
Computational

algebraic number theory

tackles lattice-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Moving to the left

Moving to the right

Big generator

Moving through the night

—Yes, “Big Generator”, 1987

The short-generator problem

Take degree-n number field K.

i.e. field K ⊆ C with lenQK = n.

(Weaker specification: field K

with Q ⊆ K and lenQK = n.)

e.g. n = 2; K = Q(i) =

Q⊕Qi ,� Q[x]=(x2 + 1).

e.g. n = 256; “ = exp(ıi=n);

K = Q(“) ,� Q[x]=(xn + 1).

e.g. n = 660; “ = exp(2ıi=661);

K = Q(“) ,� Q[x]=(xn + · · ·+ 1).

e.g. K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

Computational

algebraic number theory

tackles lattice-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Moving to the left

Moving to the right

Big generator

Moving through the night

—Yes, “Big Generator”, 1987

The short-generator problem

Take degree-n number field K.

i.e. field K ⊆ C with lenQK = n.

(Weaker specification: field K

with Q ⊆ K and lenQK = n.)

e.g. n = 2; K = Q(i) =

Q⊕Qi ,� Q[x]=(x2 + 1).

e.g. n = 256; “ = exp(ıi=n);

K = Q(“) ,� Q[x]=(xn + 1).

e.g. n = 660; “ = exp(2ıi=661);

K = Q(“) ,� Q[x]=(xn + · · ·+ 1).

e.g. K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

Define O = Z ∩K; subring of K.

O ,� Zn as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K = Q(i) ,� Q[x]=(x2 + 1)

⇒ O = Z[i] ,� Z[x]=(x2 + 1).

e.g. “ = exp(ıi=256), K = Q(“)

⇒ O = Z[“] ,� Z[x]=(x256 + 1).

e.g. “ = exp(2ıi=661), K = Q(“)

⇒ O = Z[“] ,� · · ·.
e.g. K = Q(

√
5) ⇒ O =

Z[(1+
√

5)=2] ,� Z[x]=(x2−x−1).

Computational

algebraic number theory

tackles lattice-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Moving to the left

Moving to the right

Big generator

Moving through the night

—Yes, “Big Generator”, 1987

The short-generator problem

Take degree-n number field K.

i.e. field K ⊆ C with lenQK = n.

(Weaker specification: field K

with Q ⊆ K and lenQK = n.)

e.g. n = 2; K = Q(i) =

Q⊕Qi ,� Q[x]=(x2 + 1).

e.g. n = 256; “ = exp(ıi=n);

K = Q(“) ,� Q[x]=(xn + 1).

e.g. n = 660; “ = exp(2ıi=661);

K = Q(“) ,� Q[x]=(xn + · · ·+ 1).

e.g. K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

Define O = Z ∩K; subring of K.

O ,� Zn as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K = Q(i) ,� Q[x]=(x2 + 1)

⇒ O = Z[i] ,� Z[x]=(x2 + 1).

e.g. “ = exp(ıi=256), K = Q(“)

⇒ O = Z[“] ,� Z[x]=(x256 + 1).

e.g. “ = exp(2ıi=661), K = Q(“)

⇒ O = Z[“] ,� · · ·.
e.g. K = Q(

√
5) ⇒ O =

Z[(1+
√

5)=2] ,� Z[x]=(x2−x−1).

Computational

algebraic number theory

tackles lattice-based cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Moving to the left

Moving to the right

Big generator

Moving through the night

—Yes, “Big Generator”, 1987

The short-generator problem

Take degree-n number field K.

i.e. field K ⊆ C with lenQK = n.

(Weaker specification: field K

with Q ⊆ K and lenQK = n.)

e.g. n = 2; K = Q(i) =

Q⊕Qi ,� Q[x]=(x2 + 1).

e.g. n = 256; “ = exp(ıi=n);

K = Q(“) ,� Q[x]=(xn + 1).

e.g. n = 660; “ = exp(2ıi=661);

K = Q(“) ,� Q[x]=(xn + · · ·+ 1).

e.g. K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

Define O = Z ∩K; subring of K.

O ,� Zn as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K = Q(i) ,� Q[x]=(x2 + 1)

⇒ O = Z[i] ,� Z[x]=(x2 + 1).

e.g. “ = exp(ıi=256), K = Q(“)

⇒ O = Z[“] ,� Z[x]=(x256 + 1).

e.g. “ = exp(2ıi=661), K = Q(“)

⇒ O = Z[“] ,� · · ·.
e.g. K = Q(

√
5) ⇒ O =

Z[(1+
√

5)=2] ,� Z[x]=(x2−x−1).

The short-generator problem

Take degree-n number field K.

i.e. field K ⊆ C with lenQK = n.

(Weaker specification: field K

with Q ⊆ K and lenQK = n.)

e.g. n = 2; K = Q(i) =

Q⊕Qi ,� Q[x]=(x2 + 1).

e.g. n = 256; “ = exp(ıi=n);

K = Q(“) ,� Q[x]=(xn + 1).

e.g. n = 660; “ = exp(2ıi=661);

K = Q(“) ,� Q[x]=(xn + · · ·+ 1).

e.g. K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

Define O = Z ∩K; subring of K.

O ,� Zn as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K = Q(i) ,� Q[x]=(x2 + 1)

⇒ O = Z[i] ,� Z[x]=(x2 + 1).

e.g. “ = exp(ıi=256), K = Q(“)

⇒ O = Z[“] ,� Z[x]=(x256 + 1).

e.g. “ = exp(2ıi=661), K = Q(“)

⇒ O = Z[“] ,� · · ·.
e.g. K = Q(

√
5) ⇒ O =

Z[(1+
√

5)=2] ,� Z[x]=(x2−x−1).

The short-generator problem

Take degree-n number field K.

i.e. field K ⊆ C with lenQK = n.

(Weaker specification: field K

with Q ⊆ K and lenQK = n.)

e.g. n = 2; K = Q(i) =

Q⊕Qi ,� Q[x]=(x2 + 1).

e.g. n = 256; “ = exp(ıi=n);

K = Q(“) ,� Q[x]=(xn + 1).

e.g. n = 660; “ = exp(2ıi=661);

K = Q(“) ,� Q[x]=(xn + · · ·+ 1).

e.g. K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

Define O = Z ∩K; subring of K.

O ,� Zn as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K = Q(i) ,� Q[x]=(x2 + 1)

⇒ O = Z[i] ,� Z[x]=(x2 + 1).

e.g. “ = exp(ıi=256), K = Q(“)

⇒ O = Z[“] ,� Z[x]=(x256 + 1).

e.g. “ = exp(2ıi=661), K = Q(“)

⇒ O = Z[“] ,� · · ·.
e.g. K = Q(

√
5) ⇒ O =

Z[(1+
√

5)=2] ,� Z[x]=(x2−x−1).

The short-generator problem:

Find “short” nonzero g ∈ O
given the principal ideal gO.

e.g. “ = exp(ıi=4); K = Q(“);

O = Z[“] ,� Z[x]=(x4 + 1).

The Z-submodule of O gen by

201− 233“ − 430“2 − 712“3,

935− 1063“ − 1986“2 − 3299“3,

979− 1119“ − 2092“2 − 3470“3,

718− 829“ − 1537“2 − 2546“3

is an ideal I of O.

Can you find a short g ∈ O
such that I = gO?

The short-generator problem

Take degree-n number field K.

i.e. field K ⊆ C with lenQK = n.

(Weaker specification: field K

with Q ⊆ K and lenQK = n.)

e.g. n = 2; K = Q(i) =

Q⊕Qi ,� Q[x]=(x2 + 1).

e.g. n = 256; “ = exp(ıi=n);

K = Q(“) ,� Q[x]=(xn + 1).

e.g. n = 660; “ = exp(2ıi=661);

K = Q(“) ,� Q[x]=(xn + · · ·+ 1).

e.g. K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

Define O = Z ∩K; subring of K.

O ,� Zn as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K = Q(i) ,� Q[x]=(x2 + 1)

⇒ O = Z[i] ,� Z[x]=(x2 + 1).

e.g. “ = exp(ıi=256), K = Q(“)

⇒ O = Z[“] ,� Z[x]=(x256 + 1).

e.g. “ = exp(2ıi=661), K = Q(“)

⇒ O = Z[“] ,� · · ·.
e.g. K = Q(

√
5) ⇒ O =

Z[(1+
√

5)=2] ,� Z[x]=(x2−x−1).

The short-generator problem:

Find “short” nonzero g ∈ O
given the principal ideal gO.

e.g. “ = exp(ıi=4); K = Q(“);

O = Z[“] ,� Z[x]=(x4 + 1).

The Z-submodule of O gen by

201− 233“ − 430“2 − 712“3,

935− 1063“ − 1986“2 − 3299“3,

979− 1119“ − 2092“2 − 3470“3,

718− 829“ − 1537“2 − 2546“3

is an ideal I of O.

Can you find a short g ∈ O
such that I = gO?

The short-generator problem

Take degree-n number field K.

i.e. field K ⊆ C with lenQK = n.

(Weaker specification: field K

with Q ⊆ K and lenQK = n.)

e.g. n = 2; K = Q(i) =

Q⊕Qi ,� Q[x]=(x2 + 1).

e.g. n = 256; “ = exp(ıi=n);

K = Q(“) ,� Q[x]=(xn + 1).

e.g. n = 660; “ = exp(2ıi=661);

K = Q(“) ,� Q[x]=(xn + · · ·+ 1).

e.g. K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

Define O = Z ∩K; subring of K.

