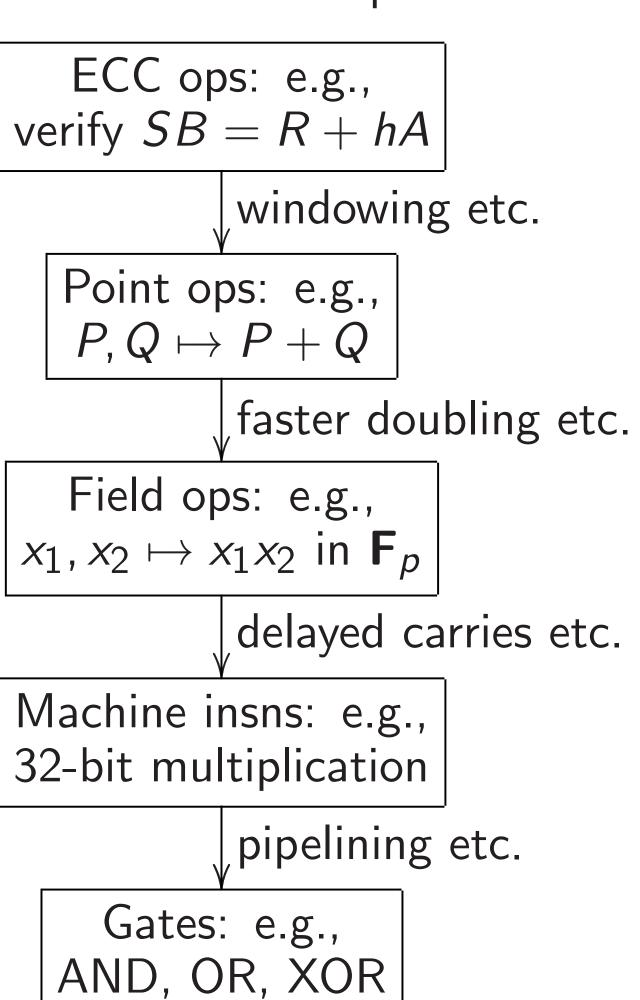
Later wi double-s m, P, n, ntations nuch slower.

ithm design neering:

fastest software Cortex-A8 for everification?

sing fast curves.

Several levels to optimize:



Single-scalar multi

Fundamental ECC $n, P \mapsto nP$.

Input *n* is integer $\{0, 1, ..., 2^{256} - 1\}$

Input P is point o

Will build $n, P \mapsto$ using additions P, and subtractions P

Later will also look double-scalar mult $m, P, n, Q \mapsto mP$ Several levels to optimize:

ECC ops: e.g., verify SB = R + hA

windowing etc.

Point ops: e.g., $P, Q \mapsto P + Q$

faster doubling etc.

Field ops: e.g., $x_1, x_2 \mapsto x_1 x_2 \text{ in } \mathbf{F}_p$

delayed carries etc.

Machine insns: e.g., 32-bit multiplication

pipelining etc.

Gates: e.g., AND, OR, XOR Single-scalar multiplication

Fundamental ECC operation $n, P \mapsto nP$.

Input *n* is integer in, e.g., $\{0, 1, \dots, 2^{256} - 1\}.$

Input P is point on elliptic of

Will build $n, P \mapsto nP$ using additions $P, Q \mapsto P +$ and subtractions $P, Q \mapsto P$

Later will also look at double-scalar multiplication $m, P, n, Q \mapsto mP + nQ$.

er.

n

tware for

on?

to urves.

Several levels to optimize:

```
ECC ops: e.g.,
verify SB = R + hA
           windowing etc.
  Point ops: e.g.,
   P, Q \mapsto P + Q
           faster doubling etc.
   Field ops: e.g.,
x_1, x_2 \mapsto x_1x_2 in \mathbf{F}_p
           delayed carries etc.
Machine insns: e.g.,
32-bit multiplication
```

pipelining etc.

Gates: e.g., AND, OR, XOR Single-scalar multiplication

Fundamental ECC operation: $n, P \mapsto nP$.

Input *n* is integer in, e.g., $\{0, 1, ..., 2^{256} - 1\}$.

Input P is point on elliptic curve.

Will build $n, P \mapsto nP$ using additions $P, Q \mapsto P + Q$ and subtractions $P, Q \mapsto P - Q$.

Later will also look at double-scalar multiplication $m, P, n, Q \mapsto mP + nQ$.

levels to optimize:

ops: e.g.,
$$B = R + hA$$
windowing etc

windowing etc.

ops: e.g.,
$$\rightarrow P + Q$$

faster doubling etc.

ops: e.g.,
$$\rightarrow x_1x_2$$
 in \mathbf{F}_p

delayed carries etc.

e insns: e.g., nultiplication

pipelining etc.

tes: e.g., OR, XOR Single-scalar multiplication

Fundamental ECC operation: $n, P \mapsto nP$.

Input *n* is integer in, e.g., $\{0, 1, \dots, 2^{256} - 1\}.$

Input P is point on elliptic curve.

Will build $n, P \mapsto nP$ using additions $P, Q \mapsto P + Q$ and subtractions $P, Q \mapsto P - Q$.

Later will also look at double-scalar multiplication $m, P, n, Q \mapsto mP + nQ$.

Left-to-r

def scal if n if n R = sR = Rif n ' retur

Two Pyt

- n//2 i
- Recurs See sy

ving etc.

_

doubling etc.

F_p

d carries etc.

g., ion

ing etc.

Single-scalar multiplication

Fundamental ECC operation: $n, P \mapsto nP$.

Input *n* is integer in, e.g., $\{0, 1, ..., 2^{256} - 1\}$.

Input *P* is point on elliptic curve.

Will build $n, P \mapsto nP$ using additions $P, Q \mapsto P + Q$ and subtractions $P, Q \mapsto P - Q$.

Later will also look at double-scalar multiplication $m, P, n, Q \mapsto mP + nQ$.

Left-to-right binar

def scalarmult(n
 if n == 0: ret
 if n == 1: ret
 R = scalarmult
 R = R + R
 if n % 2: R =
 return R

Two Python notes

- n//2 in Python
- Recursion depthSee sys.setred

Single-scalar multiplication

Fundamental ECC operation: $n, P \mapsto nP$.

Input *n* is integer in, e.g., $\{0, 1, \dots, 2^{256} - 1\}.$

Input P is point on elliptic curve.

Will build $n, P \mapsto nP$ using additions $P, Q \mapsto P + Q$ and subtractions $P, Q \mapsto P - Q$.

Later will also look at double-scalar multiplication $m, P, n, Q \mapsto mP + nQ$.

Left-to-right binary method

def scalarmult(n,P): if n == 0: return 0 if n == 1: return P R = scalarmult(n//2,P)R = R + Rif n % 2: R = R + Preturn R

Two Python notes:

- n//2 in Python means | n
- Recursion depth is limited See sys.setrecursionl:

tc.

Single-scalar multiplication

Fundamental ECC operation:

$$n, P \mapsto nP$$
.

Input *n* is integer in, e.g., $\{0, 1, ..., 2^{256} - 1\}$.

Input *P* is point on elliptic curve.

Will build $n, P \mapsto nP$ using additions $P, Q \mapsto P + Q$ and subtractions $P, Q \mapsto P - Q$.

Later will also look at double-scalar multiplication $m, P, n, Q \mapsto mP + nQ$.

Left-to-right binary method

```
def scalarmult(n,P):
    if n == 0: return 0
    if n == 1: return P
    R = scalarmult(n//2,P)
    R = R + R
    if n % 2: R = R + P
    return R
```

Two Python notes:

- n//2 in Python means $\lfloor n/2 \rfloor$.
- Recursion depth is limited.
 See sys.setrecursionlimit.

ental ECC operation:

nP .

is integer in, e.g.,

$$2^{1}$$
., 2^{1} .

is point on elliptic curve.

 $d n, P \mapsto nP$

ditions $P, Q \mapsto P + Q$

tractions $P, Q \mapsto P - Q$.

Il also look at calar multiplication $Q \mapsto mP + nQ$.

Left-to-right binary method

def scalarmult(n,P): if n == 0: return 0 if n == 1: return P R = scalarmult(n//2,P)R = R + Rif n % 2: R = R + P

Two Python notes:

return R

- n//2 in Python means |n/2|.
- Recursion depth is limited. See sys.setrecursionlimit.

This rec

•
$$2\left(\frac{n}{2}F\right)$$

e.g. 20

•
$$2\left(\frac{n-1}{2}\right)$$

Base cas

$$0P = 0.$$

$$1P = P$$
.

Assumin Otherwis in, e.g.,

n elliptic curve.

$$Q \mapsto P + Q$$

P, $Q \mapsto P - Q$.

k at iplication + nQ.

Left-to-right binary method

def scalarmult(n,P): if n == 0: return 0 if n == 1: return P R = scalarmult(n//2,P)R = R + Rif n % 2: R = R + Preturn R

Two Python notes:

- n//2 in Python means |n/2|.
- Recursion depth is limited. See sys.setrecursionlimit.

This recursion con

•
$$2\left(\frac{n}{2}P\right)$$
 if $n \in 2$

e.g.
$$20P = 2 \cdot 10^{-1}$$

•
$$2\left(\frac{n-1}{2}P\right)+$$

e.g.
$$21P = 2 \cdot 10^{-1}$$

Base cases in recu

$$0P = 0$$
. For Edwa

$$1P = P$$
. Could or

Assuming $n \ge 0$ for Otherwise use *nP*

curve.

Left-to-right binary method

def scalarmult(n,P):

if
$$n == 0$$
: return 0

$$R = scalarmult(n//2,P)$$

$$R = R + R$$

if
$$n \% 2: R = R + P$$

return R

Two Python notes:

- n//2 in Python means $\lfloor n/2 \rfloor$.
- Recursion depth is limited.
 See sys.setrecursionlimit.

This recursion computes nP

•
$$2\left(\frac{n}{2}P\right)$$
 if $n \in 2\mathbb{Z}$.

e.g.
$$20P = 2 \cdot 10P$$
.

