Modern ECC signatures

2011 Bernstein—Duif-Lange—
Schwabe—Yang:
Ed25519 signature scheme =

EdDSA using conservative
Curve25519 elliptic curve.
https://ed25519.cr.yp.to

32-byte public keys,

64-byte signatures,

~2125-8 security level.

Deployed in SSH, Signal,
many more applications:
https://ianix.com/pub
/ed25519-deployment . html

Many papers have explored
Curve25519/Ed25519 speed.

e.g. 2015 Chou software:
on Intel Sandy Bridge (2011),

57164 cycles for keygen,

63526 cycles for signature,
205741 cycles for verification,
159128 cycles for ECDH.

Compare to, e.g., 2000 Brown—
Hankerson—Lopez—Menezes:

on Intel Pentium Il (1997),
1920000 cycles for ECDH

using NIST P-256 curve.
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Does Ac < Bp prove that
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No! Beware change in CPU.

Maybe Ac > B¢; Ap > Bp;
C does more work per cycle than
D, thanks to CPU manufacturer.

Sometimes people measure cost
in seconds instead of cycles.
Then they benefit

from more work per cycle and
from more cycles per second.
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Single-scalar multiplication

Fundamental ECC operation:
n, P+— nP.

Input n Is integer In, e.g.,
{0,1,...,2%% -1},

Input P Is point on elliptic curve.

Will build n, P — nP

using additions P,Q — P + @
and subtractions P, Q) — P — Q.

Later will also look at
double-scalar multiplication
m, P n Q — mP -+ nQ.

| eft-to-right binar

def scalarmult(n
if n == 0: ret
if n == 1: ret
R = scalarmult
R=R+R
if n % 2: R =

return R
Two Python notes
e n//2 in Python

e Recursion depth
See sys.setrec
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See sys.setrecursionl:
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e.g. 20P =2 -10P. Sb —1 doublings and

<b — 1 additions of P.

o2 (n ; ! P) +Pitnel+ 22 Example of worst case:

31P = 2(2(2(2P+P)+P)+P)+P.
31 = (11111)9; b =5;

4 doublings; 4 more additions.

e.g. 21P =2 .10P + P.

Base cases In recursion:
OP = 0. For Edwards: 0 = (0, 1). Average case is better: e.g.

1P = P. Could omit this case. 35P = 2(2(2(2(2P))) + P) + P.
35 = (100011)5; b = 6;

Assuming n > 0 for simplicity. 5 doublings: 2 additions

Otherwise use nP = —(—n)P.




ursion computes nP as

’) if n e 2Z.
)P =2-10P.

-1
)—P)—I—Pianl—l—2Z.

P=2.10P + P.

5eS 1IN recursion:
For Edwards: 0 = (0, 1).
- Could omit this case.

g n > 0 for simplicity.
se use nP = —(—n)P.

10
If 0 < n < 2P then

this algorithm uses

<2b — 2 additions: specifically
<b — 1 doublings and

<b — 1 additions of P.

Example of worst case:

31P = 2(2(2(2P+P)+P)+P)+P.
31 = (11111)9; b =5;

4 doublings; 4 more additions.

Average case Is better: e.g.
35P = 2(2(2(2(2P))) + P) + P.
35 = (100011)o; b = 6;

5 doublings; 2 additions.

retur;



1putes nP as

Z
)P

Pifnel+ 22

)P + P.

rsion:

rds: 0 =(0,1).

nit this case.

or simplicity.
= —(—n)P.

10
If 0 < n < 2P then

this algorithm uses

<2b — 2 additions: specifically
<b — 1 doublings and

<b — 1 additions of P.

Example of worst case:

31P = 2(2(2(2P+P)+P)+P)+P.
31 = (11111)9; b =5;

4 doublings; 4 more additions.

Average case Is better: e.g.
35P = 2(2(2(2(2P))) + P) + P.
35 = (100011)5; b = 6;

5 doublings; 2 additions.

