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The short-generator problem

Take degree-n number field K.
l.e. field K € C with lenqg K = n.

(Weaker specification: field K
with Q C K and lenqg K = n.)

eg. n=2, K=Q(/) =

Q® Qi — Q[x]/(x* +1).

e.g. n = 256; { = exp(mi/n);

K = Q(¢) = QIx]/(x" + 1)

e.g. n = 660; { = exp(27i/661);
K=Q({) — Q[x]/(x"+---+1).
e K=Q(vV2 /3.5, ... v/29).
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The short-generator problem

Take degree-n number field K.
l.e. field K € C with lenqg K = n.

(Weaker specification: field K
with Q C K and lenq K = n.)

eg. n=2;, K=Q(i) =

Q@ Qi — Q[x]/(x* +1).

e.g. n = 256; { = exp(mi/n);

K = Q(¢) = QIx]/(x" +1)

e.g. n = 660; { = exp(2mi/661);
K=Q() — Q[x]/(x"+---+1).
e K—Q(v2.7/3.v5.. .. v/29)

Define © = Z N K; subring
O — Z" as Z-modules.

Nonzero ideals of O
factor uniquely as products

powers of prime ideals of O.

e.g. K =Q(i) = Q[x]/(x*
= O = Z[i] — Z[x]/(x?
e.g. { = exp(mi/256), K =
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(Weaker specification: field K
with Q C K and lenq K = n.)
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powers of prime ideals of O.
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Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K =Q(i) = Q[x]/(x* + 1)
= O =Z[i] = Z[x]/(x* + 1).
e.g. ( = exp(mi/256), K = Q({)
= O = Z[¢] < Z[x]/(x?*®® + 1).
e.g. { = exp(27i/661), K = Q({)
= O =Z[{] < ---.

eg. K=Q(v5) = O =
Z[(1++/5)/2] = Z[x]/(x>—x—1).

The short-generat
Find “short” nonz
given the principal

e.g. { =exp(mi/4
0 = Z[¢] = Z|x],
The Z-submodule
201 — 233¢ — 430
935 — 1063¢ — 19
979 — 1119¢ — 20!
718 — 829¢ — 153
is an ideal I of O.
Can you find a shc
such that I = gO



Define © = Z N K; subring of K.
O — Z" as Z-modules.
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— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.
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“But {primes} is infinite!”
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— Restrict to a “factor base
e.g., all primes of norm <y.
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— Then throw it away.
But often it does factor.



General strategy: For many a's,
factor O into products of powers
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the a's.

“Can the system be solved?”

— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base’:
e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

— Then throw it away.
But often it does factor.

Familiar issue from
“Index calculus’ DL methods,

CFRAC, LS, QS, NFS, etc.
Model the norm of (a/g)O
as “random” integer in [1, x];

y-smoothness chance ~1/y
if logy ~ +1/(1/2) log x log log x.
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— Restrict to a “factor base’:
e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

— Then throw It away.
But often it does factor.

Familiar issue from

“Index calculus’™ DL methods,
CFRAC, LS, QS, NFS, etc.
Model the norm of (a/g)O
as “random” integer in [1, x|;

y-smoothness chance ~1/y

if logy ~ +/(1/2) log x log log x.
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— Restrict to a “factor base’:
e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

— Then throw it away.
But often it does factor.

Familiar issue from

“Index calculus™ DL methods,
CFRAC, LS, QS, NFS, etc.
Model the norm of (a/g)O
as “random” integer in [1, x];

y-smoothness chance ~1/y

if logy ~ +1/(1/2)log x log log x.

Variation: lgnore gO.
Generate rather short o € O,
factor O into small primes.
After enough a's,

solve system of equations;
obtain generator for each prime.



— Restrict to a “factor base’: Variation: lgnore gQ.
e.g., all primes of norm <y. Generate rather short o € O,

) . , factor o into small primes.
But what if a® doesn’t P

. . , After enough a's,
factor into those primes? 5

solve system of equations;
— Then throw it away. obtain generator for each prime.
But often it does factor. After this precomputation,

Familiar issue from factor one a©O C gO;

“index calculus” DL methods, obtain generator for gO.