•
$$2\left(\frac{n-1}{2}P\right) + P \text{ if } n \in 1$$

e.g. $21P = 2 \cdot 10P + P$.

Base cases in recursion:

$$0P = 0$$
. For Edwards: $0 = 0$

$$1P = P$$
. Could omit this ca

Assuming $n \ge 0$ for simplicity Otherwise use nP = -(-n)

Left-to-right binary method

```
def scalarmult(n,P):
    if n == 0: return 0
    if n == 1: return P
    R = scalarmult(n//2,P)
    R = R + R
    if n % 2: R = R + P
    return R
```

Two Python notes:

- n//2 in Python means $\lfloor n/2 \rfloor$.
- Recursion depth is limited.
 See sys.setrecursionlimit.

This recursion computes nP as

•
$$2\left(\frac{n}{2}P\right)$$
 if $n \in 2\mathbb{Z}$.

e.g.
$$20P = 2 \cdot 10P$$
.

•
$$2\left(\frac{n-1}{2}P\right) + P \text{ if } n \in 1+2\mathbb{Z}.$$

e.g. $21P = 2 \cdot 10P + P.$

Base cases in recursion:

$$0P = 0$$
. For Edwards: $0 = (0, 1)$. $1P = P$. Could omit this case.

Assuming $n \ge 0$ for simplicity. Otherwise use nP = -(-n)P.

right binary method

larmult(n,P):

calarmult
$$(n//2,P)$$

$$\% 2: R = R + P$$

thon notes:

n Python means |n/2|.

sion depth is limited.

s.setrecursionlimit.

This recursion computes nP as

•
$$2\left(\frac{n}{2}P\right)$$
 if $n \in 2\mathbb{Z}$.

e.g.
$$20P = 2 \cdot 10P$$
.

•
$$2\left(\frac{n-1}{2}P\right)+P \text{ if } n\in 1+2\mathbf{Z}.$$

e.g.
$$21P = 2 \cdot 10P + P$$
.

Base cases in recursion:

$$0P = 0$$
. For Edwards: $0 = (0, 1)$.

$$1P = P$$
. Could omit this case.

Assuming $n \ge 0$ for simplicity.

Otherwise use nP = -(-n)P.

this algo-
$$\leq 2b - 2$$

$$\leq b - 1$$

If 0 < n

$$\leq b-1$$

Example

$$31P = 2$$

$$31 = (11)$$

4 doubli

Average

$$35P = 2$$

$$35 = (10)$$

urn P

(n//2, P)

R + P

means |n/2|.

is limited.

cursionlimit.

This recursion computes nP as

•
$$2\left(\frac{n}{2}P\right)$$
 if $n \in 2\mathbb{Z}$.

e.g. $20P = 2 \cdot 10P$.

•
$$2\left(\frac{n-1}{2}P\right) + P \text{ if } n \in 1+2\mathbf{Z}.$$

e.g. $21P = 2 \cdot 10P + P.$

Base cases in recursion:

0P = 0. For Edwards: 0 = (0, 1).

1P = P. Could omit this case.

Assuming $n \ge 0$ for simplicity. Otherwise use nP = -(-n)P. If $0 \le n < 2^b$ then this algorithm uses $\leq 2b-2$ additions $\leq b-1$ doublings $\leq b-1$ additions

Example of worst 31P = 2(2(2P+ $31 = (111111)_2$; b

4 doublings; 4 mo

Average case is be $35P = 2(2(2(2(2F)))^{-1})^{-1}$

 $35 = (100011)_2$; k

5 doublings; 2 add

•
$$2\left(\frac{n}{2}P\right)$$
 if $n \in 2\mathbb{Z}$.

e.g.
$$20P = 2 \cdot 10P$$
.

•
$$2\left(\frac{n-1}{2}P\right) + P \text{ if } n \in 1+2\mathbf{Z}.$$

e.g. $21P = 2 \cdot 10P + P.$

Base cases in recursion:

$$0P = 0$$
. For Edwards: $0 = (0, 1)$.

$$1P = P$$
. Could omit this case.

Assuming $n \ge 0$ for simplicity. Otherwise use nP = -(-n)P.

If $0 \le n < 2^b$ then this algorithm uses

$$\leq 2b-2$$
 additions: specifical

$$\leq b-1$$
 doublings and

$$\leq b-1$$
 additions of P .

Example of worst case:

$$31P = 2(2(2(2P+P)+P)+P)$$

$$31 = (111111)_2$$
; $b = 5$;

4 doublings; 4 more addition

Average case is better: e.g.

$$35P = 2(2(2(2(2P))) + P) + P$$

$$35 = (100011)_2$$
; $b = 6$;

5 doublings; 2 additions.

/2<u>]</u>.

. imit. This recursion computes nP as

- $2\left(\frac{n}{2}P\right)$ if $n \in 2\mathbb{Z}$.
 - e.g. $20P = 2 \cdot 10P$.
- $2\left(\frac{n-1}{2}P\right)+P \text{ if } n\in 1+2\mathbf{Z}.$

e.g. $21P = 2 \cdot 10P + P$.

Base cases in recursion:

0P = 0. For Edwards: 0 = (0, 1).

1P = P. Could omit this case.

Assuming $n \ge 0$ for simplicity.

Otherwise use nP = -(-n)P.

If $0 \le n < 2^b$ then this algorithm uses

 $\leq 2b-2$ additions: specifically

 $\leq b-1$ doublings and

 $\leq b-1$ additions of P.

Example of worst case:

$$31P = 2(2(2(2P+P)+P)+P)+P$$
.

$$31 = (111111)_2$$
; $b = 5$;

4 doublings; 4 more additions.

Average case is better: e.g.

$$35P = 2(2(2(2(2P))) + P) + P.$$

$$35 = (100011)_2$$
; $b = 6$;

5 doublings; 2 additions.

ursion computes nP as

) if
$$n \in 2\mathbf{Z}$$
.

$$P = 2 \cdot 10P$$
.

$$(\frac{-1}{2}P) + P \text{ if } n \in 1 + 2\mathbf{Z}.$$

$$P = 2 \cdot 10P + P$$
.

ses in recursion:

For Edwards: 0 = (0, 1).

Could omit this case.

g $n \ge 0$ for simplicity.

se use nP = -(-n)P.

If $0 \le n < 2^b$ then this algorithm uses

$$\leq 2b-2$$
 additions: specifically

$$\leq b-1$$
 doublings and

$$\leq b-1$$
 additions of P .

Example of worst case:

$$31P = 2(2(2(2P+P)+P)+P)+P$$
.

$$31 = (111111)_2$$
; $b = 5$;

4 doublings; 4 more additions.

Average case is better: e.g.

$$35P = 2(2(2(2(2P))) + P) + P.$$

$$35 = (100011)_2$$
; $b = 6$;

5 doublings; 2 additions.

Non-adj

def sca

if n

if n

if n '

ret

. .

if n

R =

R =

ret

R = s

retur

nputes *nP* as

)P.

P if
$$n \in 1 + 2\mathbf{Z}$$
.

OP + P.

rsion:

ards: 0 = (0, 1).

nit this case.

or simplicity.

$$=-(-n)P$$
.

If $0 \le n < 2^b$ then this algorithm uses

 $\leq 2b-2$ additions: specifically

 $\leq b-1$ doublings and

 $\leq b-1$ additions of P.

Example of worst case:

$$31P = 2(2(2(2P+P)+P)+P)+P.$$

$$31 = (111111)_2$$
; $b = 5$;

4 doublings; 4 more additions.

Average case is better: e.g.

$$35P = 2(2(2(2(2P))) + P) + P.$$

$$35 = (100011)_2$$
; $b = 6$;

5 doublings; 2 additions.

Non-adjacent form

def scalarmult(n
 if n == 0: ret
 if n == 1: ret

R = scalarmu

$$R = R + R$$

return (R +

if n % 4 == 3:

R = scalarmu

$$R = R + R$$

return (R +

R = scalarmult

return R + R

as

9

If $0 \le n < 2^b$ then this algorithm uses

 $\leq 2b-2$ additions: specifically

 $\leq b-1$ doublings and

 $\leq b-1$ additions of P.

Example of worst case:

$$31P = 2(2(2(2P+P)+P)+P)+P.$$

 $31 = (111111)_2$; b = 5;

4 doublings; 4 more additions.

Average case is better: e.g.

$$35P = 2(2(2(2(2P))) + P) + P$$
.

 $35 = (100011)_2$; b = 6;

5 doublings; 2 additions.

Non-adjacent form (NAF)

def scalarmult(n,P):
 if n == 0: return 0
 if n == 1: return P
 if n % 4 == 1:

R = scalarmult((n-1)/

R = R + R

return (R + R) + P

if n % 4 == 3:

R = scalarmult((n+1)/

R = R + R

return (R + R) - P

R = scalarmult(n/2,P)

return R + R

+2**Z**.

(0, 1).

se.

ty.

Ρ.

If $0 \le n < 2^b$ then this algorithm uses

 $\leq 2b-2$ additions: specifically

 $\leq b-1$ doublings and

 $\leq b-1$ additions of P.

Example of worst case:

$$31P = 2(2(2(2P+P)+P)+P)+P.$$

$$31 = (111111)_2$$
; $b = 5$;

4 doublings; 4 more additions.

Average case is better: e.g.

$$35P = 2(2(2(2(2P))) + P) + P.$$

$$35 = (100011)_2$$
; $b = 6$;

5 doublings; 2 additions.

Non-adjacent form (NAF)

def scalarmult(n,P): if n == 0: return 0 if n == 1: return P if n % 4 == 1: R = scalarmult((n-1)/4,P)R = R + Rreturn (R + R) + Pif n % 4 == 3: R = scalarmult((n+1)/4,P)R = R + Rreturn (R + R) - P R = scalarmult(n/2,P)return R + R

 $< 2^b$ then

rithm uses

additions: specifically

doublings and

additions of P.

of worst case:

$$2(2(2P+P)+P)+P$$
.

 $(1111)_2$; b = 5;

ngs; 4 more additions.

case is better: e.g.

$$2(2(2(2(2P))) + P) + P$$
.

