Modern ECC signatures

2011 Bernstein—Duif-Lange—
Schwabe—Yang:
Ed25519 signature scheme =

EdDSA using conservative
Curve25519 elliptic curve.
https://ed25519.cr.yp.to

32-byte public keys,

64-byte signatures,

~2125-8 security level.

Deployed in SSH, Signal,
many more applications:
https://ianix.com/pub
/ed25519-deployment . html

Many papers have explored
Curve25519/Ed25519 speed.

e.g. 2015 Chou software:
on Intel Sandy Bridge (2011),

57164 cycles for keygen,

63526 cycles for signature,
205741 cycles for verification,
159128 cycles for ECDH.

Compare to, e.g., 2000 Brown—
Hankerson—Lopez—Menezes:

on Intel Pentium Il (1997),
1920000 cycles for ECDH

using NIST P-256 curve.

ECC signatures

rnstein—Duif-Lange—
—Yang:

) signature scheme =
using conservative
519 elliptic curve.
'/ed25519.cr.yp.to

public keys,
signatures,
security level.

1 in SSH, Signal,

ore applications:
'/ianix.com/pub

| 9-deployment.html

Many papers have explored
Curve25519/Ed25519 speed.

e.g. 2015 Chou software:
on Intel Sandy Bridge (2011),

57164 cycles for keygen,

63526 cycles for signature,
205741 cycles for verification,
159128 cycles for ECDH.

Compare to, e.g., 2000 Brown—
Hankerson—Lopez—Menezes:

on Intel Pentium Il (1997),
1920000 cycles for ECDH

using NIST P-256 curve.

Ac: cyc
Does A¢
A Is bet

atures

uif—-Lange—

» scheme =
ervative
C Curve.
).Ccr.yp.to

S,

vel.

Signal,
1tions:
-om/pub
ment . html

Many papers have explored
Curve25519/Ed25519 speed.

e.g. 2015 Chou software:

on Intel Sandy Bridge (2011),
57164 cycles for keygen,

63526 cycles for signature,
205741 cycles for verification,

159128 cycles for ECDH.

Compare to, e.g., 2000 Brown—
Hankerson—Lopez—Menezes:

on Intel Pentium Il (1997),
1920000 cycles for ECDH

using NIST P-256 curve.

Ac: cycles for alg
Does Ac < Bp pr
A Is better than E

CO

nl

Many papers have explored
Curve25519/Ed25519 speed.

e.g. 2015 Chou software:

on Intel Sandy Bridge (2011),
57164 cycles for keygen,

63526 cycles for signature,
205741 cycles for verification,
159128 cycles for ECDH.

Compare to, e.g., 2000 Brown—
Hankerson—Lopez—Menezes:

on Intel Pentium Il (1997),
1920000 cycles for ECDH

using NIST P-256 curve.

Ac: cycles for alg A on CPL
Does Ac < Bp prove that
A is better than B?

Many papers have explored Ac: cycles for alg A on CPU C.
Curve25519/Ed25519 speed. Does Ac < Bp prove that

| ?
e.g. 2015 Chou software: A Is better than B

on Intel Sandy Bridge (2011),
57164 cycles for keygen,

63526 cycles for signature,
205741 cycles for verification,

159128 cycles for ECDH.

Compare to, e.g., 2000 Brown—
Hankerson—Loépez—Menezes:

on Intel Pentium Il (1997),
1920000 cycles for ECDH

using NIST P-256 curve.

Many papers have explored
Curve25519/Ed25519 speed.

e.g. 2015 Chou software:

on Intel Sandy Bridge (2011),
57164 cycles for keygen,

63526 cycles for signature,
205741 cycles for verification,
159128 cycles for ECDH.

Compare to, e.g., 2000 Brown—
Hankerson—Loépez—Menezes:

on Intel Pentium Il (1997),
1920000 cycles for ECDH

using NIST P-256 curve.

Ac: cycles for alg A on CPU C.
Does Ac < Bp prove that
A iIs better than B?

No! Beware change in CPU.

Maybe Ac > B¢; Ap > Bp;
C does more work per cycle than
D, thanks to CPU manufacturer.

Sometimes people measure cost
in seconds instead of cycles.
Then they benefit

from more work per cycle and
from more cycles per second.

pers have explored
519/Ed25519 speed.

b Chou software:
Sandy Bridge (2011),
ycles for keygen,

ycles for signature,
cycles for verification,

cycles for ECDH.

> to, e.g., 2000 Brown—
on—Lopez—Menezes:
Pentium Il (1997),
cycles for ECDH

ST P-256 curve.

Ac: cycles for alg A on CPU C.
Does Ac < Bp prove that
A iIs better than B?

No! Beware change in CPU.

Maybe Ac > B¢; Ap > Bp;
C does more work per cycle than
D, thanks to CPU manufacturer.

Sometimes people measure cost
in seconds instead of cycles.
Then they benefit

from more work per cycle and
from more cycles per second.

Better ¢
(still rais

ECDH o
(still not
1920000
832457

ECDH o
374000
(from 2(
1591238 .

Verificat
529000
205741

“explored
h19 speed.

ftware:

dge (2011),
eygen,
gnature,
verification,

ECDH.

2000 Brown-—
-Menezes:

| (1997),

- ECDH

curve.

Ac: cycles for alg A on CPU C.
Does Ac < Bp prove that
A iIs better than B?

No! Beware change in CPU.

Maybe Ac > B¢; Ap > Bp;
C does more work per cycle than
D, thanks to CPU manufacturer.

Sometimes people measure cost
in seconds instead of cycles.
Then they benefit

from more work per cycle and
from more cycles per second.

Better comparison
(still raising many

ECDH on Intel Pe
(still not exactly t
1920000 cycles for
832457 cycles for

ECDH on Sandy [
374000 cycles for
(from 2013 Guero
159128 cycles for

Verification on Sa

529000 cycles for
205741 cycles for

VIN—

Ac: cycles for alg A on CPU C.
Does Ac < Bp prove that
A is better than B?

No! Beware change in CPU.

Maybe Ac > B¢; Ap > Bp;
C does more work per cycle than
D, thanks to CPU manufacturer.

Sometimes people measure cost
in seconds instead of cycles.
Then they benefit

from more work per cycle and
from more cycles per second.

Better comparisons
(still raising many questions

ECDH on Intel Pentium |1/l
(still not exactly the same):
1920000 cycles for NIST P-:
832457 cycles for Curve255]

ECDH on Sandy Bridge:
374000 cycles for NIST P-2!

(from 2013 Gueron—Krasnon
159128 cycles for Curve255]

Verification on Sandy Bridg:
529000 cycles for ECDSA-P
205741 cycles for Ed255109.

Ac: cycles for alg A on CPU C.
Does Ac < Bp prove that
A is better than B?

No! Beware change in CPU.

Maybe Ac > B¢; Ap > Bp;
C does more work per cycle than
D, thanks to CPU manufacturer.

Sometimes people measure cost
in seconds instead of cycles.
Then they benefit

from more work per cycle and
from more cycles per second.

Better comparisons
(still raising many questions):

ECDH on Intel Pentium I1/11l
(still not exactly the same):
1920000 cycles for NIST P-256,
832457 cycles for Curve255109.

ECDH on Sandy Bridge:

374000 cycles for NIST P-256
(from 2013 Gueron—Krasnov),
159128 cycles for Curve25519.

Verification on Sandy Bridge:
529000 cycles for ECDSA-P-256,
205741 cycles for Ed255109.

les for alg A on CPU C.

- < Bp prove that
ter than B?

vare change in CPU.

QC > BC; AD > BD;
nore work per cycle than
ks to CPU manufacturer.

1es people measure cost
ds instead of cycles.

ey benefit

re work per cycle and
re cycles per second.

Better comparisons

(still raising many questions):

ECDH on Intel Pentium 11 /11l
(still not exactly the same):
1920000 cycles for NIST P-256,
832457 cycles for Curve255109.

ECDH on Sandy Bridge:
374000 cycles for NIST P-256

(from 2013

Gueron—Krasnov),

159128 cycles for Curve25519.

Verification

529000 cyc
205741 cyc

on Sandy Bridge:
es for ECDSA-P-256,

es for Ed255109.

For eacl
on each

on €acn

Simplest

are muc

Questior
and soft
How to
on, e.g.,
Ed2551¢

Answers
design:

A on CPU C.

ove that
7

e in CPU.

Ap > Bp;
per cycle than
manufacturer.

measure cost
of cycles.

er cycle and
yer second.

Better comparisons
(still raising many questions):

ECDH on Intel Pentium I1/l1l
(still not exactly the same):
1920000 cycles for NIST P-256,
832457 cycles for Curve255109.

ECDH on Sandy Bridge:

374000 cycles for NIST P-256
(from 2013 Gueron—Krasnov),
159128 cycles for Curve25519.

Verification on Sandy Bridge:
529000 cycles for ECDSA-P-256,
205741 cycles for Ed255109.

For each of these
on each of these c

on each of these (

Simplest implemer
are much, much, r

Questions in algor
and software engir
How to build the 1
on, e.g., an ARM

Ed25519 signature

Answers feed back
design: e.g., choo:

) C.

than

urer.

Cost

1d

Better comparisons

(still raising many questions):

ECDH on Intel Pentium 11 /11l
(still not exactly the same):
1920000 cycles for NIST P-256,
832457 cycles for Curve255109.

ECDH on Sandy Bridge:
374000 cycles for NIST P-256

(from 2013

Gueron—Krasnov),

159128 cycles for Curve25519.

Verification

529000 cyc
205741 cyc

on Sandy Bridge:
es for ECDSA-P-256,

es for Ed255109.

For each of these operations
on each of these curves,

on each of these CPUs:

Simplest implementations
are much, much, much slow

Questions in algorithm desig
and software engineering:

How to build the fastest sof
on, e.g., an ARM Cortex-AS
Ed25519 signature verificati

Answers feed back into cryp
design: e.g., choosing fast ¢

Better comparisons
(still raising many questions):

ECDH on Intel Pentium I1/11l
(still not exactly the same):
1920000 cycles for NIST P-256,
832457 cycles for Curve255109.