Non-adjacent forn

def scalarmult(n

1if n == 0: ret
1f n == 1: ret
if n % 4 ==

R = scalarmu
R=R+R
return (R +
if n 7/, 4 == 3:
R = scalarmu
R=R+R
return (R +
R = scalarmult

return R + R



- as

If 0 < n < 2" then

this algorithm uses

<2b — 2 additions: specifically
<b — 1 doublings and

<b — 1 additions of P.

Example of worst case:

31P = 2(2(2(2P+P)+P)+P)+P.

31 = (11111)9; b =5;
4 doublings; 4 more additions.

Average case Is better: e.g.
35P = 2(2(2(2(2P))) + P) + P.
35 = (100011)o; b = 6;

5 doublings; 2 additions.

10

Non-adjacent form (NAF)

def scalarmult(n,P):

if n == 0: return O

if n == 1: return P

if n % 4 ==
R = scalarmult((n-1)/
R =R+ R
return (R + R) + P

if n 7/, 4 == 3:
R = scalarmult((n+1)/
R =R+ R
return (R + R) - P

R = scalarmult(n/2,P)

return R + R



If 0 < n < 2" then

this algorithm uses

<2b — 2 additions: specifically
<b — 1 doublings and

<b — 1 additions of P.

Example of worst case:

31P = 2(2(2(2P+P)+P)+P)+P.

31 = (11111)9; b =5;
4 doublings; 4 more additions.

Average case Is better: e.g.
35P = 2(2(2(2(2P))) + P) + P.
35 = (100011)5; b = 6;

5 doublings; 2 additions.

10

Non-adjacent form (NAF)

def scalarmult(n,P):
if n == 0: return O
if n == 1: return P
if n % 4 ==
R = scalarmult((n-1)/4,P)
R=R+R
return (R + R) + P
if n 7/, 4 == 3:
R = scalarmult((n+1)/4,P)
R =R+ R
return (R + R) - P
R = scalarmult(n/2,P)

return R + R

11



< 2P then

rithm uses

additions: specifically
doublings and
additions of P.

 of worst case:

(2(2(2P+P)+P)+P)+P.

[111)9; b = 5;
ngs; 4 more additions.

case Is better: e.g.
(2(2(2(2P))) + P) + P.
)0011)o; b = 6;

ngs; 2 additions.

10

Non-adjacent form (NAF)

def scalarmult(n,P):

if n == 0: return O

if n == 1: return P

if n % 4 ==
R = scalarmult((n-1)/4,P)
R =R+ R
return (R + R) + P

if n 7/, 4 == 3:
R = scalarmult((n+1)/4,P)
R =R+ R
return (R + R) - P

R = scalarmult(n/2,P)

return R + R

11

Subtract

IS as che
NAF tal

31P =
31 = (1

35P =
35 = (1

“Non-aa
separate

Worst c:
plus ~b
On aver:
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. specifically
and
of P.

CasSe.

P)+P)+P)+P.

re additions.

tter: e.g.

))) + P) + P.
) = 0;

Itions.

10

Non-adjacent form (NAF)

def scalarmult(n,P):

if n == 0: return O

if n == 1: return P

if n % 4 ==
R = scalarmult((n-1)/4,P)
R =R+ R
return (R + R) + P

if n 7/, 4 == 3:
R = scalarmult((n+1)/4,P)
R =R+ R
return (R + R) - P

R = scalarmult(n/2,P)

return R + R

11

Subtraction on t

¢

IS as cheap as ac

d

NAF takes advant

31P = 2(2(2(2(2F

31 = (100001)2;

1

35P = 2(2(2(2(2F

35 = (100101)2.

“"Non-adjacent”: -

separated by >2

Worst case: ~b
plus ~b/2 additi

C

d
O

On average ~b/3



1S.

10

Non-adjacent form (NAF)

def scalarmult(n,P):
if n == 0: return O

. return P

if n % 4 ==
R = scalarmult((n-1)/4,P)
R =R+ R
return (R + R) + P

if n 4 4 == 3:
R = scalarmult((n+1)/4,P)
R =R+ R
return (R + R) - P

R =

return R + R

1f n ==

scalarmult(n/2,P)

11

Subtraction on the curve

Is as cheap as addition.
NAF takes advantage of thi:

31P = 2(2(2(2(2P)))) — P.
31 = (100001),; 1 denotes -

35P = 2(2(2(2(2P)) + P)) -
35::(100101)2.