O ,� Zn as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K = Q(i) ,� Q[x]=(x2 + 1)

⇒ O = Z[i] ,� Z[x]=(x2 + 1).

e.g. “ = exp(ıi=256), K = Q(“)

⇒ O = Z[“] ,� Z[x]=(x256 + 1).

e.g. “ = exp(2ıi=661), K = Q(“)

⇒ O = Z[“] ,� · · ·.
e.g. K = Q(

√
5) ⇒ O =

Z[(1+
√

5)=2] ,� Z[x]=(x2−x−1).

The short-generator problem:

Find “short” nonzero g ∈ O
given the principal ideal gO.

e.g. “ = exp(ıi=4); K = Q(“);

O = Z[“] ,� Z[x]=(x4 + 1).

The Z-submodule of O gen by

201− 233“ − 430“2 − 712“3,

935− 1063“ − 1986“2 − 3299“3,

979− 1119“ − 2092“2 − 3470“3,

718− 829“ − 1537“2 − 2546“3

is an ideal I of O.

Can you find a short g ∈ O
such that I = gO?

Define O = Z ∩K; subring of K.

O ,� Zn as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K = Q(i) ,� Q[x]=(x2 + 1)

⇒ O = Z[i] ,� Z[x]=(x2 + 1).

e.g. “ = exp(ıi=256), K = Q(“)

⇒ O = Z[“] ,� Z[x]=(x256 + 1).

e.g. “ = exp(2ıi=661), K = Q(“)

⇒ O = Z[“] ,� · · ·.
e.g. K = Q(

√
5) ⇒ O =

Z[(1+
√

5)=2] ,� Z[x]=(x2−x−1).

The short-generator problem:

Find “short” nonzero g ∈ O
given the principal ideal gO.

e.g. “ = exp(ıi=4); K = Q(“);

O = Z[“] ,� Z[x]=(x4 + 1).

The Z-submodule of O gen by

201− 233“ − 430“2 − 712“3,

935− 1063“ − 1986“2 − 3299“3,

979− 1119“ − 2092“2 − 3470“3,

718− 829“ − 1537“2 − 2546“3

is an ideal I of O.

Can you find a short g ∈ O
such that I = gO?

Define O = Z ∩K; subring of K.

O ,� Zn as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K = Q(i) ,� Q[x]=(x2 + 1)

⇒ O = Z[i] ,� Z[x]=(x2 + 1).

e.g. “ = exp(ıi=256), K = Q(“)

⇒ O = Z[“] ,� Z[x]=(x256 + 1).

e.g. “ = exp(2ıi=661), K = Q(“)

⇒ O = Z[“] ,� · · ·.
e.g. K = Q(

√
5) ⇒ O =

Z[(1+
√

5)=2] ,� Z[x]=(x2−x−1).

The short-generator problem:

Find “short” nonzero g ∈ O
given the principal ideal gO.

e.g. “ = exp(ıi=4); K = Q(“);

O = Z[“] ,� Z[x]=(x4 + 1).

The Z-submodule of O gen by

201− 233“ − 430“2 − 712“3,

935− 1063“ − 1986“2 − 3299“3,

979− 1119“ − 2092“2 − 3470“3,

718− 829“ − 1537“2 − 2546“3

is an ideal I of O.

Can you find a short g ∈ O
such that I = gO?

The lattice perspective

Use LLL to quickly find

short elements of lattice

ZA+ ZB + ZC + ZD where

A = (201;−233;−430;−712);

B = (935;−1063;−1986;−3299);

C = (979;−1119;−2092;−3470);

D = (718;−829;−1537;−2546):

Define O = Z ∩K; subring of K.

O ,� Zn as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K = Q(i) ,� Q[x]=(x2 + 1)

⇒ O = Z[i] ,� Z[x]=(x2 + 1).

e.g. “ = exp(ıi=256), K = Q(“)

⇒ O = Z[“] ,� Z[x]=(x256 + 1).

e.g. “ = exp(2ıi=661), K = Q(“)

⇒ O = Z[“] ,� · · ·.
e.g. K = Q(

√
5) ⇒ O =

Z[(1+
√

5)=2] ,� Z[x]=(x2−x−1).

The short-generator problem:

Find “short” nonzero g ∈ O
given the principal ideal gO.

e.g. “ = exp(ıi=4); K = Q(“);

O = Z[“] ,� Z[x]=(x4 + 1).

The Z-submodule of O gen by

201− 233“ − 430“2 − 712“3,

935− 1063“ − 1986“2 − 3299“3,

979− 1119“ − 2092“2 − 3470“3,

718− 829“ − 1537“2 − 2546“3

is an ideal I of O.

Can you find a short g ∈ O
such that I = gO?

The lattice perspective

Use LLL to quickly find

short elements of lattice

ZA+ ZB + ZC + ZD where

A = (201;−233;−430;−712);

B = (935;−1063;−1986;−3299);

C = (979;−1119;−2092;−3470);

D = (718;−829;−1537;−2546):

Define O = Z ∩K; subring of K.

O ,� Zn as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K = Q(i) ,� Q[x]=(x2 + 1)

⇒ O = Z[i] ,� Z[x]=(x2 + 1).

e.g. “ = exp(ıi=256), K = Q(“)

⇒ O = Z[“] ,� Z[x]=(x256 + 1).

e.g. “ = exp(2ıi=661), K = Q(“)

⇒ O = Z[“] ,� · · ·.
e.g. K = Q(

√
5) ⇒ O =

Z[(1+
√

5)=2] ,� Z[x]=(x2−x−1).

The short-generator problem:

Find “short” nonzero g ∈ O
given the principal ideal gO.

e.g. “ = exp(ıi=4); K = Q(“);

O = Z[“] ,� Z[x]=(x4 + 1).

The Z-submodule of O gen by

201− 233“ − 430“2 − 712“3,

935− 1063“ − 1986“2 − 3299“3,

979− 1119“ − 2092“2 − 3470“3,

718− 829“ − 1537“2 − 2546“3

is an ideal I of O.

Can you find a short g ∈ O
such that I = gO?

The lattice perspective

Use LLL to quickly find

short elements of lattice

ZA+ ZB + ZC + ZD where

A = (201;−233;−430;−712);

B = (935;−1063;−1986;−3299);

C = (979;−1119;−2092;−3470);

D = (718;−829;−1537;−2546):

The short-generator problem:

Find “short” nonzero g ∈ O
given the principal ideal gO.

e.g. “ = exp(ıi=4); K = Q(“);

O = Z[“] ,� Z[x]=(x4 + 1).

The Z-submodule of O gen by

201− 233“ − 430“2 − 712“3,

935− 1063“ − 1986“2 − 3299“3,

979− 1119“ − 2092“2 − 3470“3,

718− 829“ − 1537“2 − 2546“3

is an ideal I of O.

Can you find a short g ∈ O
such that I = gO?

The lattice perspective

Use LLL to quickly find

short elements of lattice

ZA+ ZB + ZC + ZD where

A = (201;−233;−430;−712);

B = (935;−1063;−1986;−3299);

C = (979;−1119;−2092;−3470);

D = (718;−829;−1537;−2546):

The short-generator problem:

Find “short” nonzero g ∈ O
given the principal ideal gO.

e.g. “ = exp(ıi=4); K = Q(“);

O = Z[“] ,� Z[x]=(x4 + 1).

The Z-submodule of O gen by

201− 233“ − 430“2 − 712“3,

935− 1063“ − 1986“2 − 3299“3,

979− 1119“ − 2092“2 − 3470“3,

718− 829“ − 1537“2 − 2546“3

is an ideal I of O.

Can you find a short g ∈ O
such that I = gO?

The lattice perspective

Use LLL to quickly find

short elements of lattice

ZA+ ZB + ZC + ZD where

A = (201;−233;−430;−712);

B = (935;−1063;−1986;−3299);

C = (979;−1119;−2092;−3470);

D = (718;−829;−1537;−2546):

Find (3; 1; 4; 1) as

−37A+ 3B − 7C + 16D.

This was my original g .

The short-generator problem:

Find “short” nonzero g ∈ O
given the principal ideal gO.

e.g. “ = exp(ıi=4); K = Q(“);

O = Z[“] ,� Z[x]=(x4 + 1).

The Z-submodule of O gen by

201− 233“ − 430“2 − 712“3,

935− 1063“ − 1986“2 − 3299“3,

979− 1119“ − 2092“2 − 3470“3,

718− 829“ − 1537“2 − 2546“3

is an ideal I of O.

Can you find a short g ∈ O
such that I = gO?

The lattice perspective

Use LLL to quickly find

short elements of lattice

ZA+ ZB + ZC + ZD where

A = (201;−233;−430;−712);

B = (935;−1063;−1986;−3299);

C = (979;−1119;−2092;−3470);

D = (718;−829;−1537;−2546):

Find (3; 1; 4; 1) as

−37A+ 3B − 7C + 16D.

This was my original g .

Also find, e.g., (−4;−1; 3; 1).

Multiplying by root of unity

(here “2) preserves shortness.

The short-generator problem:

Find “short” nonzero g ∈ O
given the principal ideal gO.

e.g. “ = exp(ıi=4); K = Q(“);

O = Z[“] ,� Z[x]=(x4 + 1).

The Z-submodule of O gen by

201− 233“ − 430“2 − 712“3,

935− 1063“ − 1986“2 − 3299“3,

979− 1119“ − 2092“2 − 3470“3,

718− 829“ − 1537“2 − 2546“3

is an ideal I of O.

Can you find a short g ∈ O
such that I = gO?