ECDH on Sandy Bridge:

374000 cycles for NIST P-256
(from 2013 Gueron—Krasnov),
159128 cycles for Curve25519.

Verification on Sandy Bridge:
529000 cycles for ECDSA-P-256,
205741 cycles for Ed255109.

For each of these operations,
on each of these curves,

on each of these CPUs:

Simplest implementations
are much, much, much slower.

Questions in algorithm design
and software engineering:

How to build the fastest software
on, e.g., an ARM Cortex-A8 for
Ed25519 signature verification?

Answers feed back into crypto
design: e.g., choosing fast curves.

omparisons

5ing many questions):

n Intel Pentium 1/

- exactly the same):
cycles for NIST P-256,
cycles for Curve25519.

n Sandy Bridge:
cycles for NIST P-256

)13

Gueron—Krasnov),

cycles for Curve25519.

on
CyC
CyC

on Sandy Bridge:
es for ECDSA-P-256,

es for Ed255109.

For each of these operations,
on each of these curves,

on each of these CPUs:

Simplest implementations
are much, much, much slower.

Questions in algorithm design
and software engineering:

How to build the fastest software
on, e.g., an ARM Cortex-AS8 for
Ed25519 signature verification?

Answers feed back into crypto

design: e.g., choosing fast curves.

Several |

ECC
verify S

Poinf
P, Q

Field'

X1, X2 F

I\/Iachin'
32-bit r

Gat
AND

S
questions):

ntium /111
he same):

- NIST P-256,
Curve25519.

Sridge:

NIST P-256
n—Krasnov),
Curve25519.

ndy Bridge:
ECDSA-P-256,
Ed25519.

For each of these operations,
on each of these curves,

on each of these CPUs:

Simplest implementations
are much, much, much slower.

Questions in algorithm design
and software engineering:

How to build the fastest software
on, e.g., an ARM Cortex-A8 for
Ed25519 signature verification?

Answers feed back into crypto

design: e.g., choosing fast curves.

Several levels to o

ECC ops: e.g.,
verify SB = R +

lwindov

Point ops: e.g.
PQQ— P+Q

lfaster‘

Field ops: e.g.,
X1, X2 —= X1X2 In

ldelayec

Machine insns: e.
32-bit multiplicat

vpipelin
Gates: e.g., '
AND, OR, XOF

For each of these operations,
on each of these curves,

on each of these CPUs:

Simplest implementations
are much, much, much slower.

Questions in algorithm design
and software engineering:

How to build the fastest software
on, e.g., an ARM Cortex-AS8 for
Ed25519 signature verification?

Answers feed back into crypto

design: e.g., choosing fast curves.

Several levels to optimize:

ECC ops: e.g.,
verify SB = R+ hA

lwindowing etc.

Point ops: e.g.,
PQ+— P+Q

lfaster doubling €

Field ops: e.g.,
X1, X2 —= X1X2 In Fp

ldelayed carries €

Machine insns: e.g.,
32-bit multiplication

Vpipelining etc.

Gates: e.g.,
AND, OR, XOR

For each of these operations, Several levels to optimize:

on each of these curves, _

ECC ops: e.g.,
on each of these CPUs: verify SB = R + hA
Simplest implementations lwindowing etc.
are much, much, much slower. Point ops: e.g.,

P,Q— P+ @

ti In algorithm desi :
Questions in algorithm design lfaster doubling etc.

and software engineering:

Field ops: e.g.,

How to build the fastest software .
X1, X2 = x1x2 In Fp

on, e.g., an ARM Cortex-A8 for
Ed25519 signature verification?

ldelayed carries etc.

Machine insns: e.g.,

Answers feed back into crypto 32-bit multiplication
design: e.g., choosing fast curves. pipelining etc
| .
Gates: e.g.,

AND, OR, XOR

 of these operations,

of these curves,
of these CPUs:

- Implementations
h, much, much slower.

1s In algorithm design
ware engineering:
build the fastest software

an ARM Cortex-A8 for
) signature verification?

feed back into crypto

e.g., choosing fast curves.

Several levels to optimize:

ECC ops: e.g.,
verify SB = R+ hA

lwindowing etc.

Point ops: e.g.,
PQ+— P+Q

lfaster doubling etc.

Field ops: e.g.,
X1, X2 —= X1X2 In Fp

ldelayed carries etc.

Machine insns: e.g.,
32-bit multiplication

Vpipelining etc.

Gates: e.g.,
AND, OR, XOR

Single-s

Fundam
n, P—

Input n

{0,1,..
Input P

Wil bui
using ac

and sub:t

| ater wi
double-s

m, P, n,

operations,

urves,

PUs:

1tations
nuch slower.

ithm design
1eering:
astest software

Cortex-A8 for
 verification?

_Into crypto

sing fast curves.

Several levels to optimize:

ECC ops: e.g.,
verifty SB = R + hA

lwindowing etc.

Point ops: e.g.,
PQQ+— P+Q

lfaster doubling etc.

Field ops: e.g.,
X1, X2 —= X1 X2 In Fp

ldelayed carries etc.

Machine insns: e.g.,
32-bit multiplication

vpipelining etc.

Gates: e.g.,
AND, OR, XOR

Single-scalar multi

Fundamental ECC
n, P+— nP.

Input n Is Integer
{0,1,...,2%0% — 1

Input P Is point o

Will bui

using ac

C

C

n, P —
itions P,

and subtractions |/

Later will also loo]

double-scalar mult
m, P n Q — mP -

er.

tware
- for
on’?

Uurves.

Several levels to optimize:

ECC ops: e.g.,
verify SB = R+ hA

lwindowing etc.

Point ops: e.g.,
PQ+— P+Q

lfaster doubling etc.

Field ops: e.g.,
X1, X2 —= X1X2 In Fp

ldelayed carries etc.

Machine insns: e.g.,
32-bit multiplication

Vpipelining etc.

Gates: e.g.,
AND, OR, XOR

Single-scalar multiplication

Fundamental ECC operatior
n P— nP.

Input n Is integer In, e.g.,
{0,1,...,2%% -1},

Input P Is point on elliptic ¢

Will build n, P — nP

using additions P,Q — P
and subtractions P, Q — P -

Later will also look at
double-scalar multiplication
m, P.n Q — mP -+ nQ.

Several levels to optimize:

ECC ops: e.g.,
verify SB = R + hA

lwindowing etc.

Point ops: e.g.,
PQQ— P+Q

lfaster doubling etc.

Field ops: e.g.,
X1, X2 —= X1X2 In Fp

ldelayed carries etc.

Machine insns: e.g.,
32-bit multiplication

vpipelining etc.

Gates: e.g.,
AND, OR, XOR

Single-scalar multiplication

Fundamental ECC operation:
n, P+— nP.

Input n Is integer In, e.g.,
{0,1,...,2%% -1},

Input P Is point on elliptic curve.

Will build n, P — nP
using additions P,Q — P + @
and subtractions P,Q) — P — Q.

Later will also look at
double-scalar multiplication
m, P n Q — mP -+ nQ.

evels to optimize:

ops: e.g.,
B =R+ hA

lwindowing etc.

ops: e.g.,
— P+ Q

lfaster doubling etc.

ops: e.g.,
- X1 X2 In Fp

ldelayed carries etc.

e Insns: e.g.,
nultiplication

Vpipelining etc.

es: e.g.,
" OR, XOR

Single-scalar multiplication

Fundamental ECC operation:
n P— nP.

Input n Is integer In, e.g.,

{0,1,..
Input P
Wil bui

using ac

2290 11

Is point on elliptic curve.

dn P— nP
ditions P, — P + @

and subtractions P,Q) — P — Q.

| ater will also look at

double-scalar multiplication
m, P n Q — mP -+ nQ.

| eft-to-1

def sca.
1f n :

1f n -

(

1f n

retur:
Two Py
oen//2 |

e Recur:
See sj

doubling etc.

;.

1 carries etc.

g.,
jon

Ing etc.

\

Single-scalar multiplication

Fundamental ECC operation:
n, P+— nP.

Input n Is integer In, e.g.,
{0,1,...,2%% -1},

Input P Is point on elliptic curve.

Will build n, P — nP

using additions P,Q — P + @
and subtractions P, Q) — P — Q.

Later will also look at
double-scalar multiplication
m, P n Q — mP -+ nQ.

| eft-to-right binar

def scalarmult(n
if n == 0: ret
if n == 1: ret
R = scalarmult
R=R+R
if n % 2: R =

return R
Two Python notes
e n//2 in Python

e Recursion depth
See sys.setrec

1cC.

LC.

Single-scalar multiplication

Fundamental ECC operation:
n, P+— nP.

Input n Is integer In, e.g.,
{0,1,...,2%% -1},

Input P is point on elliptic curve.

Will build n, P — nP
using additions P,Q — P + @
and subtractions P,Q — P — Q.

Later will also look at
double-scalar multiplication
m, P.n Q — mP -+ nQ.

eft-to-right binary method

def scalarmult(n,P):
if n == 0: return O
if n == 1: return P
R = scalarmult(n//2,P)
R =R+ R
if n /% 2: R=R + P

return R
Two Python notes:
e n//2 in Python means |n

e Recursion depth iIs limited

See sys.setrecursionl:

Single-scalar multiplication

Fundamental ECC operation:
n, P+— nP.

Input n Is integer In, e.g.,
{0,1,...,2%% -1},

Input P Is point on elliptic curve.

Will build n, P — nP
using additions P,Q — P + @
and subtractions P, Q) — P — Q.

Later will also look at
double-scalar multiplication
m, P n Q — mP -+ nQ.

Left-to-right binary method

def scalarmult(n,P):
if n == 0: return O
if n == 1: return P
R = scalarmult(n//2,P)
R =R+R
if nJ/ 2: R=R + P

return R
Two Python notes:
e n//2 in Python means |n/2|.

e Recursion depth Is limited.