“Non-adjacent”: =P ops ar
separated by >2 doublings.

Worst case: ~b doublings
plus ~b/2 additions of +P.
On average =b/3 additions.




11
Non-adjacent form (NAF) Subtraction on the curve

Is as cheap as addition.

def scalarmult(n,P): |
NAF takes advantage of this.

if n == 0: return O

if n == 1: return P 31P = 2(2(2(2(2P)))) — P.

if n % 4 == 1: 31 = (100001)5; 1 denotes —1.
R = scalarmult((n-1)/4,P) 35P — 2(2(2(2(2P)) + P)) — P.
AR 35 = (100101),.
return (R + R) + P

ifn% 4 == 3: “Non-adjacent”: £P ops are
R = scalarmult((n+1)/4,P) separated by >2 doublings.
R =R+ R

Worst case: ~b doublings

return (R + R) - P plus &~b/2 additions of +P.
R = scalarmult(n/2,P)

return R + R

On average ab/3 additions.




acent form (NAF)

larmult(n,P):
== (0: return O
== 1: return P
h 4 ==

scalarmult((n-1)/4,P)
R + R

uirn (R + R) + P

h 4 == 3:
scalarmult((n+1)/4,P)
R + R

irn (R + R) - P
calarmult(n/2,P)

n R + R

11

Subtraction on the curve

Is as cheap as addition.
NAF takes advantage of this.

31P = 2(2(2(2(2P)))) — P.
31 = (100001)5; 1 denotes —1.

35P = 2(2(2(2(2P)) + P)) — P.
35::(100101)2.

"Non-adjacent”: =P ops are
separated by >2 doublings.

Worst case: ~b doublings
plus ~b/2 additions of +P.
On average ~b/3 additions.

12

Width-2

def win
1f n -
1f n -

1f n -

.
Il

ret



1 (NAF)

,P):
urn O

urn P

1t ((n-1)/4,P)

R) + P

1t ((n+1)/4,P)

R) - P
(n/2,P)

11

Subtraction on the curve

Is as cheap as addition.
NAF takes advantage of this.

31P = 2(2(2(2(2P)))) — P.
31 = (100001)5; 1 denotes —1.

35P = 2(2(2(2(2P)) + P)) — P.
35 = (100101)2.

“"Non-adjacent”: =P ops are
separated by >2 doublings.

Worst case: ~b doublings
plus ~b/2 additions of +P.
On average &b/3 additions.

12

Width-2 signed sli

def window2(n,P,
if n == 0: ret
if n == 1: ret
if n == 3: ret
if n 7 8 ==
R = window2(
R =R+ R
R =R+ R
return (R +
if n 7/, 8 == 3:
R = window?2(
R=R+R
R=R+R

return (R +



4,P)

4,P)

11

Subtraction on t

N€ CUrve

IS as cheap as ac

dition.

NAF takes advantage of this.

31P = 2(2(2(2(2P)))) — P.

31 = (100001)5,;

1 denotes —1.

35P = 2(2(2(2(2P)) + P)) — P.

35::(100101)2.

“"Non-adjacent”:
separated by >2

Worst case: ~b
plus ~b/2 additi

+P ops are
doublings.

doublings

ons of +P.

On average =~b/3 additions.

12

Width-2 signed sliding wind

def window2(n,P,P3):
if n == 0: return O
if
if
if

== 1: return P
== 3: return P3
h 8 ==
R = window2((n-1)/8,F
R =R+ R
R =R+ R
return (R + R) + P
if n 7/, 8 == 3:
R = window2((n-3)/8,F
R =R+ R
R=R+R
return (R + R) + P3

B B B



Subtraction on t

N€ CUrve

IS as cheap as ac

NAF takes advantage of this.

dition.