The lattice perspective

Use LLL to quickly find

short elements of lattice

ZA+ ZB + ZC + ZD where

A = (201;−233;−430;−712);

B = (935;−1063;−1986;−3299);

C = (979;−1119;−2092;−3470);

D = (718;−829;−1537;−2546):

Find (3; 1; 4; 1) as

−37A+ 3B − 7C + 16D.

This was my original g .

Also find, e.g., (−4;−1; 3; 1).

Multiplying by root of unity

(here “2) preserves shortness.

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

The short-generator problem:

Find “short” nonzero g ∈ O
given the principal ideal gO.

e.g. “ = exp(ıi=4); K = Q(“);

O = Z[“] ,� Z[x]=(x4 + 1).

The Z-submodule of O gen by

201− 233“ − 430“2 − 712“3,

935− 1063“ − 1986“2 − 3299“3,

979− 1119“ − 2092“2 − 3470“3,

718− 829“ − 1537“2 − 2546“3

is an ideal I of O.

Can you find a short g ∈ O
such that I = gO?

The lattice perspective

Use LLL to quickly find

short elements of lattice

ZA+ ZB + ZC + ZD where

A = (201;−233;−430;−712);

B = (935;−1063;−1986;−3299);

C = (979;−1119;−2092;−3470);

D = (718;−829;−1537;−2546):

Find (3; 1; 4; 1) as

−37A+ 3B − 7C + 16D.

This was my original g .

Also find, e.g., (−4;−1; 3; 1).

Multiplying by root of unity

(here “2) preserves shortness.

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

The short-generator problem:

Find “short” nonzero g ∈ O
given the principal ideal gO.

e.g. “ = exp(ıi=4); K = Q(“);

O = Z[“] ,� Z[x]=(x4 + 1).

The Z-submodule of O gen by

201− 233“ − 430“2 − 712“3,

935− 1063“ − 1986“2 − 3299“3,

979− 1119“ − 2092“2 − 3470“3,

718− 829“ − 1537“2 − 2546“3

is an ideal I of O.

Can you find a short g ∈ O
such that I = gO?

The lattice perspective

Use LLL to quickly find

short elements of lattice

ZA+ ZB + ZC + ZD where

A = (201;−233;−430;−712);

B = (935;−1063;−1986;−3299);

C = (979;−1119;−2092;−3470);

D = (718;−829;−1537;−2546):

Find (3; 1; 4; 1) as

−37A+ 3B − 7C + 16D.

This was my original g .

Also find, e.g., (−4;−1; 3; 1).

Multiplying by root of unity

(here “2) preserves shortness.

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

The lattice perspective

Use LLL to quickly find

short elements of lattice

ZA+ ZB + ZC + ZD where

A = (201;−233;−430;−712);

B = (935;−1063;−1986;−3299);

C = (979;−1119;−2092;−3470);

D = (718;−829;−1537;−2546):

Find (3; 1; 4; 1) as

−37A+ 3B − 7C + 16D.

This was my original g .

Also find, e.g., (−4;−1; 3; 1).

Multiplying by root of unity

(here “2) preserves shortness.

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

The lattice perspective

Use LLL to quickly find

short elements of lattice

ZA+ ZB + ZC + ZD where

A = (201;−233;−430;−712);

B = (935;−1063;−1986;−3299);

C = (979;−1119;−2092;−3470);

D = (718;−829;−1537;−2546):

Find (3; 1; 4; 1) as

−37A+ 3B − 7C + 16D.

This was my original g .

Also find, e.g., (−4;−1; 3; 1).

Multiplying by root of unity

(here “2) preserves shortness.

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

The lattice perspective

Use LLL to quickly find

short elements of lattice

ZA+ ZB + ZC + ZD where

A = (201;−233;−430;−712);

B = (935;−1063;−1986;−3299);

C = (979;−1119;−2092;−3470);

D = (718;−829;−1537;−2546):

Find (3; 1; 4; 1) as

−37A+ 3B − 7C + 16D.

This was my original g .

Also find, e.g., (−4;−1; 3; 1).

Multiplying by root of unity

(here “2) preserves shortness.

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,

2015 Laarhoven–de Weger

finds g in time ≈1:23n.

Big progress compared to, e.g.,

2008 Nguyen–Vidick (≈1:33n)

but still exponential time.

The lattice perspective

Use LLL to quickly find

short elements of lattice

ZA+ ZB + ZC + ZD where

A = (201;−233;−430;−712);

B = (935;−1063;−1986;−3299);

C = (979;−1119;−2092;−3470);

D = (718;−829;−1537;−2546):

Find (3; 1; 4; 1) as

−37A+ 3B − 7C + 16D.

This was my original g .

Also find, e.g., (−4;−1; 3; 1).

Multiplying by root of unity

(here “2) preserves shortness.

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,

2015 Laarhoven–de Weger

finds g in time ≈1:23n.

Big progress compared to, e.g.,

2008 Nguyen–Vidick (≈1:33n)

but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

The lattice perspective

Use LLL to quickly find

short elements of lattice

ZA+ ZB + ZC + ZD where

A = (201;−233;−430;−712);

B = (935;−1063;−1986;−3299);

C = (979;−1119;−2092;−3470);

D = (718;−829;−1537;−2546):

Find (3; 1; 4; 1) as

−37A+ 3B − 7C + 16D.

This was my original g .

Also find, e.g., (−4;−1; 3; 1).

Multiplying by root of unity

(here “2) preserves shortness.

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,

2015 Laarhoven–de Weger

finds g in time ≈1:23n.

Big progress compared to, e.g.,

2008 Nguyen–Vidick (≈1:33n)

but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

The lattice perspective

Use LLL to quickly find

short elements of lattice

ZA+ ZB + ZC + ZD where

A = (201;−233;−430;−712);

B = (935;−1063;−1986;−3299);

C = (979;−1119;−2092;−3470);

D = (718;−829;−1537;−2546):

Find (3; 1; 4; 1) as

−37A+ 3B − 7C + 16D.

This was my original g .

Also find, e.g., (−4;−1; 3; 1).

Multiplying by root of unity

(here “2) preserves shortness.

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,

2015 Laarhoven–de Weger

finds g in time ≈1:23n.

Big progress compared to, e.g.,

2008 Nguyen–Vidick (≈1:33n)

but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,

2015 Laarhoven–de Weger

finds g in time ≈1:23n.

Big progress compared to, e.g.,

2008 Nguyen–Vidick (≈1:33n)

but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,

2015 Laarhoven–de Weger

finds g in time ≈1:23n.

Big progress compared to, e.g.,

2008 Nguyen–Vidick (≈1:33n)

but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Alternative: Gain information

from factorization of ideals.

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,

2015 Laarhoven–de Weger

finds g in time ≈1:23n.

Big progress compared to, e.g.,

2008 Nguyen–Vidick (≈1:33n)

but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Alternative: Gain information

from factorization of ideals.

e.g. If ¸1O = gO · P 2 · Q2

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,

2015 Laarhoven–de Weger

finds g in time ≈1:23n.

Big progress compared to, e.g.,

2008 Nguyen–Vidick (≈1:33n)

but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Alternative: Gain information

from factorization of ideals.

e.g. If ¸1O = gO · P 2 · Q2

and ¸2O = gO · P · Q3

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,

2015 Laarhoven–de Weger

finds g in time ≈1:23n.

Big progress compared to, e.g.,

2008 Nguyen–Vidick (≈1:33n)

but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Alternative: Gain information

from factorization of ideals.

e.g. If ¸1O = gO · P 2 · Q2

and ¸2O = gO · P · Q3

and ¸3O = gO · P · Q2

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,

2015 Laarhoven–de Weger

finds g in time ≈1:23n.

Big progress compared to, e.g.,

2008 Nguyen–Vidick (≈1:33n)

but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Alternative: Gain information

from factorization of ideals.

e.g. If ¸1O = gO · P 2 · Q2

and ¸2O = gO · P · Q3

and ¸3O = gO · P · Q2 then

P = ¸1¸
−1
3 O and Q = ¸2¸

−1
3 O

and gO = ¸−1
1 ¸−2

2 ¸4
3O.

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,

2015 Laarhoven–de Weger

finds g in time ≈1:23n.

Big progress compared to, e.g.,

2008 Nguyen–Vidick (≈1:33n)

but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Alternative: Gain information

from factorization of ideals.

e.g. If ¸1O = gO · P 2 · Q2

and ¸2O = gO · P · Q3

and ¸3O = gO · P · Q2 then

P = ¸1¸
−1
3 O and Q = ¸2¸

−1
3 O

and gO = ¸−1
1 ¸−2

2 ¸4
3O.

General strategy: For many ¸’s,

factor ¸O into products of powers

of some primes and gO.

Solve system of equations

to find generator for gO
as product of powers of the ¸’s.

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,

2015 Laarhoven–de Weger

finds g in time ≈1:23n.

Big progress compared to, e.g.,

2008 Nguyen–Vidick (≈1:33n)

but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Alternative: Gain information

from factorization of ideals.

e.g. If ¸1O = gO · P 2 · Q2

and ¸2O = gO · P · Q3

and ¸3O = gO · P · Q2 then

P = ¸1¸
−1
3 O and Q = ¸2¸

−1
3 O

and gO = ¸−1
1 ¸−2

2 ¸4
3O.

General strategy: For many ¸’s,

factor ¸O into products of powers

of some primes and gO.

Solve system of equations

to find generator for gO
as product of powers of the ¸’s.

For much larger n:

LLL almost never finds g .

Big gap between size of g

and size of “short” vectors

that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,

2015 Laarhoven–de Weger

finds g in time ≈1:23n.