See sys.setrecursionlimit.

“alar multiplication

ental ECC operation:
nP.

IS Integer In, e.g.,
2290 11

Is point on elliptic curve.

dn P— nP
ditions P, — P + @
‘ractions P Q — P — Q.

Il also look at

calar multiplication
Q2 — mP + nQ@.

eft-to-right binary method

def scalarmult(n,P):
if n == 0: return O
if n == 1: return P
R = scalarmult(n//2,P)
R =R+ R
if n /% 2: R=R + P

return R
Two Python notes:
e n//2 in Python means |n/2|.

e Recursion depth Is limited.

See sys.setrecursionlimit.

This rec

022<ZZF
2

e.g. 2

oﬂZ(in:

e.g. 2]

Base ca:
OP = 0.
1P =P

Assumin
Otherwi:

plication

operation:

In, e.g.,

1

n elliptic curve.

nP
G~ P+ Q
> Q— P —Q.

K at
Iplication

L nQ@.

Left-to-right binary method

def scalarmult(n,P):
if n == 0: return O
if n == 1: return P
R = scalarmult(n//2,P)
R=R+R
if n’/ 2: R=R + P

return R
Two Python notes:
e n//2 in Python means |n/2|.

e Recursion depth is limited.

See sys.setrecursionlimit.

This recursion con

.z(gP)wnez

e.g. 20P =211
n—1

2 P 1

2(%5)

e.g. 21P =2 - 11

Base cases in recu
OP = 0. For Edwzs
1P = P. Could or

Assuming n > 0 fc
Otherwise use nP

urve.

eft-to-right binary method

def scalarmult(n,P):

if n == 0: return O

if n == 1: return P

R = scalarmult(n//2,P)
R=R+R

if n /% 2: R=R + P

return R

Two Python notes:
e n//2 in Python means |n/2|.

e Recursion depth Is limited.

See sys.setrecursionlimit.

This recursion computes nP
n :
02(§P)ﬁn€22.
e.g. 20P =2-10P.
n—1 _
022<: ; /D> +Piftnel

e.g. 21P =2 .10P + P.

Base cases in recursion:

OP = 0. For Edwards: 0 =
1P = P. Could omit this ca

Assuming n > 0 for simplici
Otherwise use nP = —(—n)

Left-to-right binary method

def scalarmult(n,P):
if n == 0: return O
if n == 1: return P
R = scalarmult(n//2,P)
R=R+R
if nl/ 2: R=R + P

return R
Two Python notes:
e n//2 in Python means |n/2|.

e Recursion depth Is limited.

See sys.setrecursionlimit.

This recursion computes nP as
n :
02(§P)ﬁn€22.
e.g. 20P =2-10P.

—1
o2(n2 P)—I—Pianl—l—2Z.

e.g. 21P =2 .10P + P.

Base cases in recursion:

OP = 0. For Edwards: 0 = (0, 1).
1P = P. Could omit this case.

Assuming n > 0 for simplicity.
Otherwise use nP = —(—n)P.

1ght binary method

larmult(n,P):

== (0: return O

== 1: return P
calarmult(n//2,P)
+ R

h 2: R=R + P

n R

hon notes:
n Python means |n/2].

sion depth is limited.

’'sS.setrecursionlimit.

This recursion computes nP as
n :
02(§P)ﬁn€22.
e.g. 20P =2-10P.

—1
o2<n2 P>+Pifn61—|—22.

e.g. 21P =2 .10P + P.

Base cases in recursion:

OP = 0. For Edwards: 0 = (0, 1).
1P = P. Could omit this case.

Assuming n > 0 for simplicity.
Otherwise use nP = —(—n)P.

If 0 <n
this algc
<2b — Z
<b—1
<b-—-1

Example
31P =~
31 = (1.
4 doubli

Average
35P =2
35 = (1
5 doubl

y method

urn O

urn P

(n//2,P)

means |n/2]|.

Is limited.

ursionlimit.

This recursion computes nP as
n :
02(§P)ﬁn€22.
e.g. 20P =2-10P.

—1
o2(n2 P)—I—Pianl—l—2Z.

e.g. 21P =2 .10P + P.

Base cases in recursion:

OP = 0. For Edwards: 0 = (0, 1).

1P = P. Could omit this case.

Assuming n > 0 for simplicity.
Otherwise use nP = —(—n)P.

If 0 < n < 2° ther
this algorithm use
<2b — 2 additions
<b — 1 doublings
<b — 1 additions

Example of worst
31P = 2(2(2(2P+
31 = (11111)9; b
4 doublings; 4 mo

Average case Is be
35P = 2(2(2(2(2F
35 = (100011)y; &£
5 doublings; 2 adc

1mit.

This recursion computes nP as
n :
02(§P)ﬁn€22.
e.g. 20P =2-10P.

—1
o2<n2 P>+Pifn61—|—22.

e.g. 21P =2 . 10P + P.

Base cases in recursion:

OP = 0. For Edwards: 0 = (0, 1).
1P = P. Could omit this case.

Assuming n > 0 for simplicity.
Otherwise use nP = —(—n)P.

If 0 < n < 2P then

this algorithm uses

<2b — 2 additions: specific:
<b — 1 doublings and

<b — 1 additions of P.

Example of worst case:
31P = 2(2(2(2P+P)+P)+1
31 = (11111)9; b =5;
4 doublings; 4 more additior

Average case Is better: e.g.
35P = 2(2(2(2(2P))) + P) -
35 = (100011)o; b = 6;
5 doublings; 2 additions.

This recursion computes nP as If 0 < n < 2P then
- this algorithm uses
° 2 (5 P) it ne2Z <2b — 2 additions: specifically
e.g. 20P =2 -10P. Sb —1 doublings and

<b — 1 additions of P.

o2 (n ; ! P) +Pitnel+ 22 Example of worst case:

31P = 2(2(2(2P+P)+P)+P)+P.
31 = (11111)9; b =5;

4 doublings; 4 more additions.

e.g. 21P =2 .10P + P.

Base cases In recursion:
OP = 0. For Edwards: 0 = (0, 1). Average case is better: e.g.

1P = P. Could omit this case. 35P = 2(2(2(2(2P))) + P) + P.
35 = (100011)5; b = 6;

Assuming n > 0 for simplicity. 5 doublings: 2 additions

Otherwise use nP = —(—n)P.

ursion computes nP as

’) if n e 2Z.
)P =2-10P.

-1
)—P)—I—Pianl—l—2Z.

P=2.10P + P.

5eS 1IN recursion:
For Edwards: 0 = (0, 1).
- Could omit this case.

g n > 0 for simplicity.
se use nP = —(—n)P.

10
If 0 < n < 2P then

this algorithm uses

<2b — 2 additions: specifically
<b — 1 doublings and

<b — 1 additions of P.

Example of worst case:

31P = 2(2(2(2P+P)+P)+P)+P.
31 = (11111)9; b =5;

4 doublings; 4 more additions.

Average case Is better: e.g.
35P = 2(2(2(2(2P))) + P) + P.
35 = (100011)o; b = 6;

5 doublings; 2 additions.

retur;

1putes nP as

Z
)P

Pifnel+ 22

)P + P.

rsion:

rds: 0 =(0,1).

nit this case.

or simplicity.
= —(—n)P.

10
If 0 < n < 2P then

this algorithm uses

<2b — 2 additions: specifically
<b — 1 doublings and

<b — 1 additions of P.

Example of worst case:

31P = 2(2(2(2P+P)+P)+P)+P.
31 = (11111)9; b =5;

4 doublings; 4 more additions.

Average case Is better: e.g.
35P = 2(2(2(2(2P))) + P) + P.
35 = (100011)5; b = 6;

5 doublings; 2 additions.

Non-adjacent forn

def scalarmult(n

1if n == 0: ret
1f n == 1: ret
if n % 4 ==

R = scalarmu
R=R+R
return (R +
if n 7/, 4 == 3:
R = scalarmu
R=R+R
return (R +
R = scalarmult

return R + R

- as

If 0 < n < 2" then

this algorithm uses

<2b — 2 additions: specifically
<b — 1 doublings and

<b — 1 additions of P.

Example of worst case:

31P = 2(2(2(2P+P)+P)+P)+P.

31 = (11111)9; b =5;
4 doublings; 4 more additions.

Average case Is better: e.g.
35P = 2(2(2(2(2P))) + P) + P.
35 = (100011)o; b = 6;

5 doublings; 2 additions.

10

Non-adjacent form (NAF)

def scalarmult(n,P):

if n == 0: return O

if n == 1: return P

if n % 4 ==
R = scalarmult((n-1)/
R =R+ R
return (R + R) + P

if n 7/, 4 == 3:
R = scalarmult((n+1)/
R =R+ R
return (R + R) - P

R = scalarmult(n/2,P)

return R + R

If 0 < n < 2" then

this algorithm uses

<2b — 2 additions: specifically
<b — 1 doublings and

<b — 1 additions of P.

Example of worst case:

31P = 2(2(2(2P+P)+P)+P)+P.

31 = (11111)9; b =5;
4 doublings; 4 more additions.

Average case Is better: e.g.
35P = 2(2(2(2(2P))) + P) + P.
35 = (100011)5; b = 6;

5 doublings; 2 additions.

10

Non-adjacent form (NAF)

def scalarmult(n,P):
if n == 0: return O
if n == 1: return P
if n % 4 ==
R = scalarmult((n-1)/4,P)
R=R+R
return (R + R) + P
if n 7/, 4 == 3:
R = scalarmult((n+1)/4,P)
R =R+ R
return (R + R) - P
R = scalarmult(n/2,P)

return R + R

11

< 2P then

rithm uses

additions: specifically
doublings and
additions of P.

 of worst case:

(2(2(2P+P)+P)+P)+P.