31P = 2(2(2(2(2P)))) — P.

31 = (100001)5; 1 denotes —1.
35P — 2(2(2(2(2P)) + P)) — P.

35 = (100101)2.

“Non-adjacent”:
separated by >2

Worst case: ~b
plus ~b/2 additi

P ops are

doublings.

doublings

ons of +P.

On average &b/3 additions.

12

Width-2 signed sliding windows

def window2(n,P,P3):

if n == 0: return O
if n == 1: return P
if n == 3: return P3
if n 7, 8 ==
R = window2((n-1)/8,P,P3)
R=R+R
R=R+R
return (R + R) + P
if n 7/, 8 == 3:
R = window2((n-3)/8,P,P3)
R=R+R
R=R+R

return (R + R) + P3

13



lon on t

N€ CUrve

ap as ac

dition.

es advantage of this.

(2(2(2(2P)))) — P.

)0001)5; 1 denotes —1.
(2(2(2(2P)) + P)) — P.

)0101),.

jacent’:
d by >2

3se: ~b
/2 additi

+ P ops are
doublings.

doublings

ons of +P.

age ~b/3 additions.

12

Width-2 signed sliding windows

def window2(n,P,P3):

if n == 0: return O
if n == 1: return P
if n == 3: return P3
if n 7 8 ==
R = window2((n-1)/8,P,P3)
R=R+R
R=R+R
return (R + R) + P
if n 7/, 8 == 3:
R = window2((n-3)/8,P,P3)
R=R+R
R=R+R

return (R + R) + P3

13

retur:

def sca.

retur;



> curve
ition.
age of this.

') — P.

"denotes —1.

) + P)) — P.

+P ops are
oublings.

oublings
ns Of +P.
additions.

12

Width-2 signed sliding windows

def window2(n,P,P3):

if n == 0: return O
if n == 1: return P
if n == 3: return P3
if n 7, 8 ==
R = window2((n-1)/8,P,P3)
R=R+R
R=R+R
return (R + R) + P
if n 7/, 8 == 3:
R = window2((n-3)/8,P,P3)
R=R+R
R=R+R

return (R + R) + P3

13

if n /, 8 == b5:
R = window2(
R =R+ R
R =R+R
return (R +
if n % 8 == T7:
R = window2(
R=R+R
R =R+ R

return (R +
R = window2(n/

return R + R

def scalarmult(n

return window?2



V1

12

Width-2 signed sliding windows

def window2(n,P,P3):

if n == 0: return O

if n == 1: return P

if n == 3: return P3

if n /) 8 ==
R = window2((n-1)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) + P

if n 7/, 8 == 3:
R = window2((n-3)/8,P,P3)
R=R+R
R=R+R
return (R + R) + P3

13

if n /, 8 == b:
R = window2((n+3)/8,F
R =R+ R
R =R+ R
return (R + R) - P3
ifn% 8 ==7:
R = window2((n+1)/8,F
R =R+ R
R =R+ R

return (R + R) - P
R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+



Width-2 signed sliding windows

def window2(n,P,P3):

if n == 0: return O
if n == 1: return P
if n == 3: return P3
if n 7, 8 ==
R = window2((n-1)/8,P,P3)
R=R+R
R=R+R
return (R + R) + P
if n 7/, 8 == 3:
R = window2((n-3)/8,P,P3)
R=R+R
R=R+R

return (R + R) + P3

13

14

if n /, 8 == b5:
R = window2((n+3)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) - P3
if n % 8 == T7:
R = window2((n+1)/8,P,P3)
R=R+R
R =R+ R

return (R + R) - P
R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+P)



signed sliding windows

jow2(n,P,P3) :
== 0:
== 1:
== 3:
h 8 ==
window2((n-1)/8,P,P3)
R + R

R + R

uirn (R + R) + P

h 8 == 3:
window2((n-3)/8,P,P3)
R + R

R + R

irn (R + R) + P3

return O
return P

return P3

13

if n /, 8 == b:
R = window2((n+3)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) - P3
if n % 8 == T7:
R = window2((n+1)/8,P,P3)
R =R+ R
R =R+ R

return (R + R) - P
R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+P)