 $(00011)_2$; b = 6;

ngs; 2 additions.

Non-adjacent form (NAF)

def scalarmult(n,P):

if
$$n == 0$$
: return 0

$$R = scalarmult((n-1)/4,P)$$

$$R = R + R$$

return
$$(R + R) + P$$

$$R = scalarmult((n+1)/4,P)$$

$$R = R + R$$

$$R = scalarmult(n/2,P)$$

Subtract is as che NAF tak

$$31P = 2$$

$$31 = (10)$$

$$35P = 2$$

$$35 = (10)$$

"Non-ac separate

Worst caplus $\approx b$

On average $\sim b$

s : specifically and

case:

of P.

$$(P)+P)+P)+P.$$

=5;

re additions.

etter: e.g.

$$(P))) + P) + P.$$

p = 6;

litions.

Non-adjacent form (NAF)

```
def scalarmult(n,P):
  if n == 0: return 0
  if n == 1: return P
  if n % 4 == 1:
    R = scalarmult((n-1)/4,P)
    R = R + R
    return (R + R) + P
  if n % 4 == 3:
   R = scalarmult((n+1)/4,P)
    R = R + R
    return (R + R) - P
  R = scalarmult(n/2,P)
  return R + R
```

Subtraction on the is as cheap as add NAF takes advant

$$31P = 2(2(2(2(2E^{2}))^{2})^{2})^{2}$$

 $31 = (100001)_{2}$; $\overline{1}$

$$35P = 2(2(2(2(2F))^2)^2)$$

 $35 = (10010\overline{1})_2$

"Non-adjacent": \pm separated by ≥ 2 d

Worst case: $\approx b$ d plus $\approx b/2$ additio On average $\approx b/3$

Non-adjacent form (NAF)

ally

$$P)+P$$
.

ıs.

$$+P$$
.

```
def scalarmult(n,P):
  if n == 0: return 0
  if n == 1: return P
  if n % 4 == 1:
    R = scalarmult((n-1)/4,P)
   R = R + R
    return (R + R) + P
  if n % 4 == 3:
   R = scalarmult((n+1)/4,P)
   R = R + R
    return (R + R) - P
  R = scalarmult(n/2,P)
  return R + R
```

Subtraction on the curve is as cheap as addition. NAF takes advantage of this 31P = 2(2(2(2(2P)))) - P. $31 = (10000\bar{1})_2$; $\bar{1}$ denotes $-10000\bar{1}$; $\bar{1}$ denotes $-10000\bar{1}$; $\bar{1}$ denotes $-10000\bar{1}$.

"Non-adjacent": $\pm P$ ops ar separated by ≥ 2 doublings.

Worst case: $\approx b$ doublings plus $\approx b/2$ additions of $\pm P$. On average $\approx b/3$ additions.

Non-adjacent form (NAF)

```
def scalarmult(n,P):
  if n == 0: return 0
  if n == 1: return P
  if n % 4 == 1:
    R = scalarmult((n-1)/4,P)
    R = R + R
    return (R + R) + P
  if n % 4 == 3:
    R = scalarmult((n+1)/4,P)
    R = R + R
    return (R + R) - P
  R = scalarmult(n/2,P)
  return R + R
```

Subtraction on the curve is as cheap as addition.

NAF takes advantage of this.

$$31P = 2(2(2(2(2P)))) - P.$$

 $31 = (10000\overline{1})_2$; $\overline{1}$ denotes -1 .

$$35P = 2(2(2(2(2P)) + P)) - P.$$

 $35 = (10010\overline{1})_2.$

"Non-adjacent": $\pm P$ ops are separated by ≥ 2 doublings.

Worst case: $\approx b$ doublings plus $\approx b/2$ additions of $\pm P$. On average $\approx b/3$ additions.

acent form (NAF)

$$R + R$$

$$urn (R + R) + P$$

$$R + R$$

$$urn (R + R) - P$$

$$n R + R$$

Subtraction on the curve is as cheap as addition. NAF takes advantage of this.

$$31P = 2(2(2(2(2P)))) - P.$$

$$31 = (10000\overline{1})_2$$
; $\overline{1}$ denotes -1 .

$$35P = 2(2(2(2(2P)) + P)) - P.$$

$$35 = (10010\overline{1})_2.$$

11

"Non-adjacent": $\pm P$ ops are separated by ≥ 2 doublings.

Worst case: $\approx b$ doublings plus $\approx b/2$ additions of $\pm P$. On average $\approx b/3$ additions.

Width-2

def wind

if n

$$R =$$

if n '

$$R =$$

$$R =$$

$$R =$$

ret

n (NAF)

,P):

urn 0

urn P

lt((n-1)/4,P)

R) + P

lt((n+1)/4,P)

R) - P

(n/2,P)

Subtraction on the curve is as cheap as addition.

NAF takes advantage of this.

31P = 2(2(2(2(2P)))) - P.

 $31 = (10000\overline{1})_2$; $\overline{1}$ denotes -1.

35P = 2(2(2(2(2P)) + P)) - P.

 $35 = (10010\overline{1})_2.$

"Non-adjacent": $\pm P$ ops are separated by ≥ 2 doublings.

Worst case: $\approx b$ doublings plus $\approx b/2$ additions of $\pm P$. On average $\approx b/3$ additions.

Width-2 signed sli

def window2(n,P,
 if n == 0: ret

if n == 1: ret

if n == 3: ret

if n % 8 == 1:

R = window2(

R = R + R

R = R + R

return (R +

if n % 8 == 3:

R = window2(

R = R + R

R = R + R

return (R +

4,P)

4,P)

Subtraction on the curve is as cheap as addition.

NAF takes advantage of this.

$$31P = 2(2(2(2(2P)))) - P.$$

$$31 = (10000\overline{1})_2$$
; $\overline{1}$ denotes -1 .

$$35P = 2(2(2(2(2P)) + P)) - P.$$

$$35 = (10010\overline{1})_2.$$

"Non-adjacent": $\pm P$ ops are separated by ≥ 2 doublings.

Worst case: $\approx b$ doublings plus $\approx b/2$ additions of $\pm P$. On average $\approx b/3$ additions.

Width-2 signed sliding winder

def window2(n,P,P3):

if
$$n == 0$$
: return 0

$$R = window2((n-1)/8, P$$

$$R = R + R$$

$$R = R + R$$

return
$$(R + R) + P$$

$$R = window2((n-3)/8, P$$

$$R = R + R$$

$$R = R + R$$

return
$$(R + R) + P3$$

NAF takes advantage of this.

$$31P = 2(2(2(2(2P)))) - P.$$

$$31 = (10000\overline{1})_2$$
; $\overline{1}$ denotes -1 .

$$35P = 2(2(2(2(2P)) + P)) - P.$$

 $35 = (10010\overline{1})_2.$

"Non-adjacent": $\pm P$ ops are separated by ≥ 2 doublings.

Worst case: $\approx b$ doublings plus $\approx b/2$ additions of $\pm P$. On average $\approx b/3$ additions.

Width-2 signed sliding windows

def window2(n,P,P3): if n == 0: return 0 if n == 1: return P if n == 3: return P3 if n % 8 == 1: R = window2((n-1)/8, P, P3)R = R + RR = R + Rreturn (R + R) + Pif n % 8 == 3: R = window2((n-3)/8,P,P3)R = R + RR = R + Rreturn (R + R) + P3

eap as addition.

kes advantage of this.

$$2(2(2(2(2P)))) - P.$$

 $(0000\overline{1})_2$; $\overline{1}$ denotes -1.

$$2(2(2(2P)) + P)) - P.$$

 $0010\overline{1})_2$.

ljacent": $\pm P$ ops are

d by ≥ 2 doublings.

ase: $\approx b$ doublings

/2 additions of $\pm P$.

age $\approx b/3$ additions.

Width-2 signed sliding windows

def window2(n,P,P3):

if
$$n == 0$$
: return 0

if
$$n == 3$$
: return P3

$$R = window2((n-1)/8,P,P3)$$

$$R = R + R$$

$$R = R + R$$

return
$$(R + R) + P$$

$$R = window2((n-3)/8,P,P3)$$

$$R = R + R$$

$$R = R + R$$

return
$$(R + R) + P3$$

if n '

$$R =$$

$$R =$$

$$R =$$

R =

$$R =$$

$$R = w$$

def scal

retur

e curve ition.

age of this.

$$(P)))) - P.$$

denotes -1.

$$(P)) + P)) - P.$$

 $\pm P$ ops are loublings.

oublings $\pm P$. additions.

Width-2 signed sliding windows

def window2(n,P,P3): if n == 0: return 0 if n == 1: return P if n == 3: return P3 if n % 8 == 1: R = window2((n-1)/8,P,P3)R = R + RR = R + Rreturn (R + R) + Pif n % 8 == 3: R = window2((n-3)/8,P,P3)R = R + RR = R + Rreturn (R + R) + P3

if n % 8 == 5: R = window2(R = R + RR = R + Rreturn (R + if n % 8 == 7: R = window2(R = R + RR = R + Rreturn (R + R = window2(n/return R + R

def scalarmult(n
 return window2

Width-2 signed sliding windows

```
def window2(n,P,P3):
  if n == 0: return 0
  if n == 1: return P
  if n == 3: return P3
  if n % 8 == 1:
   R = window2((n-1)/8, P, P3)
   R = R + R
   R = R + R
    return (R + R) + P
  if n % 8 == 3:
    R = window2((n-3)/8,P,P3)
    R = R + R
    R = R + R
    return (R + R) + P3
```

```
if n % 8 == 5:
  R = window2((n+3)/8, P
  R = R + R
  R = R + R
  return (R + R) - P3
if n % 8 == 7:
  R = window2((n+1)/8, P
  R = R + R
  R = R + R
  return (R + R) - P
R = window2(n/2,P,P3)
return R + R
```

```
def scalarmult(n,P):
    return window2(n,P,P+P+
```