Big progress compared to, e.g.,

2008 Nguyen–Vidick (≈1:33n)

but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Alternative: Gain information

from factorization of ideals.

e.g. If ¸1O = gO · P 2 · Q2

and ¸2O = gO · P · Q3

and ¸3O = gO · P · Q2 then

P = ¸1¸
−1
3 O and Q = ¸2¸

−1
3 O

and gO = ¸−1
1 ¸−2

2 ¸4
3O.

General strategy: For many ¸’s,

factor ¸O into products of powers

of some primes and gO.

Solve system of equations

to find generator for gO
as product of powers of the ¸’s.

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Alternative: Gain information

from factorization of ideals.

e.g. If ¸1O = gO · P 2 · Q2

and ¸2O = gO · P · Q3

and ¸3O = gO · P · Q2 then

P = ¸1¸
−1
3 O and Q = ¸2¸

−1
3 O

and gO = ¸−1
1 ¸−2

2 ¸4
3O.

General strategy: For many ¸’s,

factor ¸O into products of powers

of some primes and gO.

Solve system of equations

to find generator for gO
as product of powers of the ¸’s.

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Alternative: Gain information

from factorization of ideals.

e.g. If ¸1O = gO · P 2 · Q2

and ¸2O = gO · P · Q3

and ¸3O = gO · P · Q2 then

P = ¸1¸
−1
3 O and Q = ¸2¸

−1
3 O

and gO = ¸−1
1 ¸−2

2 ¸4
3O.

General strategy: For many ¸’s,

factor ¸O into products of powers

of some primes and gO.

Solve system of equations

to find generator for gO
as product of powers of the ¸’s.

“Can the system be solved?”

— Becomes increasingly

reasonable to expect as the

number of equations approaches

and passes the number of primes.

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Alternative: Gain information

from factorization of ideals.

e.g. If ¸1O = gO · P 2 · Q2

and ¸2O = gO · P · Q3

and ¸3O = gO · P · Q2 then

P = ¸1¸
−1
3 O and Q = ¸2¸

−1
3 O

and gO = ¸−1
1 ¸−2

2 ¸4
3O.

General strategy: For many ¸’s,

factor ¸O into products of powers

of some primes and gO.

Solve system of equations

to find generator for gO
as product of powers of the ¸’s.

“Can the system be solved?”

— Becomes increasingly

reasonable to expect as the

number of equations approaches

and passes the number of primes.

“But {primes} is infinite!”

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Alternative: Gain information

from factorization of ideals.

e.g. If ¸1O = gO · P 2 · Q2

and ¸2O = gO · P · Q3

and ¸3O = gO · P · Q2 then

P = ¸1¸
−1
3 O and Q = ¸2¸

−1
3 O

and gO = ¸−1
1 ¸−2

2 ¸4
3O.

General strategy: For many ¸’s,

factor ¸O into products of powers

of some primes and gO.

Solve system of equations

to find generator for gO
as product of powers of the ¸’s.

“Can the system be solved?”

— Becomes increasingly

reasonable to expect as the

number of equations approaches

and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Alternative: Gain information

from factorization of ideals.

e.g. If ¸1O = gO · P 2 · Q2

and ¸2O = gO · P · Q3

and ¸3O = gO · P · Q2 then

P = ¸1¸
−1
3 O and Q = ¸2¸

−1
3 O

and gO = ¸−1
1 ¸−2

2 ¸4
3O.

General strategy: For many ¸’s,

factor ¸O into products of powers

of some primes and gO.

Solve system of equations

to find generator for gO
as product of powers of the ¸’s.

“Can the system be solved?”

— Becomes increasingly

reasonable to expect as the

number of equations approaches

and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

Exploiting factorization

Use LLL, BKZ, etc. to

generate rather short ¸ ∈ gO.

What happens if ¸O 6= gO?

Pure lattice approach: Discard ¸.

Work much harder, find shorter ¸.

Alternative: Gain information

from factorization of ideals.

e.g. If ¸1O = gO · P 2 · Q2

and ¸2O = gO · P · Q3

and ¸3O = gO · P · Q2 then

P = ¸1¸
−1
3 O and Q = ¸2¸

−1
3 O

and gO = ¸−1
1 ¸−2

2 ¸4
3O.

General strategy: For many ¸’s,

factor ¸O into products of powers

of some primes and gO.

Solve system of equations

to find generator for gO
as product of powers of the ¸’s.

“Can the system be solved?”

— Becomes increasingly

reasonable to expect as the

number of equations approaches

and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

General strategy: For many ¸’s,

factor ¸O into products of powers

of some primes and gO.

Solve system of equations

to find generator for gO
as product of powers of the ¸’s.

“Can the system be solved?”

— Becomes increasingly

reasonable to expect as the

number of equations approaches

and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

General strategy: For many ¸’s,

factor ¸O into products of powers

of some primes and gO.

Solve system of equations

to find generator for gO
as product of powers of the ¸’s.

“Can the system be solved?”

— Becomes increasingly

reasonable to expect as the

number of equations approaches

and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

“But what if ¸O doesn’t

factor into those primes?”

General strategy: For many ¸’s,

factor ¸O into products of powers

of some primes and gO.

Solve system of equations

to find generator for gO
as product of powers of the ¸’s.

“Can the system be solved?”

— Becomes increasingly

reasonable to expect as the

number of equations approaches

and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

“But what if ¸O doesn’t

factor into those primes?”

— Then throw it away.

But often it does factor.

General strategy: For many ¸’s,

factor ¸O into products of powers

of some primes and gO.

Solve system of equations

to find generator for gO
as product of powers of the ¸’s.

“Can the system be solved?”

— Becomes increasingly

reasonable to expect as the

number of equations approaches

and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

“But what if ¸O doesn’t

factor into those primes?”

— Then throw it away.

But often it does factor.

Familiar issue from

“index calculus” DL methods,

CFRAC, LS, QS, NFS, etc.

Model the norm of (¸=g)O
as “random” integer in [1; x];

y -smoothness chance ≈1=y

if log y ≈
p

(1=2) log x log log x .

General strategy: For many ¸’s,

factor ¸O into products of powers

of some primes and gO.

Solve system of equations

to find generator for gO
as product of powers of the ¸’s.

“Can the system be solved?”

— Becomes increasingly

reasonable to expect as the

number of equations approaches

and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

“But what if ¸O doesn’t

factor into those primes?”

— Then throw it away.

But often it does factor.

Familiar issue from

“index calculus” DL methods,

CFRAC, LS, QS, NFS, etc.

Model the norm of (¸=g)O
as “random” integer in [1; x];

y -smoothness chance ≈1=y

if log y ≈
p

(1=2) log x log log x .

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

General strategy: For many ¸’s,

factor ¸O into products of powers

of some primes and gO.

Solve system of equations

to find generator for gO
as product of powers of the ¸’s.

“Can the system be solved?”

— Becomes increasingly

reasonable to expect as the

number of equations approaches

and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

“But what if ¸O doesn’t

factor into those primes?”

— Then throw it away.

But often it does factor.

Familiar issue from

“index calculus” DL methods,

CFRAC, LS, QS, NFS, etc.

Model the norm of (¸=g)O
as “random” integer in [1; x];

y -smoothness chance ≈1=y

if log y ≈
p

(1=2) log x log log x .

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

General strategy: For many ¸’s,

factor ¸O into products of powers

of some primes and gO.

Solve system of equations

to find generator for gO
as product of powers of the ¸’s.

“Can the system be solved?”

— Becomes increasingly

reasonable to expect as the

number of equations approaches

and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

“But what if ¸O doesn’t

factor into those primes?”

— Then throw it away.

But often it does factor.

Familiar issue from

“index calculus” DL methods,

CFRAC, LS, QS, NFS, etc.

Model the norm of (¸=g)O
as “random” integer in [1; x];

y -smoothness chance ≈1=y

if log y ≈
p

(1=2) log x log log x .

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

“But what if ¸O doesn’t

factor into those primes?”

— Then throw it away.

But often it does factor.

Familiar issue from

“index calculus” DL methods,

CFRAC, LS, QS, NFS, etc.

Model the norm of (¸=g)O
as “random” integer in [1; x];

y -smoothness chance ≈1=y

if log y ≈
p

(1=2) log x log log x .

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

“But what if ¸O doesn’t

factor into those primes?”

— Then throw it away.

But often it does factor.

Familiar issue from

“index calculus” DL methods,

CFRAC, LS, QS, NFS, etc.

Model the norm of (¸=g)O
as “random” integer in [1; x];

y -smoothness chance ≈1=y

if log y ≈
p

(1=2) log x log log x .

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

After this precomputation,

factor one ¸O ⊆ gO;

obtain generator for gO.

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

“But what if ¸O doesn’t

factor into those primes?”

— Then throw it away.

But often it does factor.

Familiar issue from

“index calculus” DL methods,

CFRAC, LS, QS, NFS, etc.

Model the norm of (¸=g)O
as “random” integer in [1; x];

y -smoothness chance ≈1=y

if log y ≈
p

(1=2) log x log log x .

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

After this precomputation,

factor one ¸O ⊆ gO;

obtain generator for gO.

“Do all primes have generators?”

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

“But what if ¸O doesn’t

factor into those primes?”

— Then throw it away.

But often it does factor.

Familiar issue from

“index calculus” DL methods,

CFRAC, LS, QS, NFS, etc.

Model the norm of (¸=g)O
as “random” integer in [1; x];

y -smoothness chance ≈1=y

if log y ≈
p

(1=2) log x log log x .

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

After this precomputation,

factor one ¸O ⊆ gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:

For many (most?) number fields,

yes; but for big cyclotomics, no!

Modulo a few small primes, yes.

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

“But what if ¸O doesn’t

factor into those primes?”