[111)9; b = 5;
ngs; 4 more additions.

case Is better: e.g.
(2(2(2(2P))) + P) + P.
)0011)o; b = 6;

ngs; 2 additions.

10

Non-adjacent form (NAF)

def scalarmult(n,P):

if n == 0: return O

if n == 1: return P

if n % 4 ==
R = scalarmult((n-1)/4,P)
R =R+ R
return (R + R) + P

if n 7/, 4 == 3:
R = scalarmult((n+1)/4,P)
R =R+ R
return (R + R) - P

R = scalarmult(n/2,P)

return R + R

11

Subtract

IS as che
NAF tal

31P =
31 = (1

35P =
35 = (1

“Non-aa
separate

Worst c:
plus ~b
On aver:

V)

. specifically
and
of P.

CasSe.

P)+P)+P)+P.

re additions.

tter: e.g.

))) + P) + P.
) = 0;

Itions.

10

Non-adjacent form (NAF)

def scalarmult(n,P):

if n == 0: return O

if n == 1: return P

if n % 4 ==
R = scalarmult((n-1)/4,P)
R =R+ R
return (R + R) + P

if n 7/, 4 == 3:
R = scalarmult((n+1)/4,P)
R =R+ R
return (R + R) - P

R = scalarmult(n/2,P)

return R + R

11

Subtraction on t

¢

IS as cheap as ac

d

NAF takes advant

31P = 2(2(2(2(2F

31 = (100001)2;

1

35P = 2(2(2(2(2F

35 = (100101)2.

“"Non-adjacent”: -

separated by >2

Worst case: ~b
plus ~b/2 additi

C

d
O

On average ~b/3

1S.

10

Non-adjacent form (NAF)

def scalarmult(n,P):
if n == 0: return O

. return P

if n % 4 ==
R = scalarmult((n-1)/4,P)
R =R+ R
return (R + R) + P

if n 4 4 == 3:
R = scalarmult((n+1)/4,P)
R =R+ R
return (R + R) - P

R =

return R + R

1f n ==

scalarmult(n/2,P)

11

Subtraction on the curve

Is as cheap as addition.
NAF takes advantage of thi:

31P = 2(2(2(2(2P)))) — P.
31 = (100001),; 1 denotes -

35P = 2(2(2(2(2P)) + P)) -
35::(100101)2.

“Non-adjacent”: =P ops ar
separated by >2 doublings.

Worst case: ~b doublings
plus ~b/2 additions of +P.
On average =b/3 additions.

11
Non-adjacent form (NAF) Subtraction on the curve

Is as cheap as addition.

def scalarmult(n,P): |
NAF takes advantage of this.

if n == 0: return O

if n == 1: return P 31P = 2(2(2(2(2P)))) — P.

if n % 4 == 1: 31 = (100001)5; 1 denotes —1.
R = scalarmult((n-1)/4,P) 35P — 2(2(2(2(2P)) + P)) — P.
AR 35 = (100101),.
return (R + R) + P

ifn% 4 == 3: “Non-adjacent”: £P ops are
R = scalarmult((n+1)/4,P) separated by >2 doublings.
R =R+ R

Worst case: ~b doublings

return (R + R) - P plus &~b/2 additions of +P.
R = scalarmult(n/2,P)

return R + R

On average ab/3 additions.

acent form (NAF)

larmult(n,P):
== (0: return O
== 1: return P
h 4 ==

scalarmult((n-1)/4,P)
R + R

uirn (R + R) + P

h 4 == 3:
scalarmult((n+1)/4,P)
R + R

irn (R + R) - P
calarmult(n/2,P)

n R + R

11

Subtraction on the curve

Is as cheap as addition.
NAF takes advantage of this.

31P = 2(2(2(2(2P)))) — P.
31 = (100001)5; 1 denotes —1.

35P = 2(2(2(2(2P)) + P)) — P.
35::(100101)2.

"Non-adjacent”: =P ops are
separated by >2 doublings.

Worst case: ~b doublings
plus ~b/2 additions of +P.
On average ~b/3 additions.

12

Width-2

def win
1f n -
1f n -

1f n -

.
Il

ret

1 (NAF)

,P):
urn O

urn P

1t ((n-1)/4,P)

R) + P

1t ((n+1)/4,P)

R) - P
(n/2,P)

11

Subtraction on the curve

Is as cheap as addition.
NAF takes advantage of this.

31P = 2(2(2(2(2P)))) — P.
31 = (100001)5; 1 denotes —1.

35P = 2(2(2(2(2P)) + P)) — P.
35 = (100101)2.

“"Non-adjacent”: =P ops are
separated by >2 doublings.

Worst case: ~b doublings
plus ~b/2 additions of +P.
On average &b/3 additions.

12

Width-2 signed sli

def window2(n,P,
if n == 0: ret
if n == 1: ret
if n == 3: ret
if n 7 8 ==
R = window2(
R =R+ R
R =R+ R
return (R +
if n 7/, 8 == 3:
R = window?2(
R=R+R
R=R+R

return (R +

4,P)

4,P)

11

Subtraction on t

N€ CUrve

IS as cheap as ac

dition.

NAF takes advantage of this.

31P = 2(2(2(2(2P)))) — P.

31 = (100001)5,;

1 denotes —1.

35P = 2(2(2(2(2P)) + P)) — P.

35::(100101)2.

“"Non-adjacent”:
separated by >2

Worst case: ~b
plus ~b/2 additi

+P ops are
doublings.

doublings

ons of +P.

On average =~b/3 additions.

12

Width-2 signed sliding wind

def window2(n,P,P3):
if n == 0: return O
if
if
if

== 1: return P
== 3: return P3
h 8 ==
R = window2((n-1)/8,F
R =R+ R
R =R+ R
return (R + R) + P
if n 7/, 8 == 3:
R = window2((n-3)/8,F
R =R+ R
R=R+R
return (R + R) + P3

B B B

Subtraction on t

N€ CUrve

IS as cheap as ac

NAF takes advantage of this.

dition.

31P = 2(2(2(2(2P)))) — P.

31 = (100001)5; 1 denotes —1.
35P — 2(2(2(2(2P)) + P)) — P.

35 = (100101)2.

“Non-adjacent”:
separated by >2

Worst case: ~b
plus ~b/2 additi

P ops are

doublings.

doublings

ons of +P.

On average &b/3 additions.

12

Width-2 signed sliding windows

def window2(n,P,P3):

if n == 0: return O
if n == 1: return P
if n == 3: return P3
if n 7, 8 ==
R = window2((n-1)/8,P,P3)
R=R+R
R=R+R
return (R + R) + P
if n 7/, 8 == 3:
R = window2((n-3)/8,P,P3)
R=R+R
R=R+R

return (R + R) + P3

13

lon on t

N€ CUrve

ap as ac

dition.

es advantage of this.

(2(2(2(2P)))) — P.

)0001)5; 1 denotes —1.
(2(2(2(2P)) + P)) — P.

)0101),.

jacent’:
d by >2

3se: ~b
/2 additi

+ P ops are
doublings.

doublings

ons of +P.

age ~b/3 additions.

12

Width-2 signed sliding windows

def window2(n,P,P3):

if n == 0: return O
if n == 1: return P
if n == 3: return P3
if n 7 8 ==
R = window2((n-1)/8,P,P3)
R=R+R
R=R+R
return (R + R) + P
if n 7/, 8 == 3:
R = window2((n-3)/8,P,P3)
R=R+R
R=R+R

return (R + R) + P3

13

retur:

def sca.

retur;

> curve
ition.
age of this.

') — P.

"denotes —1.

) + P)) — P.

+P ops are
oublings.

oublings
ns Of +P.
additions.

12

Width-2 signed sliding windows

def window2(n,P,P3):

if n == 0: return O
if n == 1: return P
if n == 3: return P3
if n 7, 8 ==
R = window2((n-1)/8,P,P3)
R=R+R
R=R+R
return (R + R) + P
if n 7/, 8 == 3:
R = window2((n-3)/8,P,P3)
R=R+R
R=R+R

return (R + R) + P3

13

if n /, 8 == b5:
R = window2(
R =R+ R
R =R+R
return (R +
if n % 8 == T7:
R = window2(
R=R+R
R =R+ R

return (R +
R = window2(n/

return R + R

def scalarmult(n

return window?2

V1

12

Width-2 signed sliding windows

def window2(n,P,P3):

if n == 0: return O

if n == 1: return P

if n == 3: return P3

if n /) 8 ==
R = window2((n-1)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) + P

if n 7/, 8 == 3:
R = window2((n-3)/8,P,P3)
R=R+R
R=R+R
return (R + R) + P3

13

if n /, 8 == b:
R = window2((n+3)/8,F
R =R+ R
R =R+ R
return (R + R) - P3
ifn% 8 ==7:
R = window2((n+1)/8,F
R =R+ R
R =R+ R

return (R + R) - P
R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+

Width-2 signed sliding windows

def window2(n,P,P3):

if n == 0: return O
if n == 1: return P
if n == 3: return P3
if n 7, 8 ==
R = window2((n-1)/8,P,P3)
R=R+R
R=R+R
return (R + R) + P
if n 7/, 8 == 3:
R = window2((n-3)/8,P,P3)
R=R+R
R=R+R

return (R + R) + P3

13

14

if n /, 8 == b5:
R = window2((n+3)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) - P3
if n % 8 == T7:
R = window2((n+1)/8,P,P3)
R=R+R
R =R+ R

return (R + R) - P
R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+P)

signed sliding windows

jow2(n,P,P3) :
== 0:
== 1:
== 3:
h 8 ==
window2((n-1)/8,P,P3)
R + R

R + R

uirn (R + R) + P

h 8 == 3:
window2((n-3)/8,P,P3)
R + R

R + R

irn (R + R) + P3

return O
return P

return P3

13

if n /, 8 == b:
R = window2((n+3)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) - P3
if n % 8 == T7:
R = window2((n+1)/8,P,P3)
R =R+ R
R =R+ R

return (R + R) - P
R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+P)

14

Worst c:
~b/3 ac
On aver.

ding windows

P3):
urn O
urn P

urn P3

(n—l)/83P3P3)

R) + P

(n-3)/8,P,P3)

R) + P3

13

if n /, 8 == b5:
R = window2((n+3)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) - P3
if n % 8 == T7:
R = window2((n+1)/8,P,P3)
R =R+ R
R =R+ R

return (R + R) - P
R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+P)

14

Worst case: =b d
~b/3 additions of
On average ~b/4

OWS

,P3)

,P3)

13

if n) 8 ==
R = window2((n+3)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) - P3
if n 7/, 8 == T7:
R = window2((n+1)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) - P
R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+P)

14

Worst case: ~b doublings p
~b/3 additions of £P or +.
On average ~b/4 additions.

if n /, 8 == b5:
R = window2((n+3)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) - P3
if n% 8 == T7:
R = window2((n+1)/8,P,P3)
R =R+ R
R =R+ R

return (R + R) - P
R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+P)

14

Worst case: ~b doublings plus
%b/3 additions of £P or £3P.
On average ~b/4 additions.