14

Worst c:
~b/3 ac
On aver.



ding windows

P3):
urn O
urn P

urn P3

(n—l)/83P3P3)

R) + P

(n-3)/8,P,P3)

R) + P3

13

if n /, 8 == b5:
R = window2((n+3)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) - P3
if n % 8 == T7:
R = window2((n+1)/8,P,P3)
R =R+ R
R =R+ R

return (R + R) - P
R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+P)

14

Worst case: =b d
~b/3 additions of
On average ~b/4



OWS

,P3)

,P3)

13

if n ) 8 ==
R = window2((n+3)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) - P3
if n 7/, 8 == T7:
R = window2((n+1)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) - P
R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+P)

14

Worst case: ~b doublings p
~b/3 additions of £P or +.
On average ~b/4 additions.




if n /, 8 == b5:
R = window2((n+3)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) - P3
if n% 8 == T7:
R = window2((n+1)/8,P,P3)
R =R+ R
R =R+ R

return (R + R) - P
R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+P)

14

Worst case: ~b doublings plus
%b/3 additions of £P or £3P.
On average ~b/4 additions.

15



if n /, 8 == b5:
R = window2((n+3)/8,P,P3)
R =R+ R
R =R+ R

return (R + R) - P3
if n % 8 == T7:
R = window2((n+1)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) - P
R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+P)

14

15
Worst case: ~b doublings plus

%b/3 additions of =P or +3P.
On average ~b/4 additions.

Width-3 signed sliding windows:
Precompute P, 3P, 5P, 7P.
On average ~b/5 additions.



if n /, 8 == b5:
R = window2((n+3)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) - P3
if n % 8 == T7:
R = window2((n+1)/8,P,P3)
R =R+ R
R =R+ R

return (R + R) - P
R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+P)

14

15

Worst case: ~b doublings plus

~b/3 additions of -

-P or -

-3P.

On average ~b/4 additions.

Width-3 signed sliding windows:
Precompute P, 3P, 5P, 7P.
On average ~b/5 additions.

Width 4: Precompute
P,3P,5P,7P,9P,11P, 13P, 15P.
On average ~b/6 additions.



if n /, 8 == b5:
R = window2((n+3)/8,P,P3)
R =R+ R
R =R+ R
return (R + R) - P3
if n % 8 == T7:
R = window2((n+1)/8,P,P3)
R =R+ R
R =R+ R

return (R + R) - P
R = window2(n/2,P,P3)

return R + R

def scalarmult(n,P):

return window2(n,P,P+P+P)

14

15
Worst case: ~b doublings plus

%b/3 additions of =P or +3P.
On average ~b/4 additions.

Width-3 signed sliding windows:
Precompute P, 3P, 5P, 7P.
On average ~b/5 additions.

Width 4: Precompute
P,3P,5P,7P,9P,11P, 13P, 15P.
On average ~b/6 additions.

Cost of precomputation
eventually outweighs savings.
Optimal: ~b doublings plus
roughly b/lg b additions.



h 8 == 5:
window2((n+3)/8,P,P3)
R + R
R + R

irn (R + R) - P3

h 8 == T:
window2((n+1)/8,P,P3)
R + R
R + R

uirn (R + R) - P

indow2(n/2,P,P3)

n R + R

larmult(n,P):
n window2(n,P,P+P+P)

14

Worst case: =b doublings plus
%b/3 additions of =P or +3P.
On average ~b/4 additions.

Width-3 signed sliding windows:

Precompute P, 3P, 5P, 7P.
On average =b/5 additions.

Width 4: Precompute

P,3P,5P, 7P,9P 11P,13P, 15P.

On average ~b/6 additions.

Cost of precomputation
eventually outweighs savings.
Optimal: =b doublings plus
roughly b/lg b additions.