— Then throw it away.

But often it does factor.

Familiar issue from

“index calculus” DL methods,

CFRAC, LS, QS, NFS, etc.

Model the norm of (¸=g)O
as “random” integer in [1; x];

y -smoothness chance ≈1=y

if log y ≈
p

(1=2) log x log log x .

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

After this precomputation,

factor one ¸O ⊆ gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:

For many (most?) number fields,

yes; but for big cyclotomics, no!

Modulo a few small primes, yes.

{principal nonzero ideals} is

kernel of a semigroup map

{nonzero ideals}� C where

C is a finite abelian group,

the “class group of K”.

Fundamental object of study

in algebraic number theory.

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

“But what if ¸O doesn’t

factor into those primes?”

— Then throw it away.

But often it does factor.

Familiar issue from

“index calculus” DL methods,

CFRAC, LS, QS, NFS, etc.

Model the norm of (¸=g)O
as “random” integer in [1; x];

y -smoothness chance ≈1=y

if log y ≈
p

(1=2) log x log log x .

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

After this precomputation,

factor one ¸O ⊆ gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:

For many (most?) number fields,

yes; but for big cyclotomics, no!

Modulo a few small primes, yes.

{principal nonzero ideals} is

kernel of a semigroup map

{nonzero ideals}� C where

C is a finite abelian group,

the “class group of K”.

Fundamental object of study

in algebraic number theory.

— Restrict to a “factor base”:

e.g., all primes of norm ≤y .

“But what if ¸O doesn’t

factor into those primes?”

— Then throw it away.

But often it does factor.

Familiar issue from

“index calculus” DL methods,

CFRAC, LS, QS, NFS, etc.

Model the norm of (¸=g)O
as “random” integer in [1; x];

y -smoothness chance ≈1=y

if log y ≈
p

(1=2) log x log log x .

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

After this precomputation,

factor one ¸O ⊆ gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:

For many (most?) number fields,

yes; but for big cyclotomics, no!

Modulo a few small primes, yes.

{principal nonzero ideals} is

kernel of a semigroup map

{nonzero ideals}� C where

C is a finite abelian group,

the “class group of K”.

Fundamental object of study

in algebraic number theory.

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

After this precomputation,

factor one ¸O ⊆ gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:

For many (most?) number fields,

yes; but for big cyclotomics, no!

Modulo a few small primes, yes.

{principal nonzero ideals} is

kernel of a semigroup map

{nonzero ideals}� C where

C is a finite abelian group,

the “class group of K”.

Fundamental object of study

in algebraic number theory.

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

After this precomputation,

factor one ¸O ⊆ gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:

For many (most?) number fields,

yes; but for big cyclotomics, no!

Modulo a few small primes, yes.

{principal nonzero ideals} is

kernel of a semigroup map

{nonzero ideals}� C where

C is a finite abelian group,

the “class group of K”.

Fundamental object of study

in algebraic number theory.

Factoring many small ¸O
is a standard textbook method

of computing class group

and generators of ideals.

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

After this precomputation,

factor one ¸O ⊆ gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:

For many (most?) number fields,

yes; but for big cyclotomics, no!

Modulo a few small primes, yes.

{principal nonzero ideals} is

kernel of a semigroup map

{nonzero ideals}� C where

C is a finite abelian group,

the “class group of K”.

Fundamental object of study

in algebraic number theory.

Factoring many small ¸O
is a standard textbook method

of computing class group

and generators of ideals.

Also compute unit group O∗

via ratios of generators.

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

After this precomputation,

factor one ¸O ⊆ gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:

For many (most?) number fields,

yes; but for big cyclotomics, no!

Modulo a few small primes, yes.

{principal nonzero ideals} is

kernel of a semigroup map

{nonzero ideals}� C where

C is a finite abelian group,

the “class group of K”.

Fundamental object of study

in algebraic number theory.

Factoring many small ¸O
is a standard textbook method

of computing class group

and generators of ideals.

Also compute unit group O∗

via ratios of generators.

Big generator

Smart–Vercauteren: “However

this method is likely to produce

a generator of large height, i.e.,

with large coefficients. Indeed so

large, that writing the obtained

generator down as a polynomial in

„ may take exponential time.”

Indeed, generator found for gO is

product of powers of various ¸’s.

Must be gu for some u ∈ O∗,
but extremely unlikely to be g .

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

After this precomputation,

factor one ¸O ⊆ gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:

For many (most?) number fields,

yes; but for big cyclotomics, no!

Modulo a few small primes, yes.

{principal nonzero ideals} is

kernel of a semigroup map

{nonzero ideals}� C where

C is a finite abelian group,

the “class group of K”.

Fundamental object of study

in algebraic number theory.

Factoring many small ¸O
is a standard textbook method

of computing class group

and generators of ideals.

Also compute unit group O∗

via ratios of generators.

Big generator

Smart–Vercauteren: “However

this method is likely to produce

a generator of large height, i.e.,

with large coefficients. Indeed so

large, that writing the obtained

generator down as a polynomial in

„ may take exponential time.”

Indeed, generator found for gO is

product of powers of various ¸’s.

Must be gu for some u ∈ O∗,
but extremely unlikely to be g .

Variation: Ignore gO.

Generate rather short ¸ ∈ O,

factor ¸O into small primes.

After enough ¸’s,

solve system of equations;

obtain generator for each prime.

After this precomputation,

factor one ¸O ⊆ gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:

For many (most?) number fields,

yes; but for big cyclotomics, no!

Modulo a few small primes, yes.

{principal nonzero ideals} is

kernel of a semigroup map

{nonzero ideals}� C where

C is a finite abelian group,

the “class group of K”.

Fundamental object of study

in algebraic number theory.

Factoring many small ¸O
is a standard textbook method

of computing class group

and generators of ideals.

Also compute unit group O∗

via ratios of generators.

Big generator

Smart–Vercauteren: “However

this method is likely to produce

a generator of large height, i.e.,

with large coefficients. Indeed so

large, that writing the obtained

generator down as a polynomial in

„ may take exponential time.”

Indeed, generator found for gO is

product of powers of various ¸’s.

Must be gu for some u ∈ O∗,
but extremely unlikely to be g .

{principal nonzero ideals} is

kernel of a semigroup map

{nonzero ideals}� C where

C is a finite abelian group,

the “class group of K”.

Fundamental object of study

in algebraic number theory.

Factoring many small ¸O
is a standard textbook method

of computing class group

and generators of ideals.

Also compute unit group O∗

via ratios of generators.

Big generator

Smart–Vercauteren: “However

this method is likely to produce

a generator of large height, i.e.,

with large coefficients. Indeed so

large, that writing the obtained

generator down as a polynomial in

„ may take exponential time.”

Indeed, generator found for gO is

product of powers of various ¸’s.

Must be gu for some u ∈ O∗,
but extremely unlikely to be g .

{principal nonzero ideals} is

kernel of a semigroup map

{nonzero ideals}� C where

C is a finite abelian group,

the “class group of K”.

Fundamental object of study

in algebraic number theory.

Factoring many small ¸O
is a standard textbook method

of computing class group

and generators of ideals.

Also compute unit group O∗

via ratios of generators.

Big generator

Smart–Vercauteren: “However

this method is likely to produce

a generator of large height, i.e.,

with large coefficients. Indeed so

large, that writing the obtained

generator down as a polynomial in

„ may take exponential time.”

Indeed, generator found for gO is

product of powers of various ¸’s.

Must be gu for some u ∈ O∗,
but extremely unlikely to be g .

How do we find g from gu?

{principal nonzero ideals} is

kernel of a semigroup map

{nonzero ideals}� C where

C is a finite abelian group,

the “class group of K”.

Fundamental object of study

in algebraic number theory.

Factoring many small ¸O
is a standard textbook method

of computing class group

and generators of ideals.

Also compute unit group O∗

via ratios of generators.

Big generator

Smart–Vercauteren: “However

this method is likely to produce

a generator of large height, i.e.,

with large coefficients. Indeed so

large, that writing the obtained

generator down as a polynomial in

„ may take exponential time.”

Indeed, generator found for gO is

product of powers of various ¸’s.

Must be gu for some u ∈ O∗,
but extremely unlikely to be g .

How do we find g from gu?

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

{principal nonzero ideals} is

kernel of a semigroup map

{nonzero ideals}� C where

C is a finite abelian group,

the “class group of K”.

Fundamental object of study

in algebraic number theory.

Factoring many small ¸O
is a standard textbook method

of computing class group

and generators of ideals.

Also compute unit group O∗

via ratios of generators.

Big generator

Smart–Vercauteren: “However

this method is likely to produce

a generator of large height, i.e.,

with large coefficients. Indeed so

large, that writing the obtained

generator down as a polynomial in

„ may take exponential time.”

Indeed, generator found for gO is

product of powers of various ¸’s.

Must be gu for some u ∈ O∗,
but extremely unlikely to be g .

How do we find g from gu?

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

{principal nonzero ideals} is

kernel of a semigroup map

{nonzero ideals}� C where

C is a finite abelian group,

the “class group of K”.

Fundamental object of study

in algebraic number theory.

Factoring many small ¸O
is a standard textbook method

of computing class group

and generators of ideals.

Also compute unit group O∗

via ratios of generators.

Big generator

Smart–Vercauteren: “However

this method is likely to produce

a generator of large height, i.e.,

with large coefficients. Indeed so

large, that writing the obtained

generator down as a polynomial in

„ may take exponential time.”

Indeed, generator found for gO is

product of powers of various ¸’s.

Must be gu for some u ∈ O∗,
but extremely unlikely to be g .

How do we find g from gu?