Width-2 signed sliding windows

```
def window2(n,P,P3):
  if n == 0: return 0
  if n == 1: return P
  if n == 3: return P3
  if n % 8 == 1:
    R = window2((n-1)/8, P, P3)
    R = R + R
    R = R + R
    return (R + R) + P
  if n % 8 == 3:
    R = window2((n-3)/8, P, P3)
    R = R + R
    R = R + R
    return (R + R) + P3
```

```
if n % 8 == 5:
    R = window2((n+3)/8, P, P3)
    R = R + R
    R = R + R
    return (R + R) - P3
  if n % 8 == 7:
    R = window2((n+1)/8, P, P3)
    R = R + R
    R = R + R
    return (R + R) - P
  R = window2(n/2,P,P3)
  return R + R
def scalarmult(n,P):
```

return window2(n,P,P+P+P)

Worst ca

 $\approx b/3$ ac

On avera

signed sliding windows

13

```
dow2(n,P,P3):
== 0: return 0
== 1: return P
== 3: return P3
% 8 == 1:
window2((n-1)/8,P,P3)
R + R
R + R
urn (R + R) + P
% 8 == 3:
window2((n-3)/8,P,P3)
R + R
R + R
urn (R + R) + P3
```

```
if n % 8 == 5:
   R = window2((n+3)/8,P,P3)
    R = R + R
    R = R + R
    return (R + R) - P3
  if n % 8 == 7:
   R = window2((n+1)/8,P,P3)
    R = R + R
    R = R + R
    return (R + R) - P
  R = window2(n/2,P,P3)
  return R + R
def scalarmult(n,P):
  return window2(n,P,P+P+P)
```

ding windows

P3):

urn 0

urn P

urn P3

(n-1)/8,P,P3)

R) + P

(n-3)/8,P,P3)

R) + P3

if n % 8 == 5:

R = window2((n+3)/8,P,P3)

R = R + R

R = R + R

return (R + R) - P3

if n % 8 == 7:

R = window2((n+1)/8,P,P3)

R = R + R

R = R + R

return (R + R) - P

R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+P)

Worst case: $\approx b \, d$ $\approx b/3$ additions of On average $\approx b/4$ <u>SWC</u>

,P3)

,P3)

if n % 8 == 5: R = window2((n+3)/8,P,P3)R = R + RR = R + Rreturn (R + R) - P3if n % 8 == 7: R = window2((n+1)/8,P,P3)R = R + RR = R + Rreturn (R + R) - P R = window2(n/2,P,P3)return R + R

def scalarmult(n,P):
 return window2(n,P,P+P+P)

Worst case: $\approx b$ doublings p $\approx b/3$ additions of $\pm P$ or \pm On average $\approx b/4$ additions.

```
if n % 8 == 5:
    R = window2((n+3)/8,P,P3)
    R = R + R
    R = R + R
    return (R + R) - P3
  if n % 8 == 7:
    R = window2((n+1)/8,P,P3)
    R = R + R
    R = R + R
    return (R + R) - P
  R = window2(n/2,P,P3)
  return R + R
def scalarmult(n,P):
```

return window2(n,P,P+P+P)

Worst case: $\approx b$ doublings plus $\approx b/3$ additions of $\pm P$ or $\pm 3P$. On average $\approx b/4$ additions.

```
if n % 8 == 5:
  R = window2((n+3)/8,P,P3)
  R = R + R
 R = R + R
  return (R + R) - P3
if n % 8 == 7:
  R = window2((n+1)/8, P, P3)
  R = R + R
  R = R + R
  return (R + R) - P
R = window2(n/2,P,P3)
return R + R
```

def scalarmult(n,P):
 return window2(n,P,P+P+P)

Worst case: $\approx b$ doublings plus $\approx b/3$ additions of $\pm P$ or $\pm 3P$. On average $\approx b/4$ additions.

Width-3 signed sliding windows: Precompute P, 3P, 5P, 7P. On average $\approx b/5$ additions.

```
if n % 8 == 5:
  R = window2((n+3)/8,P,P3)
  R = R + R
  R = R + R
  return (R + R) - P3
if n % 8 == 7:
  R = window2((n+1)/8, P, P3)
  R = R + R
  R = R + R
  return (R + R) - P
R = window2(n/2,P,P3)
return R + R
```

def scalarmult(n,P):
 return window2(n,P,P+P+P)

Worst case: $\approx b$ doublings plus $\approx b/3$ additions of $\pm P$ or $\pm 3P$. On average $\approx b/4$ additions.

Width-3 signed sliding windows: Precompute P, 3P, 5P, 7P. On average $\approx b/5$ additions.

Width 4: Precompute P, 3P, 5P, 7P, 9P, 11P, 13P, 15P. On average $\approx b/6$ additions.

```
if n % 8 == 5:
  R = window2((n+3)/8,P,P3)
 R = R + R
  R = R + R
  return (R + R) - P3
if n % 8 == 7:
  R = window2((n+1)/8,P,P3)
  R = R + R
  R = R + R
  return (R + R) - P
R = window2(n/2,P,P3)
return R + R
```

def scalarmult(n,P):
 return window2(n,P,P+P+P)

Worst case: $\approx b$ doublings plus $\approx b/3$ additions of $\pm P$ or $\pm 3P$. On average $\approx b/4$ additions.

Width-3 signed sliding windows: Precompute P, 3P, 5P, 7P. On average $\approx b/5$ additions.

Width 4: Precompute P, 3P, 5P, 7P, 9P, 11P, 13P, 15P. On average $\approx b/6$ additions.

Cost of precomputation eventually outweighs savings. Optimal: $\approx b$ doublings plus roughly $b/\lg b$ additions.

14

% 8 == 5: window2((n+3)/8,P,P3)R + RR + Rurn (R + R) - P3% 8 == 7: window2((n+1)/8,P,P3)R + RR + Rurn (R + R) - Pindow2(n/2,P,P3)n R + R

larmult(n,P):
n window2(n,P,P+P+P)

Worst case: $\approx b$ doublings plus $\approx b/3$ additions of $\pm P$ or $\pm 3P$. On average $\approx b/4$ additions.

Width-3 signed sliding windows: Precompute P, 3P, 5P, 7P. On average $\approx b/5$ additions.

Width 4: Precompute P, 3P, 5P, 7P, 9P, 11P, 13P, 15P. On average $\approx b/6$ additions.

Cost of precomputation eventually outweighs savings. Optimal: $\approx b$ doublings plus roughly $b/\lg b$ additions.

Double-s

Want to m, P, n, o e.g. veriby comp

checking

computi

Compute

e.g. b =

 \approx 256 do

 \approx 256 do

pprox50 add

pprox50 add

(n+3)/8,P,P3)

R) - P3

(n+1)/8,P,P3)

R) - P

2,P,P3)

,P): (n,P,P+P+P) Worst case: $\approx b$ doublings plus $\approx b/3$ additions of $\pm P$ or $\pm 3P$. On average $\approx b/4$ additions.

Width-3 signed sliding windows: Precompute P, 3P, 5P, 7P. On average $\approx b/5$ additions.

Width 4: Precompute P, 3P, 5P, 7P, 9P, 11P, 13P, 15P. On average $\approx b/6$ additions.

Cost of precomputation eventually outweighs savings. Optimal: $\approx b$ doublings plus roughly $b/\lg b$ additions.

Double-scalar mul

Want to quickly compared $m, P, n, Q \mapsto mP$ -e.g. verify signature

computing SB - I checking whether

by computing h =

Obvious approach: Compute *mP*; cor

e.g. b = 256:

 \approx 256 doublings for

 \approx 256 doublings for

pprox50 additions for

pprox50 additions for

,P3)

Worst case: $\approx b$ doublings plus $\approx b/3$ additions of $\pm P$ or $\pm 3P$. On average $\approx b/4$ additions.

Width-3 signed sliding windows: Precompute P, 3P, 5P, 7P. On average $\approx b/5$ additions.

Width 4: Precompute P, 3P, 5P, 7P, 9P, 11P, 13P, 15P. On average $\approx b/6$ additions.

Cost of precomputation eventually outweighs savings. Optimal: $\approx b$ doublings plus roughly $b/\lg b$ additions.

,P3)

Double-scalar multiplication

Want to quickly compute $m, P, n, Q \mapsto mP + nQ$.

e.g. verify signature (R, S)by computing h = H(R, M)computing SB - hA, checking whether R = SB

Obvious approach: Compute mP; compute nQ;

e.g. b = 256:

 \approx 256 doublings for mP, \approx 256 doublings for nQ, \approx 50 additions for mP, \approx 50 additions for nQ.

Worst case: $\approx b$ doublings plus $\approx b/3$ additions of $\pm P$ or $\pm 3P$. On average $\approx b/4$ additions.

Width-3 signed sliding windows: Precompute P, 3P, 5P, 7P. On average $\approx b/5$ additions.

Width 4: Precompute P, 3P, 5P, 7P, 9P, 11P, 13P, 15P. On average $\approx b/6$ additions.

Cost of precomputation eventually outweighs savings. Optimal: $\approx b$ doublings plus roughly $b/\lg b$ additions.

Double-scalar multiplication

Want to quickly compute $m, P, n, Q \mapsto mP + nQ$.

e.g. verify signature (R, S)by computing h = H(R, M), computing SB - hA, checking whether R = SB - hA.

Obvious approach: Compute mP; compute nQ; add.

e.g. b = 256:

 \approx 256 doublings for mP,

 \approx 256 doublings for nQ,

 \approx 50 additions for mP,

 \approx 50 additions for nQ.

ase: $\approx b$ doublings plus dditions of $\pm P$ or $\pm 3P$. age $\approx b/4$ additions.

signed sliding windows: oute P, 3P, 5P, 7P.

age $\approx b/5$ additions.

Precompute P, 7P, 9P, 11P, 13P, 15P. age $\approx b/6$ additions.

precomputation

ly outweighs savings. $\approx b$ doublings plus $b/\lg b$ additions.

Double-scalar multiplication

Want to quickly compute $m, P, n, Q \mapsto mP + nQ$.

e.g. verify signature (R, S)by computing h = H(R, M), computing SB - hA, checking whether R = SB - hA.