15

if n /, 8 == b5:
R = window2((n+3)/8,P,P3)
R =R+ R
R =R+ R

return (R + R) - P3
if n % 8 == T7:
R = window2((n+1)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) - P
R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+P)

14

15
Worst case: ~b doublings plus

%b/3 additions of =P or +3P.
On average ~b/4 additions.

Width-3 signed sliding windows:
Precompute P, 3P, 5P, 7P.
On average ~b/5 additions.

if n /, 8 == b5:
R = window2((n+3)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) - P3
if n % 8 == T7:
R = window2((n+1)/8,P,P3)
R =R+ R
R =R+ R

return (R + R) - P
R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+P)

14

15

Worst case: ~b doublings plus

~b/3 additions of -

-P or -

-3P.

On average ~b/4 additions.

Width-3 signed sliding windows:
Precompute P, 3P, 5P, 7P.
On average ~b/5 additions.

Width 4: Precompute
P,3P,5P,7P,9P,11P, 13P, 15P.
On average ~b/6 additions.

if n /, 8 == b5:
R = window2((n+3)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) - P3
if n % 8 == T7:
R = window2((n+1)/8,P,P3)
R =R+ R
R =R+ R

return (R + R) - P
R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+P)

14

15
Worst case: ~b doublings plus

%b/3 additions of =P or +3P.
On average ~b/4 additions.

Width-3 signed sliding windows:
Precompute P, 3P, 5P, 7P.
On average ~b/5 additions.

Width 4: Precompute
P,3P,5P,7P,9P,11P, 13P, 15P.
On average ~b/6 additions.

Cost of precomputation
eventually outweighs savings.
Optimal: ~b doublings plus
roughly b/lg b additions.

h 8 == 5:
window2((n+3)/8,P,P3)
R + R
R + R

irn (R + R) - P3

h 8 == T:
window2((n+1)/8,P,P3)
R + R
R + R

uirn (R + R) - P

indow2(n/2,P,P3)

n R + R

larmult(n,P):
n window2(n,P,P+P+P)

14

Worst case: =b doublings plus
%b/3 additions of =P or +3P.
On average ~b/4 additions.

Width-3 signed sliding windows:

Precompute P, 3P, 5P, 7P.
On average =b/5 additions.

Width 4: Precompute

P,3P,5P, 7P,9P 11P,13P, 15P.

On average ~b/6 additions.

Cost of precomputation
eventually outweighs savings.
Optimal: =b doublings plus
roughly b/lg b additions.

15

Double-

Want to

m, P, n,

e.g. verl
by comg
computl
checking

Obvious
Comput

e.g. b=
~250 dc

~250 dc
~bH(0 adc

~bH(0 adc

(n+3)/8,P,P3)

R) - P3

(n+1)/8,P,P3)

R) - P
2,P,P3)

,P):
(n,P,P+P+P)

14

Worst case: ~b doublings plus
%b/3 additions of =P or £3P.
On average ~b/4 additions.

Width-3 signed sliding windows:

Precompute P, 3P, 5P, 7P.
On average ~b/5 additions.

Width 4: Precompute

P,3P,5P, 7P, 9P 11P, 13P, 15P.

On average ~b/6 additions.

Cost of precomputation
eventually outweighs savings.
Optimal: =b doublings plus
roughly b/lg b additions.

15

Double-scalar mul

Want to quickly c
m, P n Q— mP -

e.g. verify signatul

by computing h =

computing SB — |

checking whether

Obvious approach

Compute mP; cor

e.g. b = 2506:

~250 ¢

~250 doub

~b(0 ac¢

~b(0 ac¢

oubp

C

C

INgs -

C

INgs -

C

itions for

itions for

14

Worst case: =b doublings plus
%b/3 additions of =P or +3P.
On average ~b/4 additions.

Width-3 signed sliding windows:

Precompute P, 3P, 5P, 7P.
On average =~b/5 additions.

Width 4: Precompute

P,3P,5P, 7P,9P 11P, 13P, 15P.

On average ~b/6 additions.

Cost of precomputation
eventually outweighs savings.
Optimal: =b doublings plus
roughly b/lg b additions.

15

Double-scalar multiplication

Want to quickly compute
m, P n Q— mP 4+ nQ.

e.g. verify signature (R, S)
by computing h= H(R, M),
computing SB — hA,
checking whether R = SB -

Obvious approach:

Compute mP; compute nQ:;

e.g. b = 256:

~25b0 ¢

~250 doub

~b(0 ad

~b(0 ad

oub

C

C

ings for mP,
ings for nQ,

itions for mP,

itions for n@.

Worst case: ~b doublings plus
%b/3 additions of =P or £3P.
On average ~b/4 additions.

Width-3 signed sliding windows:

Precompute P, 3P, 5P, 7P.
On average ~b/5 additions.

Width 4: Precompute

P,3P,5P, 7P, 9P 11P,13P, 15P.

On average ~b/6 additions.

Cost of precomputation
eventually outweighs savings.
Optimal: =b doublings plus
roughly b/lg b additions.

15

Double-scalar multiplication

Want to quickly compute
m, P n Q— mP 4+ nQ.

e.g. verify signature (R, S)
by computing h = H(R, M),
computing SB — hA,

checking whether R = SB — hA.

Obvious approach:

Compute mP; compute nQ; add.

e.g. b = 2506:

~250 ¢

oublings for mP,

~256 doublings for nQ,

~b(0 ac¢

~b(0 ac¢

C

C

itions for mP,
itions for nQ@.

16

1se: ~b doublings plus
Iditions of £P or £3P.

age ~b/4 additions.

signed sliding windows:

ute P,3P,5P, 7P.
age ~b/5 additions.

. Precompute

> 7P, 9P, 11P, 13P, 15P.

age ~b/6 additions.

precomputation

ly outweighs savings.
. ~b doublings plus
b/lg b additions.

15

Double-scalar multiplication

Want to quickly compute
m, P n Q— mP -+ nQ.

e.g. verify signature (R, S)
by computing h = H(R, M),
computing SB — hA,

checking whether R = SB — hA.

Obvious approach:

Compute mP; compute nQ); add.

e.g. b = 2506:
~256 doublings for mP,

~256 doublings for nQ,

~50 additions for mP,

~50 additions for nQ.

16

Joint do

Do muc
2X + 2Y

def sca.
if m -
ret

if n :

ret

(

1f m
(

1f n

retur:

oublings plus
' ::P or ::3P.
additions.

ding windows:

5P, TP.
additions.

yute

1P, 13P, 15P.

additions.

ation

hs savings.
olings plus
litions.

15

Double-scalar multiplication

Want to quickly compute
m, P, n Q— mP 4+ nQ.

e.g. verify signature (R, S)
by computing h = H(R, M),
computing SB — hA,

checking whether R = SB — hA.

Obvious approach:

Compute mP; compute nQ; add.

e.g. b = 2506:

~250 ¢

oublings for mP,

~256 doublings for nQ,

~b(0 ac¢

~b(0 ac¢

C

C

itions for mP,
itions for nQ.

16

Joint doublings

Do much better b
2X + 2Y into 2(X

def scalarmult2(
if m ==
return scala
if n ==
return scala

R = scalarmult

R =R+R
if m 7/ 2: R =
if n 7/, 2: R =
return R

lus
3P.

OWS.

5P.

15

Double-scalar multiplication

Want to quickly compute
m, P,.n Q— mP 4+ nQ.

e.g. verify signature (R, S)
by computing h = H(R, M),
computing SB — hA,

checking whether R = SB — hA.

Obvious approach:

Compute mP; compute nQ); add.

e.g. b = 2506:

~25b0 ¢

oublings for mP,

~256 doublings for nQ,

~b(0 ad

~b5(0 acd

C

C

itions for mP,
itions for n@.

16

Joint doublings

Do much better by merging
2X +2Y into 2(X +Y).

def scalarmult2(m,P,n,Q):
if m ==
return scalarmult(n,Q
if n ==
return scalarmult(m,F
R = scalarmult2(m//2,P,
R =R+ R

ifm?% 2: R=R + P
ifnd 2: R=R + Q
return R

Double-scalar multiplication

Want to quickly compute
m, P,.n Q— mP 4+ nQ.

e.g. verify signature (R, S)
by computing h = H(R, M),
computing SB — hA,

checking whether R = SB — hA.

Obvious approach:

Compute mP; compute nQ; add.

e.g. b = 2506:

~250 ¢

oublings for mP,

~256 doublings for nQ,

~b(0 ac¢

~b(0 ac¢

C

C

itions for mP,
itions for nQ@.

Joint doublings

Do much better by merging
2X +2Y into 2(X +Y).

def scalarmult2(m,P,n,Q):
if m ==
return scalarmult(n,Q)
if n ==
return scalarmult(m,P)
R = scalarmult2(m//2,P,n//2,Q)
R =R+ R

ifm?% 2: R=R + P
ifniy 2: R=R + Q
return R

scalar multiplication

“quickly compute
Q2 — mP + nQ@.

fy signature (R, S)
uting h= H(R, M),
ng SB — hA,

- whether R = SB — hA.

approach:

e mP; compute nQ); add.