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

Big generator

Smart–Vercauteren: “However

this method is likely to produce

a generator of large height, i.e.,

with large coefficients. Indeed so

large, that writing the obtained

generator down as a polynomial in

„ may take exponential time.”

Indeed, generator found for gO is

product of powers of various ¸’s.

Must be gu for some u ∈ O∗,
but extremely unlikely to be g .

How do we find g from gu?

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

Big generator

Smart–Vercauteren: “However

this method is likely to produce

a generator of large height, i.e.,

with large coefficients. Indeed so

large, that writing the obtained

generator down as a polynomial in

„ may take exponential time.”

Indeed, generator found for gO is

product of powers of various ¸’s.

Must be gu for some u ∈ O∗,
but extremely unlikely to be g .

How do we find g from gu?

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

Define Log : K∗ → Rn by

Log = (log |’1|; : : : ; log |’n|).

Big generator

Smart–Vercauteren: “However

this method is likely to produce

a generator of large height, i.e.,

with large coefficients. Indeed so

large, that writing the obtained

generator down as a polynomial in

„ may take exponential time.”

Indeed, generator found for gO is

product of powers of various ¸’s.

Must be gu for some u ∈ O∗,
but extremely unlikely to be g .

How do we find g from gu?

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

Define Log : K∗ → Rn by

Log = (log |’1|; : : : ; log |’n|).

LogO∗ is a lattice

of rank r1 + r2 − 1 where

r1 = #{i : ’i (K) ⊆ R},
2r2 = #{i : ’i (K) 6⊆ R}.

Big generator

Smart–Vercauteren: “However

this method is likely to produce

a generator of large height, i.e.,

with large coefficients. Indeed so

large, that writing the obtained

generator down as a polynomial in

„ may take exponential time.”

Indeed, generator found for gO is

product of powers of various ¸’s.

Must be gu for some u ∈ O∗,
but extremely unlikely to be g .

How do we find g from gu?

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

Define Log : K∗ → Rn by

Log = (log |’1|; : : : ; log |’n|).

LogO∗ is a lattice

of rank r1 + r2 − 1 where

r1 = #{i : ’i (K) ⊆ R},
2r2 = #{i : ’i (K) 6⊆ R}.

e.g. “ = exp(ıi=256), K = Q(“):

images of “ under ring maps

are “; “3; “5; : : : ; “511.

r1 = 0; r2 = 128; rank 127.

Big generator

Smart–Vercauteren: “However

this method is likely to produce

a generator of large height, i.e.,

with large coefficients. Indeed so

large, that writing the obtained

generator down as a polynomial in

„ may take exponential time.”

Indeed, generator found for gO is

product of powers of various ¸’s.

Must be gu for some u ∈ O∗,
but extremely unlikely to be g .

How do we find g from gu?

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

Define Log : K∗ → Rn by

Log = (log |’1|; : : : ; log |’n|).

LogO∗ is a lattice

of rank r1 + r2 − 1 where

r1 = #{i : ’i (K) ⊆ R},
2r2 = #{i : ’i (K) 6⊆ R}.

e.g. “ = exp(ıi=256), K = Q(“):

images of “ under ring maps

are “; “3; “5; : : : ; “511.

r1 = 0; r2 = 128; rank 127.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

Big generator

Smart–Vercauteren: “However

this method is likely to produce

a generator of large height, i.e.,

with large coefficients. Indeed so

large, that writing the obtained

generator down as a polynomial in

„ may take exponential time.”

Indeed, generator found for gO is

product of powers of various ¸’s.

Must be gu for some u ∈ O∗,
but extremely unlikely to be g .

How do we find g from gu?

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

Define Log : K∗ → Rn by

Log = (log |’1|; : : : ; log |’n|).

LogO∗ is a lattice

of rank r1 + r2 − 1 where

r1 = #{i : ’i (K) ⊆ R},
2r2 = #{i : ’i (K) 6⊆ R}.

e.g. “ = exp(ıi=256), K = Q(“):

images of “ under ring maps

are “; “3; “5; : : : ; “511.

r1 = 0; r2 = 128; rank 127.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

Big generator

Smart–Vercauteren: “However

this method is likely to produce

a generator of large height, i.e.,

with large coefficients. Indeed so

large, that writing the obtained

generator down as a polynomial in

„ may take exponential time.”

Indeed, generator found for gO is

product of powers of various ¸’s.

Must be gu for some u ∈ O∗,
but extremely unlikely to be g .

How do we find g from gu?

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

Define Log : K∗ → Rn by

Log = (log |’1|; : : : ; log |’n|).

LogO∗ is a lattice

of rank r1 + r2 − 1 where

r1 = #{i : ’i (K) ⊆ R},
2r2 = #{i : ’i (K) 6⊆ R}.

e.g. “ = exp(ıi=256), K = Q(“):

images of “ under ring maps

are “; “3; “5; : : : ; “511.

r1 = 0; r2 = 128; rank 127.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

Define Log : K∗ → Rn by

Log = (log |’1|; : : : ; log |’n|).

LogO∗ is a lattice

of rank r1 + r2 − 1 where

r1 = #{i : ’i (K) ⊆ R},
2r2 = #{i : ’i (K) 6⊆ R}.

e.g. “ = exp(ıi=256), K = Q(“):

images of “ under ring maps

are “; “3; “5; : : : ; “511.

r1 = 0; r2 = 128; rank 127.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

Define Log : K∗ → Rn by

Log = (log |’1|; : : : ; log |’n|).

LogO∗ is a lattice

of rank r1 + r2 − 1 where

r1 = #{i : ’i (K) ⊆ R},
2r2 = #{i : ’i (K) 6⊆ R}.

e.g. “ = exp(ıi=256), K = Q(“):

images of “ under ring maps

are “; “3; “5; : : : ; “511.

r1 = 0; r2 = 128; rank 127.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

Find elements of LogO∗

close to Log gu.

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

Define Log : K∗ → Rn by

Log = (log |’1|; : : : ; log |’n|).

LogO∗ is a lattice

of rank r1 + r2 − 1 where

r1 = #{i : ’i (K) ⊆ R},
2r2 = #{i : ’i (K) 6⊆ R}.

e.g. “ = exp(ıi=256), K = Q(“):

images of “ under ring maps

are “; “3; “5; : : : ; “511.

r1 = 0; r2 = 128; rank 127.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

Find elements of LogO∗

close to Log gu.

This is a close-vector problem

(“bounded-distance decoding”).

“Embedding” heuristic:

CVP as fast as SVP.

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

Define Log : K∗ → Rn by

Log = (log |’1|; : : : ; log |’n|).

LogO∗ is a lattice

of rank r1 + r2 − 1 where

r1 = #{i : ’i (K) ⊆ R},
2r2 = #{i : ’i (K) 6⊆ R}.

e.g. “ = exp(ıi=256), K = Q(“):

images of “ under ring maps

are “; “3; “5; : : : ; “511.

r1 = 0; r2 = 128; rank 127.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

Find elements of LogO∗

close to Log gu.

This is a close-vector problem

(“bounded-distance decoding”).

“Embedding” heuristic:

CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.

#{roots of unity} is small.

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

Define Log : K∗ → Rn by

Log = (log |’1|; : : : ; log |’n|).

LogO∗ is a lattice

of rank r1 + r2 − 1 where

r1 = #{i : ’i (K) ⊆ R},
2r2 = #{i : ’i (K) 6⊆ R}.

e.g. “ = exp(ıi=256), K = Q(“):

images of “ under ring maps

are “; “3; “5; : : : ; “511.

r1 = 0; r2 = 128; rank 127.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

Find elements of LogO∗

close to Log gu.

This is a close-vector problem

(“bounded-distance decoding”).

“Embedding” heuristic:

CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.

#{roots of unity} is small.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log normK:F g

for a proper subfield F ⊂ K.

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

Define Log : K∗ → Rn by

Log = (log |’1|; : : : ; log |’n|).

LogO∗ is a lattice

of rank r1 + r2 − 1 where

r1 = #{i : ’i (K) ⊆ R},
2r2 = #{i : ’i (K) 6⊆ R}.

e.g. “ = exp(ıi=256), K = Q(“):

images of “ under ring maps

are “; “3; “5; : : : ; “511.

r1 = 0; r2 = 128; rank 127.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

Find elements of LogO∗

close to Log gu.

This is a close-vector problem

(“bounded-distance decoding”).

“Embedding” heuristic:

CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.

#{roots of unity} is small.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log normK:F g

for a proper subfield F ⊂ K.

There are exactly n distinct

ring maps ’1; : : : ; ’n : K → C.

Define Log : K∗ → Rn by

Log = (log |’1|; : : : ; log |’n|).

LogO∗ is a lattice

of rank r1 + r2 − 1 where

r1 = #{i : ’i (K) ⊆ R},
2r2 = #{i : ’i (K) 6⊆ R}.

e.g. “ = exp(ıi=256), K = Q(“):

images of “ under ring maps

are “; “3; “5; : : : ; “511.

r1 = 0; r2 = 128; rank 127.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

Find elements of LogO∗

close to Log gu.

This is a close-vector problem

(“bounded-distance decoding”).

“Embedding” heuristic:

CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.

#{roots of unity} is small.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log normK:F g

for a proper subfield F ⊂ K.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

Find elements of LogO∗

close to Log gu.

This is a close-vector problem

(“bounded-distance decoding”).

“Embedding” heuristic:

CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.

#{roots of unity} is small.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log normK:F g

for a proper subfield F ⊂ K.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

Find elements of LogO∗

close to Log gu.

This is a close-vector problem

(“bounded-distance decoding”).