15

Double-

Want to

m, P, n,

e.g. verl
by comg
computl
checking

Obvious
Comput

e.g. b=
~250 dc

~250 dc
~bH(0 adc

~bH(0 adc



(n+3)/8,P,P3)

R) - P3

(n+1)/8,P,P3)

R) - P
2,P,P3)

,P):
(n,P,P+P+P)

14

Worst case: ~b doublings plus
%b/3 additions of =P or £3P.
On average ~b/4 additions.

Width-3 signed sliding windows:

Precompute P, 3P, 5P, 7P.
On average ~b/5 additions.

Width 4: Precompute

P,3P,5P, 7P, 9P 11P, 13P, 15P.

On average ~b/6 additions.

Cost of precomputation
eventually outweighs savings.
Optimal: =b doublings plus
roughly b/lg b additions.

15

Double-scalar mul

Want to quickly c
m, P n Q— mP -

e.g. verify signatul

by computing h =

computing SB — |

checking whether

Obvious approach

Compute mP; cor

e.g. b = 2506:

~250 ¢

~250 doub

~b(0 ac¢

~b(0 ac¢

oubp

C

C

INgs -

C

INgs -

C

itions for

itions for



14

Worst case: =b doublings plus
%b/3 additions of =P or +3P.
On average ~b/4 additions.

Width-3 signed sliding windows:

Precompute P, 3P, 5P, 7P.
On average =~b/5 additions.

Width 4: Precompute

P,3P,5P, 7P,9P 11P, 13P, 15P.

On average ~b/6 additions.

Cost of precomputation
eventually outweighs savings.
Optimal: =b doublings plus
roughly b/lg b additions.

15

Double-scalar multiplication

Want to quickly compute
m, P n Q— mP 4+ nQ.

e.g. verify signature (R, S)
by computing h= H(R, M),
computing SB — hA,
checking whether R = SB -

Obvious approach:

Compute mP; compute nQ:;

e.g. b = 256:

~25b0 ¢

~250 doub

~b(0 ad

~b(0 ad

oub

C

C

ings for mP,
ings for nQ,

itions for mP,

itions for n@.



Worst case: ~b doublings plus
%b/3 additions of =P or £3P.
On average ~b/4 additions.

Width-3 signed sliding windows:

Precompute P, 3P, 5P, 7P.
On average ~b/5 additions.

Width 4: Precompute

P,3P,5P, 7P, 9P 11P,13P, 15P.

On average ~b/6 additions.

Cost of precomputation
eventually outweighs savings.
Optimal: =b doublings plus
roughly b/lg b additions.

15

Double-scalar multiplication

Want to quickly compute
m, P n Q— mP 4+ nQ.

e.g. verify signature (R, S)
by computing h = H(R, M),
computing SB — hA,

checking whether R = SB — hA.

Obvious approach:
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return scalarmult(m,F
R = scalarmult2(m//2,P,
R =R+ R

ifm?% 2: R=R + P
ifnd 2: R=R + Q
return R



Double-scalar multiplication

Want to quickly compute
m, P,.n Q— mP 4+ nQ.
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return scalarmult(m,P)

R = scalarmult2(m//2,P,n//2,Q)

R =R+ R
ifm% 2: R
ifn% 2: R

return R

R +P
R + Q

17

For example: mer;
35P = 2(2(2(2(2F
31Q = 2(2(2(2Q+
into 35P 4+ 31Q =
2(2(2(2(2P+Q)+

P

Q.

~b doublings (me

~b/2 ac
~b/2 ac

ditions of

ditions of

Combine idea with
~256 doublings fc

~b(0 ac

~b(0 ac¢

C

C

Itions usit
1'tions usit



16 17
Joint doublings For example: merge
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need to be confide
51B = Ry + h1Aq
5B =Ry + hhAs
53B = R3 + h3Aj3
etc.

Obvious approach
Check each equati



17

For example: merge

35P = 2(2(2(2(2P))) + P) + P,
31Q = 2(2(2(2Q+Q)+Q)+Q)+Q
into 35P + 31Q =
2(2(2(2(2P+Q)+Q)+Q)+P+Q)

P

Q.