Obvious approach:

Compute mP; compute nQ; add.

e.g. b = 256:

 \approx 256 doublings for mP,

 \approx 256 doublings for nQ,

 \approx 50 additions for mP,

 \approx 50 additions for nQ.

Joint do

Do mucl 2X + 2Y

def scal

ret

if n

ret

R = s

R = R

if m

if n '

retur

ding windows: , 5*P*, 7*P*. additions.

oute 1P, 13P, 15P. additions.

tation ths savings. olings plus ditions.

Double-scalar multiplication

Want to quickly compute $m, P, n, Q \mapsto mP + nQ$.

e.g. verify signature (R, S)by computing h = H(R, M), computing SB - hA, checking whether R = SB - hA.

Obvious approach: Compute mP; compute nQ; add.

e.g. b = 256: ≈ 256 doublings for mP, ≈ 256 doublings for nQ, ≈ 50 additions for mP, ≈ 50 additions for nQ.

Joint doublings

Do much better by 2X + 2Y into 2(X) def scalarmult2(
if m == 0:

return scalar if n == 0:

return scala
R = scalarmult

R = R + R

if m % 2: R =

if n % 2: R =

return R

```
lus
```

3*P*.

OWS:

.5*P*.

5.

Double-scalar multiplication

Want to quickly compute $m, P, n, Q \mapsto mP + nQ$.

e.g. verify signature (R, S)by computing h = H(R, M), computing SB - hA, checking whether R = SB - hA.

Obvious approach:

Compute mP; compute nQ; add.

e.g. b = 256:

 \approx 256 doublings for mP,

 \approx 256 doublings for nQ,

 \approx 50 additions for mP,

 \approx 50 additions for nQ.

Joint doublings

Do much better by merging 2X + 2Y into 2(X + Y).

def scalarmult2(m,P,n,Q):
 if m == 0:

if n == 0:

return scalarmult(m,F

return scalarmult(n,Q

R = scalarmult2(m//2,P,

R = R + R

if m % 2: R = R + P

if n % 2: R = R + Q

return R

Double-scalar multiplication

Want to quickly compute $m, P, n, Q \mapsto mP + nQ$.

e.g. verify signature (R, S)by computing h = H(R, M), computing SB - hA, checking whether R = SB - hA.

Obvious approach:

Compute mP; compute nQ; add.

e.g. b = 256:

 \approx 256 doublings for mP,

 \approx 256 doublings for nQ,

 \approx 50 additions for mP,

 \approx 50 additions for nQ.

Joint doublings

return R

Do much better by merging 2X + 2Y into 2(X + Y).def scalarmult2(m,P,n,Q): if m == 0: return scalarmult(n,Q) if n == 0: return scalarmult(m,P) R = scalarmult2(m//2,P,n//2,Q)R = R + Rif m % 2: R = R + P if n % 2: R = R + Q

scalar multiplication

quickly compute

$$Q \mapsto mP + nQ$$
.

fy signature (R, S)

outing h = H(R, M),

ng SB - hA,

g whether R = SB - hA.

approach:

e mP; compute nQ; add.

256:

oublings for mP,

oublings for nQ,

ditions for mP,

litions for nQ.

Joint doublings

Do much better by merging 2X + 2Y into 2(X + Y).

def scalarmult2(m,P,n,Q):

if
$$m == 0$$
:

return scalarmult(n,Q)

if
$$n == 0$$
:

return scalarmult(m,P)

$$R = scalarmult2(m//2,P,n//2,Q)$$

$$R = R + R$$

if m
$$\%$$
 2: R = R + P

if
$$n \% 2: R = R + Q$$

return R

 $\approx b$ doub

For exar

$$\approx b/2$$
 ac

$$\approx b/2$$
 ac

Combine

$$pprox$$
50 add

$$pprox$$
50 add

<u>tiplication</u>

ompute

$$+ nQ.$$

re
$$(R, S)$$

$$H(R, M)$$
,

$$hA$$
,

$$R = SB - hA$$
.

nnut

npute nQ; add.

or
$$mP$$
,

or
$$nQ$$
,

$$mP$$
,

$$nQ$$
.

Joint doublings

Do much better by merging 2X + 2Y into 2(X + Y).

def scalarmult2(m,P,n,Q):

if
$$m == 0$$
:

return scalarmult(n,Q)

if
$$n == 0$$
:

return scalarmult(m,P)

R = scalarmult2(m//2,P,n//2,Q)

$$R = R + R$$

if m
$$\%$$
 2: R = R + P

if
$$n \% 2: R = R + Q$$

return R

For example: merged 35P = 2(2(2(2(2P+31Q+31Q+31Q+31Q+31Q+4P+Q)+4P+Q)+4P+Q)

 $\approx b$ doublings (me $\approx b/2$ additions of

pprox b/2 additions of

Combine idea with

pprox256 doublings fo

pprox50 additions usir

pprox50 additions using

add.

Joint doublings

Do much better by merging 2X + 2Y into 2(X + Y).

def scalarmult2(m,P,n,Q):

if m == 0:

return scalarmult(n,Q)

if n == 0:

return scalarmult(m,P)

R = scalarmult2(m//2,P,n//2,Q)

R = R + R

if m % 2: R = R + P

if n % 2: R = R + Q

return R

For example: merge 35P = 2(2(2(2(2P))) + P) + 31Q = 2(2(2(2Q+Q)+Q)+Q)+Q into 35P + 31Q = 2(2(2(2(2P+Q)+Q)+Q)+P+Q)+Q

 $\approx b$ doublings (merged!),

 $\approx b/2$ additions of P,

 $\approx b/2$ additions of Q.

Combine idea with windows

 \approx 256 doublings for b=256

 \approx 50 additions using P,

 \approx 50 additions using Q.

Joint doublings

```
Do much better by merging
2X + 2Y into 2(X + Y).
def scalarmult2(m,P,n,Q):
  if m == 0:
    return scalarmult(n,Q)
  if n == 0:
    return scalarmult(m,P)
  R = scalarmult2(m//2,P,n//2,Q)
  R = R + R
  if m \% 2: R = R + P
  if n \% 2: R = R + Q
  return R
```

For example: merge 35P = 2(2(2(2(2P))) + P) + P, 31Q = 2(2(2(2Q+Q)+Q)+Q)+Q into 35P + 31Q = 2(2(2(2P+Q)+Q)+Q)+P+Q) + P+Q.

 $\approx b$ doublings (merged!), $\approx b/2$ additions of P, $\approx b/2$ additions of Q.

Combine idea with windows: e.g., ≈ 256 doublings for b = 256, ≈ 50 additions using P, ≈ 50 additions using Q.

ublings

h better by merging ' into 2(X+Y).

== 0:

urn scalarmult(n,Q)

== 0:

urn scalarmult(m,P)

calarmult2(
$$m//2,P,n//2,Q$$
)

+ R

$$\% 2: R = R + P$$

$$% 2: R = R + Q$$

n R

For example: merge

$$35P = 2(2(2(2(2P))) + P) + P,$$

 $31Q = 2(2(2(2Q+Q)+Q)+Q)+Q)+Q$
into $35P + 31Q =$
 $2(2(2(2(2P+Q)+Q)+Q)+P+Q)$
 $+P+Q.$

 $\approx b$ doublings (merged!),

 $\approx b/2$ additions of P,

 $\approx b/2$ additions of Q.

Combine idea with windows: e.g.,

 \approx 256 doublings for b = 256,

 \approx 50 additions using P,

 \approx 50 additions using Q.

Batch ve

Verifying need to $S_1B = I$

 $S_2B = I$ $S_3B = I$

etc.

Obvious
Check e

y merging (Y + Y).

m,P,n,Q):

rmult(n,Q)

rmult(m,P)

2(m//2,P,n//2,Q)

R + P

R + Q

For example: merge

35P = 2(2(2(2(2P))) + P) + P, 31Q = 2(2(2(2Q+Q)+Q)+Q)+Q)+Qinto 35P + 31Q = 2(2(2(2(2P+Q)+Q)+Q)+P+Q)+P+Q.

 $\approx b$ doublings (merged!),

 $\approx b/2$ additions of P,

 $\approx b/2$ additions of Q.

Combine idea with windows: e.g.,

 \approx 256 doublings for b = 256,

 \approx 50 additions using P,

 \approx 50 additions using Q.

Batch verification

Verifying many signed to be confide $S_1B = R_1 + h_1A_1$ $S_2B = R_2 + h_2A_2$ $S_3B = R_3 + h_3A_3$ etc.

Obvious approach: Check each equati

n//2,Q)

For example: merge

35P = 2(2(2(2(2P))) + P) + P, 31Q = 2(2(2(2Q+Q)+Q)+Q)+Q)+Qinto 35P + 31Q = 2(2(2(2(2P+Q)+Q)+Q)+P+Q) + P+Q +P+Q.

 $\approx b$ doublings (merged!),

 $\approx b/2$ additions of P,

 $\approx b/2$ additions of Q.

Combine idea with windows: e.g.,

 \approx 256 doublings for b = 256,

 \approx 50 additions using P,

 \approx 50 additions using Q.

Batch verification

Verifying many signatures: need to be confident that $S_1B = R_1 + h_1A_1$, $S_2B = R_2 + h_2A_2$, $S_3B = R_3 + h_3A_3$, etc.

Obvious approach:

Check each equation separa

For example: merge

35P = 2(2(2(2(2P))) + P) + P, 31Q = 2(2(2(2Q+Q)+Q)+Q)+Q)+Qinto 35P + 31Q = 2(2(2(2(2P+Q)+Q)+Q)+P+Q) + P+Q +P+Q.

 $\approx b$ doublings (merged!),

 $\approx b/2$ additions of P,

 $\approx b/2$ additions of Q.

Combine idea with windows: e.g.,

 \approx 256 doublings for b = 256,

 \approx 50 additions using P,

 \approx 50 additions using Q.

Batch verification

Verifying many signatures: need to be confident that $S_1 B = R_1 + h_1 A_1$

$$S_1B = R_1 + h_1A_1,$$

 $S_2B = R_2 + h_2A_2,$
 $S_3B = R_3 + h_3A_3,$
etc.