“Embedding” heuristic:

CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.

#{roots of unity} is small.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log normK:F g

for a proper subfield F ⊂ K.

We also know Log normK:F gu,

so we know Log normK:F u.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

Find elements of LogO∗

close to Log gu.

This is a close-vector problem

(“bounded-distance decoding”).

“Embedding” heuristic:

CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.

#{roots of unity} is small.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log normK:F g

for a proper subfield F ⊂ K.

We also know Log normK:F gu,

so we know Log normK:F u.

This linearly constrains Log u

to a shifted sublattice of LogO∗.
Number of independent

constraints: unit rank for F .

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

Find elements of LogO∗

close to Log gu.

This is a close-vector problem

(“bounded-distance decoding”).

“Embedding” heuristic:

CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.

#{roots of unity} is small.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log normK:F g

for a proper subfield F ⊂ K.

We also know Log normK:F gu,

so we know Log normK:F u.

This linearly constrains Log u

to a shifted sublattice of LogO∗.
Number of independent

constraints: unit rank for F .

Find elements close to Log gu.

Lower-dimension lattice problem,

if unit rank of F is positive.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

Find elements of LogO∗

close to Log gu.

This is a close-vector problem

(“bounded-distance decoding”).

“Embedding” heuristic:

CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.

#{roots of unity} is small.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log normK:F g

for a proper subfield F ⊂ K.

We also know Log normK:F gu,

so we know Log normK:F u.

This linearly constrains Log u

to a shifted sublattice of LogO∗.
Number of independent

constraints: unit rank for F .

Find elements close to Log gu.

Lower-dimension lattice problem,

if unit rank of F is positive.

Start by recursively computing

Log normK:F g via norm of gO
for each F ⊂ K.

Various constraints on Log u,

depending on subfield structure.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

Find elements of LogO∗

close to Log gu.

This is a close-vector problem

(“bounded-distance decoding”).

“Embedding” heuristic:

CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.

#{roots of unity} is small.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log normK:F g

for a proper subfield F ⊂ K.

We also know Log normK:F gu,

so we know Log normK:F u.

This linearly constrains Log u

to a shifted sublattice of LogO∗.
Number of independent

constraints: unit rank for F .

Find elements close to Log gu.

Lower-dimension lattice problem,

if unit rank of F is positive.

Start by recursively computing

Log normK:F g via norm of gO
for each F ⊂ K.

Various constraints on Log u,

depending on subfield structure.

Compute Log gu

as sum of multiples of Log¸

for the original ¸’s.

Find elements of LogO∗

close to Log gu.

This is a close-vector problem

(“bounded-distance decoding”).

“Embedding” heuristic:

CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.

#{roots of unity} is small.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log normK:F g

for a proper subfield F ⊂ K.

We also know Log normK:F gu,

so we know Log normK:F u.

This linearly constrains Log u

to a shifted sublattice of LogO∗.
Number of independent

constraints: unit rank for F .

Find elements close to Log gu.

Lower-dimension lattice problem,

if unit rank of F is positive.

Start by recursively computing

Log normK:F g via norm of gO
for each F ⊂ K.

Various constraints on Log u,

depending on subfield structure.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log normK:F g

for a proper subfield F ⊂ K.

We also know Log normK:F gu,

so we know Log normK:F u.

This linearly constrains Log u

to a shifted sublattice of LogO∗.
Number of independent

constraints: unit rank for F .

Find elements close to Log gu.

Lower-dimension lattice problem,

if unit rank of F is positive.

Start by recursively computing

Log normK:F g via norm of gO
for each F ⊂ K.

Various constraints on Log u,

depending on subfield structure.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log normK:F g

for a proper subfield F ⊂ K.

We also know Log normK:F gu,

so we know Log normK:F u.

This linearly constrains Log u

to a shifted sublattice of LogO∗.
Number of independent

constraints: unit rank for F .

Find elements close to Log gu.

Lower-dimension lattice problem,

if unit rank of F is positive.

Start by recursively computing

Log normK:F g via norm of gO
for each F ⊂ K.

Various constraints on Log u,

depending on subfield structure.

e.g. “ = exp(2ıi=661), K = Q(“).

Degrees of subfields of K:

660

330
qqq

220
��

132

22

60

MMM

165
qqq

110
�� qqq

66

22 qqq
44

22 ��
30

TTTTTTT ��
20

TTTTTTT
22

12

TTTTTTT
MMMM

55
zz

33

DD zz
22

DD zz
15

VVVVVVVVV zz
10

VVVVVVVVV zz
6

VVVVVVVVVV
DDD zzz

4

VVVVVVVVVV
DDD

11

MMMM 22 ��
5

TTTTTTTT �� qqqq
3

TTTTTTTT
22 zzz

2

TTTTTTTT
22 �� qqqqq

1

MMMM
22 �� qqqqq

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log normK:F g

for a proper subfield F ⊂ K.

We also know Log normK:F gu,

so we know Log normK:F u.

This linearly constrains Log u

to a shifted sublattice of LogO∗.
Number of independent

constraints: unit rank for F .

Find elements close to Log gu.

Lower-dimension lattice problem,

if unit rank of F is positive.

Start by recursively computing

Log normK:F g via norm of gO
for each F ⊂ K.

Various constraints on Log u,

depending on subfield structure.

e.g. “ = exp(2ıi=661), K = Q(“).

Degrees of subfields of K:

660

330
qqq

220
��

132

22

60

MMM

165
qqq

110
�� qqq

66

22 qqq
44

22 ��
30

TTTTTTT ��
20

TTTTTTT
22

12

TTTTTTT
MMMM

55
zz

33

DD zz
22

DD zz
15

VVVVVVVVV zz
10

VVVVVVVVV zz
6

VVVVVVVVVV
DDD zzz

4

VVVVVVVVVV
DDD

11

MMMM 22 ��
5

TTTTTTTT �� qqqq
3

TTTTTTTT
22 zzz

2

TTTTTTTT
22 �� qqqqq

1

MMMM
22 �� qqqqq

Most extreme case:

Composite of quadratics, such as

K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

CVP becomes trivial!

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log normK:F g

for a proper subfield F ⊂ K.

We also know Log normK:F gu,

so we know Log normK:F u.

This linearly constrains Log u

to a shifted sublattice of LogO∗.
Number of independent

constraints: unit rank for F .

Find elements close to Log gu.

Lower-dimension lattice problem,

if unit rank of F is positive.

Start by recursively computing

Log normK:F g via norm of gO
for each F ⊂ K.

Various constraints on Log u,

depending on subfield structure.

e.g. “ = exp(2ıi=661), K = Q(“).

Degrees of subfields of K:

660

330
qqq

220
��

132

22

60

MMM

165
qqq

110
�� qqq

66

22 qqq
44

22 ��
30

TTTTTTT ��
20

TTTTTTT
22

12

TTTTTTT
MMMM

55
zz

33

DD zz
22

DD zz
15

VVVVVVVVV zz
10

VVVVVVVVV zz
6

VVVVVVVVVV
DDD zzz

4

VVVVVVVVVV
DDD

11

MMMM 22 ��
5

TTTTTTTT �� qqqq
3

TTTTTTTT
22 zzz

2

TTTTTTTT
22 �� qqqqq

1

MMMM
22 �� qqqqq

Most extreme case:

Composite of quadratics, such as

K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

CVP becomes trivial!

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Log normK:F g

for a proper subfield F ⊂ K.

We also know Log normK:F gu,

so we know Log normK:F u.

This linearly constrains Log u

to a shifted sublattice of LogO∗.
Number of independent

constraints: unit rank for F .

Find elements close to Log gu.

Lower-dimension lattice problem,

if unit rank of F is positive.

Start by recursively computing

Log normK:F g via norm of gO
for each F ⊂ K.

Various constraints on Log u,

depending on subfield structure.

e.g. “ = exp(2ıi=661), K = Q(“).

Degrees of subfields of K:

660

330
qqq

220
��

132

22

60

MMM

165
qqq

110
�� qqq

66

22 qqq
44

22 ��
30

TTTTTTT ��
20

TTTTTTT
22

12

TTTTTTT
MMMM

55
zz

33

DD zz
22

DD zz
15

VVVVVVVVV zz
10

VVVVVVVVV zz
6

VVVVVVVVVV
DDD zzz

4

VVVVVVVVVV
DDD

11

MMMM 22 ��
5

TTTTTTTT �� qqqq
3

TTTTTTTT
22 zzz

2

TTTTTTTT
22 �� qqqqq

1

MMMM
22 �� qqqqq

Most extreme case:

Composite of quadratics, such as

K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

CVP becomes trivial!

Start by recursively computing

Log normK:F g via norm of gO
for each F ⊂ K.

Various constraints on Log u,

depending on subfield structure.

e.g. “ = exp(2ıi=661), K = Q(“).

Degrees of subfields of K:

660

330
qqq

220
��

132

22

60

MMM

165
qqq

110
�� qqq

66

22 qqq
44

22 ��
30

TTTTTTT ��
20

TTTTTTT
22

12

TTTTTTT
MMMM

55
zz

33

DD zz
22

DD zz
15

VVVVVVVVV zz
10

VVVVVVVVV zz
6

VVVVVVVVVV
DDD zzz

4

VVVVVVVVVV
DDD

11

MMMM 22 ��
5

TTTTTTTT �� qqqq
3

TTTTTTTT
22 zzz

2

TTTTTTTT
22 �� qqqqq

1

MMMM
22 �� qqqqq

Most extreme case:

Composite of quadratics, such as

K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

CVP becomes trivial!

Start by recursively computing

Log normK:F g via norm of gO
for each F ⊂ K.