250:
yublings for mP,

yublings for nQ,
litions for mP,

litions for nQ@.

16

Joint doublings

Do much better by merging
2X +2Y into 2(X +Y).

def

scalarmult2(m,P,n,Q):

1f m ==

return scalarmult(n,Q)

1f n ==

R = scalarmult2(m//2,P,n//2,Q)
R =R+ R

ifmJ% 2: R=R + P

if n % 2: R=R + Q

return R

return scalarmult(m,P)

17

For exar
35P =2
31Q = =
into 3bF
2(2(2(2(
P

~b doul
~b/2 ac
~b/2 ac

Combine
~256 dc
~b(0 adc

~bH(0 adc

tiplication

ompute

L n@.

e (R, S)
H(R, M),
A,

R =S5B — hA.

npute nQ; add.

16

Joint doublings

Do much better by merging
2X +2Y into 2(X +Y).

def scalarmult2(m,P,n,Q):

1f m ==

return scalarmult(n,Q)

1f n ==

return scalarmult(m,P)

R = scalarmult2(m//2,P,n//2,Q)

R =R+ R
ifm% 2: R
ifn% 2: R

return R

R +P
R + Q

17

For example: mer;
35P = 2(2(2(2(2F
31Q = 2(2(2(2Q+
into 35P 4+ 31Q =
2(2(2(2(2P+Q)+

P

Q.

~b doublings (me

~b/2 ac
~b/2 ac

ditions of

ditions of

Combine idea with
~256 doublings fc

~b(0 ac

~b(0 ac¢

C

C

Itions usit
1'tions usit

16 17
Joint doublings For example: merge

35P = 2(2(2(2(2P))) + P) -
31Q = 2(2(2(2Q+Q)+Q)+
into 35P + 31Q =

Do much better by merging
2X +2Y into 2(X +Y).

def scalarmult2(m,P,n,Q): 2(2(2(2(2P+Q)+Q)+Q)+F
if m == 0O: P+Q@.
return scalarmult(n,Q) _
hA f e 0. ~b doublings (merged!),

~b/2 additions of P,
~b/2 additions of Q.

return scalarmult(m,P)

2dd. R = scalarmult2(m//2,P,n//2,Q)
R=R+R Combine idea with windows
ifm9J% 2: R=R + P ~256 doublings for b = 256
if n % 2: R =R + Q ~50 additions using P,

return R ~50 additions using Q.

Joint doublings

Do much better by merging
2X +2Y into 2(X +Y).

def scalarmult2(m,P,n,Q):
if m ==
return scalarmult(n,Q)
if n ==
return scalarmult(m,P)
R = scalarmult2(m//2,P,n//2,Q)
R =R+ R

ifm?% 2: R=R + P
if n?% 2: R=R + Q
return R

17

For example: merge

35P = 2(2(2(2(2P))) + P) + P,
31Q = 2(2(2(2Q+Q)+Q)+Q)+Q
into 35P + 31Q =
2(2(2(2(2P4+Q)+Q)+Q)+P+Q)
P+Q.

~b doublings (merged!),
~b/2 additions of P,
~b/2 additions of Q.

Combine idea with windows: e.g.,
~256 doublings for b = 256,
~50 additions using P,

~50 additions using Q.

ublings

n better by merging
“into 2(X +Y).

larmult2(m,P,n,Q):

irn scalarmult(n,Q)

irn scalarmult(m,P)

calarmult2(m//2,P,n//2,Q)

+ R

h2: R=R + P
L 2: R=R + Q
n R

17

For example: merge

35P = 2(2(2(2(2P))) + P) + P,
31Q = 2(2(2(2Q+Q)+Q)+Q)+Q
into 35P + 31Q =
2(2(2(2(2P+Q)+Q)+Q)+P+Q)
P+Q.

~b doublings (merged!),
~b/2 additions of P,
~b/2 additions of Q.

Combine idea with windows: e.g.,
~256 doublings for b = 256,
~50 additions using P,

~b50 additions using Q.

18

Batch ve

Veritying
need to
51B =1
5B =1
S53B =1
etc.

Obvious
Check e

y merging
—+Y).

m,P,n,Q):
rmult(n,Q)

rmult (m,P)
2(m//2,P,n//2,Q)

R + P
R + Q

17

18
For example: merge

35P = 2(2(2(2(2P))) + P) + P,
31Q = 2(2(2(2Q+Q)+Q)+Q)+Q
into 35P + 31Q =
2(2(2(2(2P+Q)+Q)+Q)+P+Q)
P+Q.

~b doublings (merged!),
~b/2 additions of P,
~b/2 additions of Q.

Combine idea with windows: e.g.,
~256 doublings for b = 256,
~50 additions using P,

~50 additions using Q.

Batch verification

Verifying many sig
need to be confide
51B = Ry + h1Aq
5B =Ry + hhAs
53B = R3 + h3Aj3
etc.

Obvious approach
Check each equati

17

For example: merge

35P = 2(2(2(2(2P))) + P) + P,
31Q = 2(2(2(2Q+Q)+Q)+Q)+Q
into 35P + 31Q =
2(2(2(2(2P+Q)+Q)+Q)+P+Q)

P

Q.

~b doublings (merged!),

~b/2 ac
~b/2 ac

ditions of P,
ditions of Q.

Combine idea with windows: e.g.,
~256 doublings for b = 256,

~b(0 ac

~50 ad

C

C

itions using P,
itions using Q.

Batch verification

Verifying many signatures:
need to be confident that
51B = R1 + h1Aq,

5B = Ry + hyA»,

53B = R3 + h3As3,

etc.

Obvious approach:
Check each equation separa

For example: merge

35P = 2(2(2(2(2P))) + P) + P,
31Q = 2(2(2(2Q+Q)+Q)+Q)+Q
into 35P + 31Q =
2(2(2(2(2P+Q)+Q)+Q)+P+Q)
P+Q.

~b doublings (merged!),
~b/2 additions of P,
~b/2 additions of Q.

Combine idea with windows: e.g.,
~256 doublings for b = 256,
~50 additions using P,

~50 additions using Q.

18

19
Batch verification

Verifying many signatures:
need to be confident that
51B = R1 + A1,

5B = Ry + hy A,

53B = R3 + h3As3,

etc.

Obvious approach:
Check each equation separately.

For example: merge

35P = 2(2(2(2(2P))) + P) + P,
31Q = 2(2(2(2Q+Q)+Q)+Q)+Q
into 35P + 31Q =
2(2(2(2(2P4+Q)+Q)+Q)+P+Q)

P

Q.

~b doublings (merged!),

~b/2 ac
~b/2 ac

ditions of P,
ditions of Q.

Combine idea with windows: e.g.,
~256 doublings for b = 256,

~b(0 ac

~b(0 ac¢

C

C

itions using P,
itions using Q.

18

19
Batch verification

Verifying many signatures:
need to be confident that
51B = R1 + A1,

5B = Ry + hy A,

53B = R3 + h3As3,

etc.

Obvious approach:
Check each equation separately.

Much faster approach:
Check random linear combination
of the equations.

nple: merge
(2(2(2(2P))) + P) + P,
(2(2(2Q+Q)+Q)+Q)+Q
> 4 31Q =
2P+Q)+Q)+Q)+P+Q)
L0

lings (merged!),

Iditions of P,

Iditions of Q).

> idea with windows: e.g.,
yublings for b = 256,
litions using P,

litions using Q.

18

Batch verification

Verifying many signatures:
need to be confident that
51B = R1 + h1Aq,

5B =Ry + h)As,

53B = R3 + h3As,

etc.

Obvious approach:
Check each equation separately.

Much faster approach:
Check random linear combination
of the equations.

19

Pick ind
128-bit .

Check w
(2151 +
z1R1 +
ZoRo +

z3R3 +

(If #£: S

Doumen

Easy to
forgeries
of foolin

J €

) + P) + P,
Q)+Q)+Q)+Q

Q)+Q) -FP+Q)

rged!),

P

0.

1 windows: e.g.,
r b = 250,

g P,

g Q.

18

19
Batch verification

Verifying many signatures:
need to be confident that
51B = R1 + A1,

5B = Ry + ho A,

53B = R3 + h3As,

etc.

Obvious approach:
Check each equation separately.

Much faster approach:
Check random linear combination
of the equations.

Pick independent
128-bit z1, 29, z3, .

Check whether

(2151 + 2050 + 73
z1R1 + (z1h1)A1 -
2Ry + (z2h2) Az -
z3R3 + (z3h3) A3 -

(If #£: See 2012 B
Doumen—Lange—C

Easy to prove:
forgeries have prol
of fooling this che

Q)+Q@

’+Q)

- e.g.,

18

19

Batch verification

Verifying many signatures:
need to be confident that

51B = Rq
5B = Ry
S53B = R3
etc.

h1 A1,
hy Ao,
h3As,

Obvious approach:

Check each equation separately.

Much faster approach:

Check random linear combination

of the equations.

Pick independent uniform rz
128-bit z1, 20, z3,

Check whether

(2151 + 2052 + 2353 + - -)|
z1R1 + (z1h1)A1 +
2Ry + (z2h) Az +
z3R3 + (z3h3)A3 + - - -

(If #: See 2012 Bernstein—
Doumen—Lange—QOosterwijk.

Easy to prove:
forgeries have probability <:
of fooling this check.

Batch verification

Verifying many signatures:
need to be confident that
51B = R1 + hAq,

5B = Ry + ho A,

53B = R3 + h3As3,

etc.

Obvious approach:
Check each equation separately.

Much faster approach:
Check random linear combination
of the equations.