Obvious approach:
Check each equation separately.

For example: merge

$$35P = 2(2(2(2(2P))) + P) + P,$$

$$31Q = 2(2(2(2Q+Q)+Q)+Q)+Q)+Q$$
into
$$35P + 31Q =$$

$$2(2(2(2(2P+Q)+Q)+Q)+P+Q) + P+Q.$$

 $\approx b$ doublings (merged!),

 $\approx b/2$ additions of P,

 $\approx b/2$ additions of Q.

Combine idea with windows: e.g.,

 \approx 256 doublings for b=256,

 \approx 50 additions using P,

 \approx 50 additions using Q.

Batch verification

Verifying many signatures: need to be confident that

$$S_1B=R_1+h_1A_1,$$

$$S_2B=R_2+h_2A_2,$$

$$S_3B = R_3 + h_3A_3$$
,

etc.

Obvious approach:

Check each equation separately.

Much faster approach:

Check random linear combination of the equations.

nple: merge

$$2(2(2(2(2P))) + P) + P$$

$$2(2(2(2Q+Q)+Q)+Q)+Q$$

$$P + 31Q =$$

$$(2P+Q)+Q)+Q)+P+Q$$

$$+Q$$
.

olings (merged!),

ditions of P,

ditions of Q.

e idea with windows: e.g.,

oublings for b = 256,

litions using P,

litions using Q.

Batch verification

Verifying many signatures: need to be confident that

$$S_1B = R_1 + h_1A_1$$
,

$$S_2B=R_2+h_2A_2,$$

$$S_3B=R_3+h_3A_3,$$

etc.

Obvious approach:

Check each equation separately.

Much faster approach:

Check random linear combination of the equations.

Pick ind 128-bit

Check w $(z_1S_1 +$

$$z_1 R_1 + 0$$

$$z_2R_2 + 0$$

$$z_3R_3 + 0$$

(If \neq : S

Doumen

Easy to forgeries of foolin

$$(P))) + P) + P,$$

$$-Q)+Q)+Q)+Q$$

$$(Q)+Q)+P+Q$$

rged!),

n windows: e.g.,

or
$$b = 256$$
,

P,

 $\log Q$.

Batch verification

Verifying many signatures:

need to be confident that

$$S_1B=R_1+h_1A_1,$$

$$S_2B=R_2+h_2A_2,$$

$$S_3B=R_3+h_3A_3,$$

etc.

Obvious approach:

Check each equation separately.

Much faster approach:

Check random linear combination of the equations.

Pick independent 128-bit $z_1, z_2, z_3, ...$

Check whether

$$(z_1S_1+z_2S_2+z_3)$$

$$z_1R_1+(z_1h_1)A_1-$$

$$z_2R_2 + (z_2h_2)A_2 -$$

$$z_3R_3 + (z_3h_3)A_3 -$$

(If \neq : See 2012 B

Doumen-Lange-C

Easy to prove:

forgeries have prob of fooling this che

Batch verification

Verifying many signatures: need to be confident that

$$S_1B = R_1 + h_1A_1,$$

 $S_2B = R_2 + h_2A_2,$
 $S_3B = R_3 + h_3A_3,$
etc.

Obvious approach:

Check each equation separately.

Much faster approach:

Check random linear combination of the equations.

Pick independent uniform ra 128-bit z_1, z_2, z_3, \ldots

Check whether

$$(z_1S_1 + z_2S_2 + z_3S_3 + \cdots)I$$

 $z_1R_1 + (z_1h_1)A_1 +$
 $z_2R_2 + (z_2h_2)A_2 +$
 $z_3R_3 + (z_3h_3)A_3 + \cdots$

(If ≠: See 2012 Bernstein– Doumen–Lange–Oosterwijk.

Easy to prove:

forgeries have probability ≤ 2 of fooling this check.

e.g.,

+P,

Batch verification

Verifying many signatures: need to be confident that

$$S_1B = R_1 + h_1A_1$$
,
 $S_2B = R_2 + h_2A_2$,
 $S_3B = R_3 + h_3A_3$,
etc.

Obvious approach:

Check each equation separately.

Much faster approach:

Check random linear combination of the equations.

Pick independent uniform random 128-bit z_1, z_2, z_3, \ldots

Check whether

$$(z_1S_1 + z_2S_2 + z_3S_3 + \cdots)B =$$

 $z_1R_1 + (z_1h_1)A_1 +$
 $z_2R_2 + (z_2h_2)A_2 +$
 $z_3R_3 + (z_3h_3)A_3 + \cdots$

(If ≠: See 2012 Bernstein– Doumen–Lange–Oosterwijk.)

Easy to prove:

forgeries have probability $\leq 2^{-128}$ of fooling this check.

<u>erification</u>

g many signatures:

be confident that

$$R_1 + h_1 A_1$$

$$R_2 + h_2 A_2$$

$$R_3 + h_3 A_3$$

approach:

ach equation separately.

ster approach:

andom linear combination quations.

Pick independent uniform random 128-bit z_1, z_2, z_3, \ldots

Check whether

$$(z_1S_1 + z_2S_2 + z_3S_3 + \cdots)B =$$

$$z_1R_1 + (z_1h_1)A_1 +$$

$$z_2R_2 + (z_2h_2)A_2 +$$

$$z_3R_3 + (z_3h_3)A_3 + \cdots$$

(If ≠: See 2012 Bernstein-

Doumen-Lange-Oosterwijk.)

Easy to prove:

forgeries have probability $\leq 2^{-128}$ of fooling this check.

<u>Multi-sc</u>

Review of

1939 Br

$$\approx (1+1)$$

addition

$$P \mapsto nP$$

1964 Sti

$$\approx (1 + h)$$

addition

$$P_1,\ldots,$$

if n_1, \dots

natures:

ent that

7

7

on (

on separately.

ach:

ear combination

Pick independent uniform random 128-bit z_1, z_2, z_3, \dots

Check whether

$$(z_1S_1 + z_2S_2 + z_3S_3 + \cdots)B =$$

 $z_1R_1 + (z_1h_1)A_1 +$
 $z_2R_2 + (z_2h_2)A_2 +$

$$z_3R_3 + (z_3h_3)A_3 + \cdots$$

(If ≠: See 2012 Bernstein– Doumen–Lange–Oosterwijk.)

Easy to prove:

forgeries have probability $\leq 2^{-128}$ of fooling this check.

Multi-scalar multip

Review of asympto

1939 Brauer (wind

$$\approx (1 + 1/\lg b)b$$

additions to comp
 $P \mapsto nP$ if $n < 2^b$

1964 Straus (joint

$$\approx (1 + k/\lg b)b$$
 additions to comp

 $P_1, \ldots, P_k \mapsto n_1 P_1$ if $n_1, \ldots, n_k < 2^b$.

20

Pick independent uniform random 128-bit z_1, z_2, z_3, \ldots

Check whether

$$(z_1S_1+z_2S_2+z_3S_3+\cdots)B=$$

$$z_1R_1 + (z_1h_1)A_1 +$$

$$z_2R_2 + (z_2h_2)A_2 +$$

$$z_3R_3 + (z_3h_3)A_3 + \cdots$$

(If ≠: See 2012 Bernstein-

Doumen-Lange-Oosterwijk.)

Easy to prove:

forgeries have probability $\leq 2^{-128}$ of fooling this check.

Multi-scalar multiplication

Review of asymptotic speeds

1939 Brauer (windows):

$$\approx (1 + 1/\lg b)b$$

additions to compute $P \mapsto nP$ if $n < 2^b$.

1964 Straus (joint doublings

$$\approx (1 + k/\lg b)b$$

additions to compute

$$P_1, \dots, P_k \mapsto n_1 P_1 + \dots + n_k$$

if $n_1, \dots, n_k < 2^b$.

tely.

ation

Pick independent uniform random 128-bit z_1, z_2, z_3, \ldots

Check whether

$$(z_1S_1 + z_2S_2 + z_3S_3 + \cdots)B =$$

 $z_1R_1 + (z_1h_1)A_1 +$
 $z_2R_2 + (z_2h_2)A_2 +$
 $z_3R_3 + (z_3h_3)A_3 + \cdots$

(If ≠: See 2012 Bernstein– Doumen–Lange–Oosterwijk.)

Easy to prove:

forgeries have probability $\leq 2^{-128}$ of fooling this check.

Multi-scalar multiplication

Review of asymptotic speeds:

1939 Brauer (windows):

$$\approx (1 + 1/\lg b)b$$

additions to compute $P \mapsto nP$ if $n < 2^b$.

1964 Straus (joint doublings):

$$\approx (1 + k/\lg b)b$$

additions to compute
 $P_1, \dots, P_k \mapsto n_1 P_1 + \dots + n_k P_k$
if $n_1, \dots, n_k < 2^b$.

hether

$$z_2S_2+z_3S_3+\cdots)B=$$

$$(z_1h_1)A_1 +$$

$$(z_2h_2)A_2 +$$

$$(z_3h_3)A_3+\cdots$$

ee 2012 Bernstein-

prove:

have probability $\leq 2^{-128}$ g this check.

Multi-scalar multiplication

Review of asymptotic speeds:

1939 Brauer (windows):

$$\approx (1 + 1/\lg b)b$$

additions to compute $P \mapsto nP$ if $n < 2^b$.

1964 Straus (joint doublings):

$$\approx (1 + k/\lg b)b$$

additions to compute

$$P_1, \dots, P_k \mapsto n_1 P_1 + \dots + n_k P_k$$

if $n_1, \dots, n_k < 2^b$.

pprox (1+R)

1976 Ya

if
$$n_1, ...$$

1976 Pi

 $P\mapsto n_1$

Similar a

but repla Faster th

if *k* is la

(Knuth sas if spe

$$S_3 + \cdots)B =$$

ernsteinosterwijk.)

pability $\leq 2^{-128}$ ck.

Multi-scalar multiplication

Review of asymptotic speeds:

1939 Brauer (windows):

$$\approx (1 + 1/\lg b)b$$

additions to compute $P \mapsto nP$ if $n < 2^b$.

