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Moving to the left

Moving to the right

Big generator

Moving through the night

—Yes, “Big Generator”, 1987

The short-generator problem

Take degree-n number field K.

i.e. field K ⊆ C with lenQK = n.

(Weaker specification: field K

with Q ⊆ K and lenQK = n.)

e.g. n = 2; K = Q(i) =

Q⊕Qi ,� Q[x ]=(x2 + 1).

e.g. n = 256; “ = exp(ıi=n);

K = Q(“) ,� Q[x ]=(xn + 1).

e.g. n = 660; “ = exp(2ıi=661);

K = Q(“) ,� Q[x ]=(xn + · · ·+ 1).

e.g. K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).
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Define O = Z ∩K; subring of K.

O ,� Zn as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K = Q(i) ,� Q[x ]=(x2 + 1)

⇒ O = Z[i ] ,� Z[x ]=(x2 + 1).

e.g. “ = exp(ıi=256), K = Q(“)

⇒ O = Z[“] ,� Z[x ]=(x256 + 1).

e.g. “ = exp(2ıi=661), K = Q(“)

⇒ O = Z[“] ,� · · ·.
e.g. K = Q(

√
5) ⇒ O =

Z[(1+
√

5)=2] ,� Z[x ]=(x2−x−1).
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The short-generator problem:

Find “short” nonzero g ∈ O
given the principal ideal gO.

e.g. “ = exp(ıi=4); K = Q(“);

O = Z[“] ,� Z[x ]=(x4 + 1).

The Z-submodule of O gen by

201− 233“ − 430“2 − 712“3,

935− 1063“ − 1986“2 − 3299“3,

979− 1119“ − 2092“2 − 3470“3,

718− 829“ − 1537“2 − 2546“3

is an ideal I of O.

Can you find a short g ∈ O
such that I = gO?
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Multiplying by root of unity
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For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.
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2 2015.01 Song announcement:

Fast quantum algorithm for gu.

“PIP : : : solved [BiasseSong’14]”.

But paper not available yet.