19

Pick independent uniform random
128-bit z1, 20, z3,

Check whether

(2151 + 2052 + 2353 + - 1) B =
z1R1 + (z1h1)A1 +
2Ry + (z2h) Az +
z3R3 + (z3h3)A3 + - -

(If #: See 2012 Bernstein—
Doumen—Lange—Oosterwijk.)

Easy to prove:

forgeries have probability <2128

of fooling this check.

20

rification

> many signatures:
be confident that

%1 + h1Aq,
< + h Ay,
%3 + h3A3,
approach:

ach equation separately.

ster approach:
yndom linear combination
juations.

19

Pick independent uniform random
128-bit z1, 20, z3,

Check whether

(2151 + 2052 + 2353 + -1)B =
z1R1 + (z1h1)A1 +
2Ry + (z20h2)A2 +
z3R3 + (z3h3)A3 + - - -

(If #: See 2012 Bernstein—
Doumen—Lange—QOosterwijk.)

Easy to prove:

forgeries have probability <2128

of fooling this check.

20

Multi-sc

Review

1939 Br.

~ (14
addition
P+— nF

1964 St

~ (14
addition
Pi,...,
if n1,...

‘natures:
nt that

on separately.

ach:
ar combination

Pick independent uniform random
128-bit z1, 20, z3,

Check whether

(2151 + 2050 + 2353 + - -)B —
z1R1 + (z1h1)A1 +
z0Ry 4 (z20h2)As +
z3R3 + (z3h3)A3 + - - -

(If #: See 2012 Bernstein—
Doumen—Lange—Oosterwijk.)

Easy to prove:

forgeries have probability <2128

of fooling this check.

20

Multi-scalar multi

Review of asymptc

1939 Brauer (winc

~(1+1/lgb)b
additions to comp
P — nP if n < 2b

1964 Straus (joint

~ (1+ k/lgb)b

additions to comp
Pl,...,Panlp;
if n1,..., ng < 2b.

tely.

1ation

19

Pick independent uniform random
128-bit z1, 20, z3,

Check whether

(2151 + 205> + 2353 + - -)B —
z1R1 + (z1h1)A1 +
2Ry + (z20h2)As +
z3R3 + (z3h3)A3 + - - -

(If #: See 2012 Bernstein—
Doumen—Lange—QOosterwijk.)

Easy to prove:

forgeries have probability <2128

of fooling this check.

20

Multi-scalar multiplication

Review of asymptotic speed:

1939 Brauer (windows):

~ (1+1/lgb)b
additions to compute
P nP if n < 2%

1964 Straus (joint doublings

~ (1+ k/lgb)b

additions to compute
Pi,....P.—mPy+---+1
if ny,..., ng < 2b.

Pick independent uniform random
128-bit z1, 20, z3,

Check whether

(2151 + 205> + 2353 + - -)B —
z1R1 + (z1h1)A1 +
z2Ry 4 (z20h2)As +
z3R3 + (z3h3)A3 + - - -

(If #: See 2012 Bernstein—
Doumen—Lange—Oosterwijk.)

Easy to prove:

forgeries have probability <2128

of fooling this check.

20

21
Multi-scalar multiplication

Review of asymptotic speeds:

1939 Brauer (windows):

~(1+1/lgb)b
additions to compute
P nP if n < 2%

1964 Straus (joint doublings):

~ (1+ k/lgb)b

additions to compute
Pi,....P.—nmPy+- -4+ nPs
if ny,..., ng < 2b.

ependent uniform random

71,20, 23,

hether

2250 + 2353+ -+)B =
[Zlhl)Al -+
[ZQhQ)AQ -+
(z3h3)A3 + - - ;

ee 2012 Bernstein—
—Lange—Oosterwijk.)

prove:

“have probability <213

g this check.

20

Multi-scalar multiplication

Review of asymptotic speeds:

1939 Brauer (windows):

~ (1+1/lgb)b
additions to compute
P nP if n < 2%

1964 Straus (joint doublings):

~ (1+ k/lgb)b

additions to compute
P,....P.— mPy+ -+ n P
if ny,..., ng < 2b.

21

1976 Ya

~ (14
addition
P +— ni i
if ny, ...

1976 Pij

Similar
but repl.
Faster tl
if kis la

(Knuth :
as if spe

uniform random

ernstein—
osterwijk.)

yability <2128
ck.

20

Multi-scalar multiplication

Review of asymptotic speeds:

1939 Brauer (windows):

~(1+1/lgb)b
additions to compute
P nP if n < 2%

1964 Straus (joint doublings):

~ (1+ k/lgb)b

additions to compute
Pi,....P.—nmPy+- -+ nPs
if n1,..., ng < 2b.

21

1976 Yao:

~ (1+ k/lgb)b
additions to comp

1976 Pippenger:

Similar asymptotic
but replace Igb w
Faster than Straus
if k is large.

(Knuth says “gene
as if speed were ti

ndom

y—128

20

Multi-scalar multiplication

Review of asymptotic speeds:

1939 Brauer (windows):

~ (1+1/lgb)b
additions to compute
P nP if n < 2"

1964 Straus (joint doublings):

~ (1+ k/Igb)b

additions to compute
P,....P.— mPy+- 4+ n Py
if n1,..., ng < 2b.

21

1976 Yao:

~ (1+ k/lgb)b
additions to compute

1976 Pippenger:

Similar asymptotics,
but replace Ig b with Ig(kb).
Faster than Straus and Yao
if k is large.

(Knuth says “generalization’
as if speed were the same.)

Multi-scalar multiplication

Review of asymptotic speeds:

1939 Brauer (windows):

~(1+1/lgb)b
additions to compute
P nP if n < 2%

1964 Straus (joint doublings):

~ (1+ k/lgb)b

additions to compute
Pi,....P.—nmPy+- -+ n.Ps
if n1,..., ng < 2b.

21

1976 Yao:

~ (1+ k/lgb)b
additions to compute

1976 Pippenger:

Similar asymptotics,

but replace Ig b with Ig(kb).

Faster than Straus and Yao
if k is large.

(Knuth says “generalization”

as if speed were the same.)

22

alar multiplication

bf asymptotic speeds:

auer (windows):

| /lg b)b
S T0 compute

if n < 25,
aus (joint doublings):

/lg b)b

S T0 compute

P — n P+ -+ ni Py
, N < b

21

1976 Yao:

~ (1+ k/lgb)b
additions to compute
P— mP,..., nP
ifnl,...,nk<2b.

1976 Pippenger:

Similar asymptotics,

but replace Ig b with Ig(kb).
Faster than Straus and Yao
if k is large.

(Knuth says “generalization”
as if speed were the same.)

22

More ge
algorithr
£ sums ¢

~~ (min<

It all coe
Within]

ylication

btic speeds:

lows):

ute
doublings):
ute

1 + + nkPk

21

1976 Yao:

~ (1+ k/lgb)b
additions to compute
P— mP, ..., nP
ifnl,...,nk <2b.

1976 Pippenger:

Similar asymptotics,

but replace Ig b with Ig(kb).
Faster than Straus and Yao
if k is large.

(Knuth says “generalization”
as if speed were the same.)

22

More generally, Pi
algorithm comput:
£ sums of multiple

- (min{k,e} T

Je
It all coefficients a

Within 1 + € of of

Vi

21

1976 Yao:

~ (1+ k/lgb)b
additions to compute

1976 Pippenger:

Similar asymptotics,

but replace Ig b with Ig(kb).

Faster than Straus and Yao
if k is large.

(Knuth says “generalization”

as if speed were the same.)

22

More generally, Pippenger's
algorithm computes
£ sums of multiples of k inp

N (man{k,z} = |g(//(<ib)> ;

If all coefficients are below _
Within 1 4+ € of optimal.

1976 Yao:

~ (1+ k/lgb)b
additions to compute

1976 Pippenger:

Similar asymptotics,

but replace Ig b with Ig(kb).
Faster than Straus and Yao
if k is large.

(Knuth says “generalization”
as if speed were the same.)

22

More generally, Pippenger's
algorithm computes
¢ sums of multiples of k inputs.

k{
~ Ind k. | b add
(mln{ L} Ig(kéb)) adds
if all coefficients are below 2%.
Within 1 + € of optimal.

23

1976 Yao:

~ (1+ k/lgb)b
additions to compute

1976 Pippenger:

Similar asymptotics,

but replace Ig b with Ig(kb).

Faster than Straus and Yao
if k is large.

(Knuth says “generalization”

as if speed were the same.)

22

More generally, Pippenger's
algorithm computes
¢ sums of multiples of k inputs.

k{
~ In{ k | b add
(mln{ A} Ig(kéb)) adds
if all coefficients are below 2%.
Within 1 + € of optimal.

Various special cases of
Pippenger’s algorithm were
reinvented and patented by

1993 Brickell-Gordon—McCurley—
Wilson, 1995 Lim—Lee, etc.

Is that the end of the story?

23

O.

/lgb)b
S T0 compute

P,...,nkP
,nk<2b.

penger:

Isymptotics,

ace Ig b with Ig(kb).

1an Straus and Yao
rge.

says ' generalization”

ed were the same.)

22

More generally, Pippenger's
algorithm computes
£ sums of multiples of k inputs.

k{
~ ind k | b add
(mm{ A} |g(k£b)> adds
if all coefficients are below 2?.
Within 1 + € of optimal.

Various special cases of
Pippenger’s algorithm were
reinvented and patented by

1993 Brickell-Gordon—McCurley—
Wilson, 1995 Lim—Lee, etc.

Is that the end of the story?

23

Remarkz
competr
for rand
much be

ute

S

th ig(kb).

> and Yao

ralization”

1e same.)

22

More generally, Pippenger's
algorithm computes
¢ sums of multiples of k inputs.

k{
~~ ind k | b add
(mln{ A} Ig(kéb)) adds
if all coefficients are below 2?.
Within 1 + € of optimal.

Various special cases of
Pippenger’s algorithm were
reinvented and patented by

1993 Brickell-Gordon—McCurley—
Wilson, 1995 Lim—Lee, etc.

Is that the end of the story?