Various constraints on Log u,

depending on subfield structure.

e.g. “ = exp(2ıi=661), K = Q(“).

Degrees of subfields of K:

660

330
qqq

220
��

132

22

60

MMM

165
qqq

110
�� qqq

66

22 qqq
44

22 ��
30

TTTTTTT ��
20

TTTTTTT
22

12

TTTTTTT
MMMM

55
zz

33

DD zz
22

DD zz
15

VVVVVVVVV zz
10

VVVVVVVVV zz
6

VVVVVVVVVV
DDD zzz

4

VVVVVVVVVV
DDD

11

MMMM 22 ��
5

TTTTTTTT �� qqqq
3

TTTTTTTT
22 zzz

2

TTTTTTTT
22 �� qqqqq

1

MMMM
22 �� qqqqq

Most extreme case:

Composite of quadratics, such as

K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

CVP becomes trivial!

Opposite extreme: prime degree;

the only proper subfield is Q.

My recommendation: big Galois

group; e.g., Q[x]=(xp − x − 1).

Many intermediate cases.

Start by recursively computing

Log normK:F g via norm of gO
for each F ⊂ K.

Various constraints on Log u,

depending on subfield structure.

e.g. “ = exp(2ıi=661), K = Q(“).

Degrees of subfields of K:

660

330
qqq

220
��

132

22

60

MMM

165
qqq

110
�� qqq

66

22 qqq
44

22 ��
30

TTTTTTT ��
20

TTTTTTT
22

12

TTTTTTT
MMMM

55
zz

33

DD zz
22

DD zz
15

VVVVVVVVV zz
10

VVVVVVVVV zz
6

VVVVVVVVVV
DDD zzz

4

VVVVVVVVVV
DDD

11

MMMM 22 ��
5

TTTTTTTT �� qqqq
3

TTTTTTTT
22 zzz

2

TTTTTTTT
22 �� qqqqq

1

MMMM
22 �� qqqqq

Most extreme case:

Composite of quadratics, such as

K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

CVP becomes trivial!

Opposite extreme: prime degree;

the only proper subfield is Q.

My recommendation: big Galois

group; e.g., Q[x]=(xp − x − 1).

Many intermediate cases.

Confused summary by Cramer–

Ducas–Peikert–Regev: method

“may yield slightly subexponential

runtimes in cyclotomic rings of

highly smooth index”.

Start by recursively computing

Log normK:F g via norm of gO
for each F ⊂ K.

Various constraints on Log u,

depending on subfield structure.

e.g. “ = exp(2ıi=661), K = Q(“).

Degrees of subfields of K:

660

330
qqq

220
��

132

22

60

MMM

165
qqq

110
�� qqq

66

22 qqq
44

22 ��
30

TTTTTTT ��
20

TTTTTTT
22

12

TTTTTTT
MMMM

55
zz

33

DD zz
22

DD zz
15

VVVVVVVVV zz
10

VVVVVVVVV zz
6

VVVVVVVVVV
DDD zzz

4

VVVVVVVVVV
DDD

11

MMMM 22 ��
5

TTTTTTTT �� qqqq
3

TTTTTTTT
22 zzz

2

TTTTTTTT
22 �� qqqqq

1

MMMM
22 �� qqqqq

Most extreme case:

Composite of quadratics, such as

K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

CVP becomes trivial!

Opposite extreme: prime degree;

the only proper subfield is Q.

My recommendation: big Galois

group; e.g., Q[x]=(xp − x − 1).

Many intermediate cases.

Confused summary by Cramer–

Ducas–Peikert–Regev: method

“may yield slightly subexponential

runtimes in cyclotomic rings of

highly smooth index”.

Further improvements: 1 , 2

1 2014.10 Campbell–Groves–

Shepherd: Quickly solve CVP

for cyclotomics using known

(good) basis for cyclotomic units.

Start by recursively computing

Log normK:F g via norm of gO
for each F ⊂ K.

Various constraints on Log u,

depending on subfield structure.

e.g. “ = exp(2ıi=661), K = Q(“).

Degrees of subfields of K:

660

330
qqq

220
��

132

22

60

MMM

165
qqq

110
�� qqq

66

22 qqq
44

22 ��
30

TTTTTTT ��
20

TTTTTTT
22

12

TTTTTTT
MMMM

55
zz

33

DD zz
22

DD zz
15

VVVVVVVVV zz
10

VVVVVVVVV zz
6

VVVVVVVVVV
DDD zzz

4

VVVVVVVVVV
DDD

11

MMMM 22 ��
5

TTTTTTTT �� qqqq
3

TTTTTTTT
22 zzz

2

TTTTTTTT
22 �� qqqqq

1

MMMM
22 �� qqqqq

Most extreme case:

Composite of quadratics, such as

K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

CVP becomes trivial!

Opposite extreme: prime degree;

the only proper subfield is Q.

My recommendation: big Galois

group; e.g., Q[x]=(xp − x − 1).

Many intermediate cases.

Confused summary by Cramer–

Ducas–Peikert–Regev: method

“may yield slightly subexponential

runtimes in cyclotomic rings of

highly smooth index”.

Further improvements: 1 , 2

1 2014.10 Campbell–Groves–

Shepherd: Quickly solve CVP

for cyclotomics using known

(good) basis for cyclotomic units.

Start by recursively computing

Log normK:F g via norm of gO
for each F ⊂ K.

Various constraints on Log u,

depending on subfield structure.

e.g. “ = exp(2ıi=661), K = Q(“).

Degrees of subfields of K:

660

330
qqq

220
��

132

22

60

MMM

165
qqq

110
�� qqq

66

22 qqq
44

22 ��
30

TTTTTTT ��
20

TTTTTTT
22

12

TTTTTTT
MMMM

55
zz

33

DD zz
22

DD zz
15

VVVVVVVVV zz
10

VVVVVVVVV zz
6

VVVVVVVVVV
DDD zzz

4

VVVVVVVVVV
DDD

11

MMMM 22 ��
5

TTTTTTTT �� qqqq
3

TTTTTTTT
22 zzz

2

TTTTTTTT
22 �� qqqqq

1

MMMM
22 �� qqqqq

Most extreme case:

Composite of quadratics, such as

K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

CVP becomes trivial!

Opposite extreme: prime degree;

the only proper subfield is Q.

My recommendation: big Galois

group; e.g., Q[x]=(xp − x − 1).

Many intermediate cases.

Confused summary by Cramer–

Ducas–Peikert–Regev: method

“may yield slightly subexponential

runtimes in cyclotomic rings of

highly smooth index”.

Further improvements: 1 , 2

1 2014.10 Campbell–Groves–

Shepherd: Quickly solve CVP

for cyclotomics using known

(good) basis for cyclotomic units.

Most extreme case:

Composite of quadratics, such as

K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

CVP becomes trivial!

Opposite extreme: prime degree;

the only proper subfield is Q.

My recommendation: big Galois

group; e.g., Q[x]=(xp − x − 1).

Many intermediate cases.

Confused summary by Cramer–

Ducas–Peikert–Regev: method

“may yield slightly subexponential

runtimes in cyclotomic rings of

highly smooth index”.

Further improvements: 1 , 2

1 2014.10 Campbell–Groves–

Shepherd: Quickly solve CVP

for cyclotomics using known

(good) basis for cyclotomic units.

Most extreme case:

Composite of quadratics, such as

K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

CVP becomes trivial!

Opposite extreme: prime degree;

the only proper subfield is Q.

My recommendation: big Galois

group; e.g., Q[x]=(xp − x − 1).

Many intermediate cases.

Confused summary by Cramer–

Ducas–Peikert–Regev: method

“may yield slightly subexponential

runtimes in cyclotomic rings of

highly smooth index”.

Further improvements: 1 , 2

1 2014.10 Campbell–Groves–

Shepherd: Quickly solve CVP

for cyclotomics using known

(good) basis for cyclotomic units.

Analysis in paper is bogus,

but algorithm is very fast.

Most extreme case:

Composite of quadratics, such as

K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

CVP becomes trivial!

Opposite extreme: prime degree;

the only proper subfield is Q.

My recommendation: big Galois

group; e.g., Q[x]=(xp − x − 1).

Many intermediate cases.

Confused summary by Cramer–

Ducas–Peikert–Regev: method

“may yield slightly subexponential

runtimes in cyclotomic rings of

highly smooth index”.

Further improvements: 1 , 2

1 2014.10 Campbell–Groves–

Shepherd: Quickly solve CVP

for cyclotomics using known

(good) basis for cyclotomic units.

Analysis in paper is bogus,

but algorithm is very fast.

Plagiarized and properly analyzed

by Cramer–Ducas–Peikert–Regev.

Most extreme case:

Composite of quadratics, such as

K=Q(
√

2;
√

3;
√

5; : : : ;
√

29).

CVP becomes trivial!

Opposite extreme: prime degree;

the only proper subfield is Q.

My recommendation: big Galois

group; e.g., Q[x]=(xp − x − 1).

Many intermediate cases.

Confused summary by Cramer–

Ducas–Peikert–Regev: method

“may yield slightly subexponential

runtimes in cyclotomic rings of

highly smooth index”.

Further improvements: 1 , 2

1 2014.10 Campbell–Groves–

Shepherd: Quickly solve CVP

for cyclotomics using known

(good) basis for cyclotomic units.

Analysis in paper is bogus,

but algorithm is very fast.

Plagiarized and properly analyzed

by Cramer–Ducas–Peikert–Regev.

2 2015.01 Song announcement:

Fast quantum algorithm for gu.

“PIP : : : solved [BiasseSong’14]”.

But paper not available yet.