1964 Straus (joint doublings):

$$\approx (1 + k/\lg b)b$$
 additions to compute

$$P_1, \dots, P_k \mapsto n_1 P_1 + \dots + n_k P_k$$

if $n_1, \dots, n_k < 2^b$.

1976 Yao:

$$\approx (1 + k/\lg b)b$$

additions to comp
 $P \mapsto n_1 P, \dots, n_k P$
if $n_1, \dots, n_k < 2^b$.

1976 Pippenger:

Similar asymptotic but replace lg b wi Faster than Straus if k is large.

(Knuth says "gene as if speed were th indom

Multi-scalar multiplication

Review of asymptotic speeds:

1939 Brauer (windows):

$$\approx (1 + 1/\lg b)b$$

additions to compute $P \mapsto nP$ if $n < 2^b$.

1964 Straus (joint doublings):

$$\approx (1 + k/\lg b)b$$
 additions to compute

$$P_1, \dots, P_k \mapsto n_1 P_1 + \dots + n_k P_k$$

if $n_1, \dots, n_k < 2^b$.

1976 Yao:

$$\approx (1 + k/\lg b)b$$

additions to compute $P \mapsto n_1 P, \dots, n_k P$
if $n_1, \dots, n_k < 2^b$.

1976 Pippenger:

Similar asymptotics, but replace $\lg b$ with $\lg(kb)$. Faster than Straus and Yao if k is large.

(Knuth says "generalization" as if speed were the same.)

Multi-scalar multiplication

Review of asymptotic speeds:

1939 Brauer (windows):

$$pprox (1 + 1/\lg b)b$$

additions to compute

$$P \mapsto nP$$
 if $n < 2^b$.

1964 Straus (joint doublings):

$$\approx (1 + k/\lg b)b$$

additions to compute

$$P_1, \dots, P_k \mapsto n_1 P_1 + \dots + n_k P_k$$

if $n_1, \dots, n_k < 2^b$.

1976 Yao:

$$\approx (1 + k/\lg b)b$$
 additions to compute

$$P \mapsto n_1 P, \dots, n_k P$$

if $n_1, \dots, n_k < 2^b$.

1976 Pippenger:

Similar asymptotics, but replace $\lg b$ with $\lg(kb)$. Faster than Straus and Yao if k is large.

(Knuth says "generalization" as if speed were the same.)

alar multiplication

of asymptotic speeds:

auer (windows):

$$L/\lg b)b$$

s to compute

or if $n < 2^{b}$.

raus (joint doublings):

$$(k/\lg b)b$$

s to compute

$$P_k\mapsto n_1P_1+\cdots+n_kP_k$$

, $n_k<2^b$.

1976 Yao:

$$\approx (1 + k/\lg b)b$$
 additions to compute

$$P \mapsto n_1 P, \dots, n_k P$$

if $n_1, \dots, n_k < 2^b$.

1976 Pippenger:

Similar asymptotics, but replace $\lg b$ with $\lg(kb)$. Faster than Straus and Yao if k is large.

(Knuth says "generalization" as if speed were the same.)

More ge algorithm ℓ sums c $\approx \left(\begin{array}{c} \min_{\ell} e^{-it} \\ \text{if all coef} \end{array}\right)$

Within 1

lows):

ute

doublings):

ute

$$_1+\cdots+n_kP_k$$

1976 Yao:

$$\approx (1 + k/\lg b)b$$

additions to compute $P \mapsto n_1 P, \dots, n_k P$
if $n_1, \dots, n_k < 2^b$.

1976 Pippenger:

Similar asymptotics, but replace $\lg b$ with $\lg(kb)$. Faster than Straus and Yao if k is large.

(Knuth says "generalization" as if speed were the same.)

More generally, Pialgorithm computed with the sums of multiple

$$\approx \left(\min\{k,\ell\} + \frac{1}{\lg \ell}\right)$$
if all coefficients a

Within $1+\epsilon$ of op

1976 Yao:

 $\approx (1 + k/\lg b)b$ additions to compute

$$P \mapsto n_1 P, \dots, n_k P$$

if $n_1, \dots, n_k < 2^b$.

1976 Pippenger:

Similar asymptotics, but replace $\lg b$ with $\lg(kb)$. Faster than Straus and Yao if k is large.

(Knuth says "generalization" as if speed were the same.)

More generally, Pippenger's algorithm computes ℓ sums of multiples of k inp

$$\approx \left(\min\{k,\ell\} + \frac{k\ell}{\lg(k\ell b)}\right)b$$

if all coefficients are below 2 Within $1 + \epsilon$ of optimal.

 $\approx (1 + k/\lg b)b$ additions to compute

$$P \mapsto n_1 P, \dots, n_k P$$

if $n_1, \dots, n_k < 2^b$.

1976 Pippenger:

Similar asymptotics, but replace $\lg b$ with $\lg(kb)$. Faster than Straus and Yao if k is large.

(Knuth says "generalization" as if speed were the same.)

More generally, Pippenger's algorithm computes ℓ sums of multiples of k inputs.

22

 $\approx \left(\min\{k,\ell\} + \frac{k\ell}{\lg(k\ell b)}\right)b$ adds if all coefficients are below 2^b . Within $1 + \epsilon$ of optimal.

22

1976 Yao:

 $\approx (1 + k/\lg b)b$ additions to compute $P \mapsto n_1 P, \dots, n_k P$ if $n_1, \dots, n_k < 2^b$.

1, , , ,

1976 Pippenger:

Similar asymptotics, but replace $\lg b$ with $\lg(kb)$. Faster than Straus and Yao if k is large.

(Knuth says "generalization" as if speed were the same.)

More generally, Pippenger's algorithm computes ℓ sums of multiples of k inputs.

 $pprox \left(\min\{k,\ell\} + \frac{k\ell}{\lg(k\ell b)}\right)b$ adds if all coefficients are below 2^b . Within $1 + \epsilon$ of optimal.

Various special cases of Pippenger's algorithm were reinvented and patented by 1993 Brickell–Gordon–McCurley–Wilson, 1995 Lim–Lee, etc. Is that the end of the story?

0:

$$k/\lg b)b$$

s to compute
 $P, \ldots, n_k P$
 $k, n_k < 2^b$

penger:

asymptotics, ace $\lg b$ with $\lg(kb)$. nan Straus and Yao rge.

says "generalization" ed were the same.)

More generally, Pippenger's algorithm computes ℓ sums of multiples of k inputs.

$$pprox \left(\min\{k,\ell\} + \frac{k\ell}{\lg(k\ell b)}\right)b$$
 adds if all coefficients are below 2^b . Within $1 + \epsilon$ of optimal.

Various special cases of Pippenger's algorithm were reinvented and patented by 1993 Brickell-Gordon-McCurley-Wilson, 1995 Lim-Lee, etc. Is that the end of the story?

If $n_1 \geq n$ (n_1-q_1) $n_3P_3 + \cdot$

No! 198

Remarka competi for rande much be ute

ith lg(kb). and Yao

eralization" ne same.) More generally, Pippenger's algorithm computes ℓ sums of multiples of k inputs.

$$pprox \left(\min\{k,\ell\} + \frac{k\ell}{\lg(k\ell b)}\right)b$$
 adds if all coefficients are below 2^b . Within $1 + \epsilon$ of optimal.

Various special cases of Pippenger's algorithm were reinvented and patented by 1993 Brickell–Gordon–McCurley–Wilson, 1995 Lim–Lee, etc. Is that the end of the story?

No! 1989 Bos-Co

If
$$n_1 \ge n_2 \ge \cdots$$
 th
 $n_1 P_1 + n_2 P_2 + n_3 P_4$
 $(n_1 - q n_2) P_1 + n_2 P_4$
 $n_3 P_3 + \cdots$ where

Remarkably simple competitive with For random choices much better meme

More generally, Pippenger's algorithm computes ℓ sums of multiples of k inputs.

 $pprox \left(\min\{k,\ell\} + \frac{k\ell}{\lg(k\ell b)}\right)b$ adds if all coefficients are below 2^b . Within $1 + \epsilon$ of optimal.

Various special cases of Pippenger's algorithm were reinvented and patented by 1993 Brickell–Gordon–McCurley–Wilson, 1995 Lim–Lee, etc. Is that the end of the story?

No! 1989 Bos-Coster:

If $n_1 \ge n_2 \ge \cdots$ then $n_1 P_1 + n_2 P_2 + n_3 P_3 + \cdots = (n_1 - q n_2) P_1 + n_2 (q P_1 + P_2) + n_3 P_3 + \cdots$ where $q = \lfloor n_1 / n_2 \rfloor$

Remarkably simple; competitive with Pippenger for random choices of n_i 's; much better memory usage.

More generally, Pippenger's algorithm computes ℓ sums of multiples of k inputs.

 $pprox \left(\min\{k,\ell\} + \frac{k\ell}{\lg(k\ell b)}\right) b$ adds if all coefficients are below 2^b . Within $1 + \epsilon$ of optimal.

Various special cases of Pippenger's algorithm were reinvented and patented by 1993 Brickell–Gordon–McCurley–Wilson, 1995 Lim–Lee, etc. Is that the end of the story?

No! 1989 Bos-Coster:

If $n_1 \ge n_2 \ge \cdots$ then $n_1 P_1 + n_2 P_2 + n_3 P_3 + \cdots = (n_1 - q n_2) P_1 + n_2 (q P_1 + P_2) + n_3 P_3 + \cdots$ where $q = |n_1/n_2|$.

Remarkably simple; competitive with Pippenger for random choices of n_i 's; much better memory usage.

nerally, Pippenger's n computes of *k* inputs.

$$\{k,\ell\} + \frac{k\ell}{\lg(k\ell b)}$$
 b adds

efficients are below 2^b .

 $1+\epsilon$ of optimal.

special cases of er's algorithm were ed and patented by ickell–Gordon–McCurley–1995 Lim–Lee, etc. he end of the story?