~b doublings (merged!),

~b/2 ac
~b/2 ac

ditions of P,
ditions of Q.

Combine idea with windows: e.g.,
~256 doublings for b = 256,

~b(0 ac

~50 ad

C

C

itions using P,
itions using Q.

Batch verification

Verifying many signatures:
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Obvious approach:
Check each equation separately.
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need to be confident that
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53B = R3 + h3As3,

etc.

Obvious approach:
Check each equation separately.

Much faster approach:
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. Kkl
~ (mm{k,ﬁ} " Tg(kEb)
if al

coefficients are below 2%.
Within 1 + € of optimal.

) b adds

Various special cases of
Pippenger’s algorithm were
reinvented and patented by

1993 Brickell-Gordon—McCurley—
Wilson, 1995 Lim—Lee, etc.

Is that the end of the story?
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No! 1989 Bos—Coster:

If n1 > no > --- then

nPr+nmPo+n3P3+ - =
(m —qn2)P1 + na(qP1 + P,
n3P3 + - - - where g = Lnl/n

Remarkably simple;
competitive with Pippenger
for random choices of n;'s;
much better memory usage.
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No! 1989 Bos—Coster:

If n1 > no > --- then
mP1+nmP>+n3Ps+ - =
(m —qn)PL+ m(qPL + P) +
n3P; + - - - where g = {nl/ngj.

Remarkably simple;
competitive with Pippenger
for random choices of n;'s;
much better memory usage.
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If n1 > no > --- then
mP1+nmP>+n3Ps+ - =
(n —qm)PL+ m(qPL + P) +
n3P3 + - - - where g = Lnl/ngj.

Remarkably simple;
competitive with Pippenger
for random choices of n;'s;
much better memory usage.
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Example
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0000100
1001011
0100100
0010011
0000000
0000000
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for random choices of n;'s;
much better memory usage.
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Example of Bos—C

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 3z
300P, 146P, 77P,
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If n1 > no > --- then
mP;1+nmP>+n3Ps+ - =
(n —qm)PL+ m(qPL + P) +
n3P3 + - - - where g = Lnl/ngj.

Remarkably simple;
competitive with Pippenger
for random choices of n;'s;
much better memory usage.
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Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.
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mP1+nmP>+n3P3+ - =
(m —qn2)PL+ m(qPL + P) +
n3P; + - - - where g = {nl/ngj.

Remarkably simple;
competitive with Pippenger
for random choices of n;'s;
much better memory usage.
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Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.
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300P, 146P, 77P, 2P, 1P.
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Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest rov

000100000 = 32
000010000 = 16
010011010 = 154
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 3
154P, 146P, 77P,
Plus one extra adc
add 146P into 15¢
obtaining 300P.
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Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000100000 = 32
000010000 = 16
010011010 = 154 <
010010010 = 146
001001101 = 77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
154P, 146P, 77P, 2P, 1P.
Plus one extra addition:
add 146P into 154P,
obtaining 300P.



Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000100000 = 32
000010000 = 16
010011010 = 154 <«
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,

154P, 146P, 77P, 2P, 1P.

Plus one extra addition:
add 146P into 154P,
obtaining 300P.
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Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000100000 = 32
000010000 = 16
000001000 = 3 <
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

plus 2 additions.
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Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000100000 = 32
000010000 = 16
000001000 = 8
001000101 = 69 <+
001001101 =77
000000010 = 2
000000001 =1

plus 3 additions.
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Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000100000 = 32
000010000 = 16
000001000 = 8
001000101 = 69
000001000 = 38 <
000000010 = 2
000000001 =1

plus 4 additions.
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Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000100000 = 32
000010000 = 16
000001000 = 8
000100101 = 37 <+
000001000 = 8
000000010 = 2
000000001 =1

plus 5 additions.
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Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000100000 = 32
000010000 = 16
000001000 = 8
000000101 =5 «+
000001000 = 8
000000010 = 2
000000001 =1

plus 6 additions.
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Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

26
Reduce largest row:

000010000 = 16 <«
000010000 = 16
000001000 = 8
000000101 =5
000001000 = 8
000000010 = 2
000000001 =1

plus 7 additions.



Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

26
Reduce largest row:

000000000 = 0
000010000 = 16
000001000 = 8
000000101 =5
000001000 = 8
000000010 = 2
000000001 =1

plus 7 additions.



Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

26
Reduce largest row:

000000000 = 0
000001000 = 8 <
000001000 = 8
000000101 =5
000001000 = 8
000000010 = 2
000000001 =1

plus 8 additions.



Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

26
Reduce largest row:

000000000 = 0
000000000 = 0 «+
000001000 = 8
000000101 =5
000001000 = 8
000000010 = 2
000000001 =1

plus 8 additions.
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000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:
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000000000 = 0
000000000 = 0 <«
000000101 =5
000001000 = 8
000000010 = 2
000000001 =1

plus 8 additions.
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Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000000000 = 0
000000000 = 0
000000000 = 0
000000101 =5
000000011 = 3 <+
000000010 = 2
000000001 =1

plus 9 additions.
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Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000000000 = 0
000000000 = 0
000000000 = 0
000000010 = 2 <+
000000011 =3
000000010 = 2
000000001 =1

plus 10 additions.
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Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000000000 = 0
000000000 = 0
000000000 = 0
000000010 = 2
000000001 =1 <
000000010 = 2
000000001 =1

plus 11 additions.
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Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

Reduce largest row:

000000000 =0
000000000 =0
000000000 = 0
000000000 = 0 <«
000000001 =1
000000010 = 2
000000001 =1

plus 11 additions.

26



Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

26
Reduce largest row:

000000000 = 0
000000000 = 0
000000000 = 0
000000000 =0
000000001 =1
000000001 =1 <
000000001 =1

plus 12 additions.
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Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.
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000000000 = 0
000000000 = 0
000000000 = 0
000000000 =0
000000000 = 0
000000000 = 0 <«
000000001 =1

plus 12 additions.



Example of Bos—Coster:

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32P, 16P,
300P, 146P, 77P, 2P, 1P.

25

26
Reduce largest row:

000000000 = 0
000000000 = 0
000000000 = 0
000000000 =0
000000000 = 0
000000000 = 0
000000000 = 0 <«

plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,
16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,
low two-operand complexity.
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00 = 32
00 = 16
00 = 300
10 = 146
01 =77
10 =2
01 =1

ompute 32P, 16P,

AP, 77P, 2P, 1P.
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000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0 «

plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,
16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,
low two-operand complexity.
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P, 16P,
2P, 1P.
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Reduce largest row:

000000000 = 0
000000000 = 0
000000000 =0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0 <«

plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,
16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,
low two-operand complexity.

Revised goal: Con
32P; + 16, + 30
(1P 4+ 2P + 1F%

First compute P, |
and then recursive
32P; + 16~ + 15
(TP 4+ 2P +1F;

Same scalars show

Ed25519 batch ve
verify batch of 64
about twice as fas
verifying each sep:
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Reduce largest row:

000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0 «

plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,
16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,
low two-operand complexity.

Revised goal: Compute
32P; + 16P> + 300P3 + 14¢
(1P +2FP; + 1F%.

First compute P, = Py + P3
and then recursively comput
32P; 4+ 16P, + 154 P5 + 14¢
(TP 4+ 2Ps + 1F5.

Same scalars show up as be

Ed25519 batch verification:
verify batch of 64 signatures
about twice as fast as
verifying each separately.



Reduce largest row:

000000000 = 0
000000000 = 0
000000000 =0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0 <«

plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,
16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,
low two-operand complexity.
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Revised goal: Compute
32P1 +16P, + 300P; + 146FP, +
(1P +2FP; + 1F~.

First c
and th
32P; -

ompute P, = Py + P
en recursively compute
- 16P; + 154P5 + 146P; +

77Ps + 2Ps + 1P;.

Same scalars show up as before.

Ed255
verify
about

19 batch verification:
batch of 64 signatures
twice as fast as

verifying each separately.