23

No! 1989 Bos—Co

It n1 > np > --- tl
n1P1 + no P> + n3
(m —qn2)P1 + n;
n3P3 + - - - where

Remarkably simple
competitive with |
for random choice
much better mem:

22

More generally, Pippenger's
algorithm computes
£ sums of multiples of k inputs.

. Kkl
~ (mm{k,ﬁ} " Tg(kEb)
if al

coefficients are below 2%.
Within 1 + € of optimal.

) b adds

Various special cases of
Pippenger’s algorithm were
reinvented and patented by

1993 Brickell-Gordon—McCurley—
Wilson, 1995 Lim—Lee, etc.

Is that the end of the story?

23

No! 1989 Bos—Coster:

If n1 > no > --- then

nPr+nmPo+n3P3+ - =
(m —qn2)P1 + na(qP1 + P,
n3P3 + - - - where g = Lnl/n

Remarkably simple;
competitive with Pippenger
for random choices of n;'s;
much better memory usage.

More generally, Pippenger's
algorithm computes
¢ sums of multiples of k inputs.

. Kl
~ (mln{k,é} "~ Tg(keb)
if al

coefficients are below 2%.
Within 1 + € of optimal.

) b adds

Various special cases of
Pippenger’s algorithm were
reinvented and patented by

1993 Brickell-Gordon—McCurley—
Wilson, 1995 Lim—Lee, etc.

Is that the end of the story?

23

24

No! 1989 Bos—Coster:

If n1 > no > --- then
mP1+nmP>+n3Ps+ - =
(m —qn)PL+ m(qPL + P) +
n3P; + - - - where g = {nl/ngj.

Remarkably simple;
competitive with Pippenger
for random choices of n;'s;
much better memory usage.

nerally, Pippenger’s
n computes
f multiples of k inputs.

Kkl

lg(kéb)
fficients are below 2°.

K, £}

) b adds

|+ ¢ of optimal.

special cases of

er's algorithm were

ed and patented by
ickell-Gordon—McCurley—

1995 Lim—Lee, etc.
he end of the story?

23

No! 1989 Bos—Coster:

If n1 > no > --- then
mP1+nmP>+n3Ps+ - =
(n —qm)PL+ m(qPL + P) +
n3P3 + - - - where g = Lnl/ngj.

Remarkably simple;
competitive with Pippenger
for random choices of n;'s;
much better memory usage.

24

Example

0001000
0000100
1001011
0100100
0010011
0000000
0000000

Goal: G
300P, 1

ppenger’s

S

s of k inputs.
kY

(keb)

re below 2%.

) b adds

ytimal.

ses of

thm were
tented by
lon—McCurley—
-Lee, etc.

the story?

23

No! 1989 Bos—Coster:

If n1 > no > --- then
mP1+nmP>+n3P3+ - =
(m —qn)PL+ m(qPL + P) +
n3P; + - - - where g = {nl/ngj.

Remarkably simple;
competitive with Pippenger
for random choices of n;'s;
much better memory usage.

24

Example of Bos—C

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 3z
300P, 146P, 77P,

uts.

adds

irley—

23

No! 1989 Bos—Coster:

If n1 > no > --- then
mP;1+nmP>+n3Ps+ - =
(n —qm)PL+ m(qPL + P) +
n3P3 + - - - where g = Lnl/ngj.

Remarkably simple;
competitive with Pippenger
for random choices of n;'s;
much better memory usage.

24

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

No! 1989 Bos—Coster:

If n1 > no > --- then
mP1+nmP>+n3P3+ - =
(m —qn2)PL+ m(qPL + P) +
n3P; + - - - where g = {nl/ngj.

Remarkably simple;
competitive with Pippenger
for random choices of n;'s;
much better memory usage.

24

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

O Bos—Coster:

1 > - - - then
*72P2+n3P3+---:
2)P1+ nm(qP1 + P) +
.- where q — Lnl/ngj.

\bly simple;

tive with Pippenger
om choices of n;'s;
tter memory usage.

24

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce

0001000
0000100
0100110
0100100
0010011
0000000
0000000

Goal: C
154P, 1.
Plus one

add 146
obtainin

ster:

en
P3 4 0=
(gPL + P2) +
q = |n1/n2].
’Ippenger

s of n;'s;

ory usage.

24

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest rov

000100000 = 32
000010000 = 16
010011010 = 154
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 3
154P, 146P, 77P,
Plus one extra adc
add 146P into 15¢
obtaining 300P.

24

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000100000 = 32
000010000 = 16
010011010 = 154 <
010010010 = 146
001001101 = 77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
154P, 146P, 77P, 2P, 1P.
Plus one extra addition:
add 146P into 154P,
obtaining 300P.

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000100000 = 32
000010000 = 16
010011010 = 154 <«
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,

154P, 146P, 77P, 2P, 1P.

Plus one extra addition:
add 146P into 154P,
obtaining 300P.

26

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000100000 = 32
000010000 = 16
000001000 = 3 <
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

plus 2 additions.

26

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000100000 = 32
000010000 = 16
000001000 = 8
001000101 = 69 <+
001001101 =77
000000010 = 2
000000001 =1

plus 3 additions.

26

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000100000 = 32
000010000 = 16
000001000 = 8
001000101 = 69
000001000 = 38 <
000000010 = 2
000000001 =1

plus 4 additions.

26

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000100000 = 32
000010000 = 16
000001000 = 8
000100101 = 37 <+
000001000 = 8
000000010 = 2
000000001 =1

plus 5 additions.

26

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000100000 = 32
000010000 = 16
000001000 = 8
000000101 =5 «+
000001000 = 8
000000010 = 2
000000001 =1

plus 6 additions.

26

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

26
Reduce largest row:

000010000 = 16 <«
000010000 = 16
000001000 = 8
000000101 =5
000001000 = 8
000000010 = 2
000000001 =1

plus 7 additions.

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

26
Reduce largest row:

000000000 = 0
000010000 = 16
000001000 = 8
000000101 =5
000001000 = 8
000000010 = 2
000000001 =1

plus 7 additions.

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

26
Reduce largest row:

000000000 = 0
000001000 = 8 <
000001000 = 8
000000101 =5
000001000 = 8
000000010 = 2
000000001 =1

plus 8 additions.

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

26
Reduce largest row:

000000000 = 0
000000000 = 0 «+
000001000 = 8
000000101 =5
000001000 = 8
000000010 = 2
000000001 =1

plus 8 additions.

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000000000 = 0
000000000 = 0
000000000 = 0 <«
000000101 =5
000001000 = 8
000000010 = 2
000000001 =1

plus 8 additions.

26

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000000000 = 0
000000000 = 0
000000000 = 0
000000101 =5
000000011 = 3 <+
000000010 = 2
000000001 =1

plus 9 additions.

26

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000000000 = 0
000000000 = 0
000000000 = 0
000000010 = 2 <+
000000011 =3
000000010 = 2
000000001 =1

plus 10 additions.

26

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000000000 = 0
000000000 = 0
000000000 = 0
000000010 = 2
000000001 =1 <
000000010 = 2
000000001 =1

plus 11 additions.

26

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000000000 =0
000000000 =0
000000000 = 0
000000000 = 0 <«
000000001 =1
000000010 = 2
000000001 =1

plus 11 additions.

26

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

26
Reduce largest row:

000000000 = 0
000000000 = 0
000000000 = 0
000000000 =0
000000001 =1
000000001 =1 <
000000001 =1

plus 12 additions.

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000000000 = 0
000000000 = 0
000000000 = 0
000000000 =0
000000000 = 0 <«
000000001 =1
000000001 =1

plus 12 additions.

26

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

26
Reduce largest row:

000000000 = 0
000000000 = 0
000000000 = 0
000000000 =0
000000000 = 0
000000000 = 0 <«
000000001 =1

plus 12 additions.

Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

26
Reduce largest row:

000000000 = 0
000000000 = 0
000000000 = 0
000000000 =0
000000000 = 0
000000000 = 0
000000000 = 0 <«

plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,
16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,
low two-operand complexity.

. of Bos—Coster:

00 = 32
00 = 16
00 = 300
10 = 146
01 =77
10 =2
01 =1

ompute 32P, 16P,

AP, 77P, 2P, 1P.

25

26
Reduce largest row:

000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0 «

plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,
16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,
low two-operand complexity.

Revised
32P; +
(1P +

First cor
and ther
32P; +
(P54

Same sc

Ed2551¢
verify be
about tv
verifying

oster:

P, 16P,
2P, 1P.

25

26
Reduce largest row:

000000000 = 0
000000000 = 0
000000000 =0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0 <«

plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,
16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,
low two-operand complexity.

Revised goal: Con
32P; + 16, + 30
(1P 4+ 2P + 1F%

First compute P, |
and then recursive
32P; + 16~ + 15
(TP 4+ 2P +1F;

Same scalars show

Ed25519 batch ve
verify batch of 64
about twice as fas
verifying each sep:

25

26
Reduce largest row:

000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0 «

plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,
16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,
low two-operand complexity.

Revised goal: Compute
32P; + 16P> + 300P3 + 14¢
(1P +2FP; + 1F%.

First compute P, = Py + P3
and then recursively comput
32P; 4+ 16P, + 154 P5 + 14¢
(TP 4+ 2Ps + 1F5.

Same scalars show up as be

Ed25519 batch verification:
verify batch of 64 signatures
about twice as fast as
verifying each separately.

Reduce largest row:

000000000 = 0
000000000 = 0
000000000 =0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0 <«

plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,
16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,
low two-operand complexity.

26

27

Revised goal: Compute
32P1 +16P, + 300P; + 146FP, +
(1P +2FP; + 1F~.

First c
and th
32P; -

ompute P, = Py + P
en recursively compute
- 16P; + 154P5 + 146P; +

77Ps + 2Ps + 1P;.

Same scalars show up as before.

Ed255
verify
about

19 batch verification:
batch of 64 signatures
twice as fast as

verifying each separately.