No! 1989 Bos-Coster:

If
$$n_1 \ge n_2 \ge \cdots$$
 then $n_1 P_1 + n_2 P_2 + n_3 P_3 + \cdots = (n_1 - q n_2) P_1 + n_2 (q P_1 + P_2) + n_3 P_3 + \cdots$ where $q = |n_1/n_2|$.

Remarkably simple; competitive with Pippenger for random choices of n_i 's; much better memory usage.

Example 0001000 0000100

0100100 0010011

1001011

0000000

0000000

Goal: Co

300*P*, 1

ppenger's

s of k inputs.

$$\left(\frac{k\ell}{(k\ell b)}\right)^b$$
 adds re below 2^b .

ses of thm were tented by don-McCurley--Lee, etc.

the story?

No! 1989 Bos-Coster:

If
$$n_1 \ge n_2 \ge \cdots$$
 then $n_1 P_1 + n_2 P_2 + n_3 P_3 + \cdots = (n_1 - q n_2) P_1 + n_2 (q P_1 + P_2) + n_3 P_3 + \cdots$ where $q = \lfloor n_1/n_2 \rfloor$.

Remarkably simple; competitive with Pippenger for random choices of n_i 's; much better memory usage.

Example of Bos-C

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32 300*P*, 146*P*, 77*P*,

No! 1989 Bos-Coster:

If $n_1 \ge n_2 \ge \cdots$ then $n_1 P_1 + n_2 P_2 + n_3 P_3 + \cdots = (n_1 - q n_2) P_1 + n_2 (q P_1 + P_2) + n_3 P_3 + \cdots$ where $q = |n_1/n_2|$.

Remarkably simple; competitive with Pippenger for random choices of n_i 's; much better memory usage. Example of Bos-Coster:

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32*P*, 16*P*, 300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

uts.

adds

<u>b</u>.

ırley–

No! 1989 Bos-Coster:

If $n_1 \ge n_2 \ge \cdots$ then $n_1 P_1 + n_2 P_2 + n_3 P_3 + \cdots = (n_1 - q n_2) P_1 + n_2 (q P_1 + P_2) + n_3 P_3 + \cdots$ where $q = |n_1/n_2|$.

Remarkably simple; competitive with Pippenger for random choices of n_i 's; much better memory usage.

Example of Bos–Coster:

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32*P*, 16*P*, 300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

9 Bos–Coster:

$$n_2 \geq \cdots$$
 then

$$n_2P_2+n_3P_3+\cdots=$$

$$(n_2)P_1 + n_2(qP_1 + P_2) +$$

$$\cdots$$
 where $q = \lfloor n_1/n_2 \rfloor$.

ably simple;

tive with Pippenger

om choices of n_i 's;

etter memory usage.

Example of Bos–Coster:

$$000100000 = 32$$

$$000010000 = 16$$

$$100101100 = 300$$

$$010010010 = 146$$

$$001001101 = 77$$

$$00000010 = 2$$

$$00000001 = 1$$

Goal: Compute 32P, 16P,

300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

Reduce

0001000

0100110

0100100

0010011

0000000

0000000

Goal: Co

154*P*, 1

Plus one

add 146

obtainin

ster:

nen

$$P_3 + \cdots =$$

$$(qP_1 + P_2) +$$

$$q=\lfloor n_1/n_2\rfloor$$
.

;

Pippenger

s of n_i 's;

ory usage.

Example of Bos–Coster:

$$000100000 = 32$$

$$000010000 = 16$$

$$100101100 = 300$$

$$010010010 = 146$$

$$001001101 = 77$$

$$00000010 = 2$$

$$00000001 = 1$$

Goal: Compute 32*P*, 16*P*, 300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

Reduce largest rov

$$000100000 = 32$$

$$000010000 = 16$$

$$010011010 = 154$$

$$010010010 = 146$$

$$001001101 = 77$$

$$00000010 = 2$$

$$00000001 = 1$$

Goal: Compute 32 154*P*, 146*P*, 77*P*,

Plus one extra add add 146*P* into 154 obtaining 300*P*.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32*P*, 16*P*, 300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

Reduce largest row:

000100000 = 32

000010000 = 16

 $010011010 = 154 \leftarrow$

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32*P*, 16*P*, 154*P*, 146*P*, 77*P*, 2*P*, 1*P*. Plus one extra addition: add 146*P* into 154*P*, obtaining 300*P*.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

300P, 146P, 77P, 2P, 1P.

Reduce largest row:

000100000 = 32

000010000 = 16

 $010011010 = 154 \leftarrow$

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

154P, 146P, 77P, 2P, 1P.

Plus one extra addition:

add 146P into 154P,

obtaining 300P.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

Reduce largest row:

000100000 = 32

000010000 = 16

 $000001000 = 8 \leftarrow$

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

plus 2 additions.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

Reduce largest row:

000100000 = 32

000010000 = 16

000001000 = 8

 $001000101 = 69 \leftarrow$

001001101 = 77

00000010 = 2

00000001 = 1

plus 3 additions.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

300P, 146P, 77P, 2P, 1P.

Reduce largest row:

000100000 = 32

000010000 = 16

000001000 = 8

001000101 = 69

 $000001000 = 8 \leftarrow$

00000010 = 2

00000001 = 1

plus 4 additions.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

Reduce largest row:

000100000 = 32

000010000 = 16

000001000 = 8

 $000100101 = 37 \leftarrow$

000001000 = 8

00000010 = 2

00000001 = 1

plus 5 additions.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

Reduce largest row:

000100000 = 32

000010000 = 16

000001000 = 8

 $00000101 = 5 \leftarrow$

000001000 = 8

00000010 = 2

00000001 = 1

plus 6 additions.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

Reduce largest row:

 $000010000 = 16 \leftarrow$

000010000 = 16

000001000 = 8

00000101 = 5

000001000 = 8

00000010 = 2

00000001 = 1

plus 7 additions.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

Reduce largest row:

000000000 = 0

000010000 = 16

000001000 = 8

00000101 = 5

000001000 = 8

00000010 = 2

00000001 = 1

plus 7 additions.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

Reduce largest row:

000000000 = 0

 $000001000 = 8 \leftarrow$

000001000 = 8

00000101 = 5

000001000 = 8

00000010 = 2

00000001 = 1

plus 8 additions.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

Reduce largest row:

000000000 = 0

 $000000000 = 0 \leftarrow$

000001000 = 8

00000101 = 5

000001000 = 8

00000010 = 2

00000001 = 1

plus 8 additions.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

Reduce largest row:

000000000 = 0

000000000 = 0

 $000000000 = 0 \leftarrow$

00000101 = 5

000001000 = 8

00000010 = 2

00000001 = 1

plus 8 additions.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000101 = 5

 $00000011 = 3 \leftarrow$

00000010 = 2

00000001 = 1

plus 9 additions.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

 $00000010 = 2 \leftarrow$

00000011 = 3

00000010 = 2

00000001 = 1

plus 10 additions.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

00000010 = 2

 $00000001 = 1 \leftarrow$

00000010 = 2

00000001 = 1

plus 11 additions.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

 $00000000 = 0 \leftarrow$

00000001 = 1

00000010 = 2

00000001 = 1

plus 11 additions.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

300P, 146P, 77P, 2P, 1P.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

00000001 = 1

 $00000001 = 1 \leftarrow$

00000001 = 1

plus 12 additions.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

 $000000000 = 0 \leftarrow$

00000001 = 1

00000001 = 1

plus 12 additions.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

300P, 146P, 77P, 2P, 1P.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

 $000000000 = 0 \leftarrow$

00000001 = 1

plus 12 additions.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

00000010 = 2

00000001 = 1

Goal: Compute 32P, 16P,

300*P*, 146*P*, 77*P*, 2*P*, 1*P*.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

 $000000000 = 0 \leftarrow$

plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8, 16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage, low two-operand complexity.

of Bos-Coster:

$$00 = 32$$

$$00 = 16$$

$$00 = 300$$

$$10 = 146$$

$$01 = 77$$

$$10 = 2$$

$$01 = 1$$

ompute 32P, 16P,

Reduce largest row:

$$000000000 = 0$$

$$000000000 = 0$$

$$000000000 = 0$$

$$000000000 = 0$$

$$000000000 = 0$$

$$000000000 = 0$$

$$\rightarrow 0 = 000000000$$

plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8, 16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage, low two-operand complexity.

 $32P_1 +$ $77P_5 + 2$

Revised

and ther $32P_1 +$

First cor

Same sc

 $77P_5 + 2$

Ed25519 verify ba about tv

verifying

oster:

2P, 16P,

2*P*, 1*P*.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

 $\rightarrow 0 = 000000000 \leftarrow$

plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8, 16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage, low two-operand complexity.

Revised goal: Con

 $32P_1 + 16P_2 + 30$ $77P_5 + 2P_6 + 1P_7$

First compute P'_4 and then recursive $32P_1 + 16P_2 + 15$

 $77P_5 + 2P_6 + 1P_7$

Same scalars show

Ed25519 batch ve verify batch of 64 about twice as fas verifying each separate

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

 $00000000 = 0 \leftarrow$

plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8, 16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage, low two-operand complexity.

Revised goal: Compute $32P_1 + 16P_2 + 300P_3 + 146$ $77P_5 + 2P_6 + 1P_7$.

First compute $P'_4 = P_4 + P_3$ and then recursively comput $32P_1 + 16P_2 + 154P_3 + 146$ $77P_5 + 2P_6 + 1P_7$.

Same scalars show up as be-

Ed25519 batch verification: verify batch of 64 signatures about twice as fast as verifying each separately.

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

 $00000000 = 0 \leftarrow$

plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8, 16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage, low two-operand complexity.

Revised goal: Compute $32P_1 + 16P_2 + 300P_3 + 146P_4 + 77P_5 + 2P_6 + 1P_7$.

First compute $P'_4 = P_4 + P_3$ and then recursively compute $32P_1 + 16P_2 + 154P_3 + 146P'_4 + 77P_5 + 2P_6 + 1P_7$.

Same scalars show up as before.

Ed25519 batch verification: verify batch of 64 signatures about twice as fast as verifying each separately.