CFRAC, LS, QS, NFS, etc.
Model the norm of (a/g)O
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y-smoothness chance ~1/y
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— Restrict to a “factor base’:
e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

— Then throw it away.
But often it does factor.

Familiar issue from

“Index calculus™ DL methods,
CFRAC, LS, QS, NFS, etc.
Model the norm of (a/g)O
as “random” integer in [1, x];

y-smoothness chance ~1/y
if logy ~ +1/(1/2)log x log log x.

Variation: lgnore gO.

Generate rather short o € O,
factor O into small primes.
After enough a's,

solve system of equations;
obtain generator for each prime.
After this precomputation,
factor one aO C gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:
For many (most?) number fields,
yes; but for big cyclotomics, nol!

Modulo a few small primes, yes.
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factor O into small primes.
After enough a's,

solve system of equations;
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After this precomputation,
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“Do all primes have generators?”

— Standard heuristics:
For many (most?) number fields,
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Variation: Ignore gO.
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factor O into small primes.
After enough a's,

solve system of equations;
obtain generator for each prime.
After this precomputation,
factor one aO C gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:
For many (most?) number fields,
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Generate rather short o € O, kernel of a semigroup map
factor O into small primes. {nonzero ideals} — C where
After enough a's, C is a finite abelian group,
solve system of equations; the “class group of K.

obtain generator for each prime. .
& P Fundamental object of studh
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For many (most?) number fields,
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Variation: lgnore gO.

Generate rather short o € O,
factor O into small primes.
After enough a's,

solve system of equations;
obtain generator for each prime.
After this precomputation,
factor one aO C gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:
For many (most?) number fields,
yes; but for big cyclotomics, nol

Modulo a few small primes, yes.

{principal nonzero ideals} is
kernel of a semigroup map
{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.

Fundamental object of study
in algebraic number theory.

Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.



Variation: lgnore gO.

Generate rather short o € O,
factor O into small primes.
After enough a's,

solve system of equations;
obtain generator for each prime.
After this precomputation,
factor one aO C gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:
For many (most?) number fields,
yes; but for big cyclotomics, nol

Modulo a few small primes, yes.

{principal nonzero ideals} is
kernel of a semigroup map
{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.

Fundamental object of study
in algebraic number theory.

Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.

Also compute unit group OF
via ratios of generators.
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{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.
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Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.

Also compute unit group OF
via ratios of generators.

Big generator

Smart—Vercauteren: “However
this method is likely to produce
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{principal nonzero ideals} is
kernel of a semigroup map
{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.

Fundamental object of study
in algebraic number theory.

Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.

Also compute unit group OF
via ratios of generators.

Big generator

Smart—Vercauteren: “However
this method is likely to produce
a generator of large height, i.e.,

with large coefficients. Indeed so
large, that writing the obtained
generator down as a polynomial in
6 may take exponential time."

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € OF,

out extremely unlikely to be g.

How do we find g from gu?
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a generator of large height, i.e.,
with large coefficients. Indeed so
large, that writing the obtained
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6 may take exponential time.”

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € O,
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How do we find g from gu?

There are exactly n distinct
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Big generator

Smart—Vercauteren: “However
this method is likely to produce
a generator of large height, i.e.,

with large coefficients. Indeed so
large, that writing the obtained
generator down as a polynomial in
6 may take exponential time."

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € O,

out extremely unlikely to be g.

How do we find g from gu?

There are exactly n distinct

ring maps ¢1,...,9,: K — C.
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Big generator

Smart—Vercauteren: “However
this method is likely to produce
a generator of large height, i.e.,

with large coefficients. Indeed so
large, that writing the obtained
generator down as a polynomial in
6 may take exponential time."

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € O,

out extremely unlikely to be g.

How do we find g from gu?

There are exactly n distinct
ring maps ¢1,...,9,: K — C.

Define Log : K* — R” by
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@ 2015.01 Song announcement:
Fast quantum algorithm for gu.

“PIP ... solved [BiasseSong'14]".
But paper not available yet.




