Computational
algebraic number theory
tackles lattice-based cryptography

Daniel J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Moving to the left
Moving to the right

Big generator

Moving through the night

—Yes, "Big Generator’, 1987

The short-generator problem

Take degree-n number field K.
l.e. field K € C with lenqg K = n.

(Weaker specification: field K
with Q C K and lenqg K = n.)

eg. n=2, K=Q(/) =

Q® Qi — Q[x]/(x* +1).

e.g. n = 256; { = exp(mi/n);

K = Q(¢) = QIx]/(x" + 1)

e.g. n = 660; { = exp(27i/661);
K=Q({) — Q[x]/(x"+---+1).
e K=Q(vV2 /3.5, ... v/29).

ational
- number theory
attice-based cryptography

. Bernstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

Moving to the left

Moving to the right

Big generator

Moving through the night
‘es, "Big Generator”, 1987

The short-generator problem

Take degree-n number field K.
l.e. field K € C with lenqg K = n.

(Weaker specification: field K
with Q C K and lenq K = n.)

eg. n=2, K=Q(/) =

Q@ Qi — Q[x]/(x* +1).

e.g. n = 256; { = exp(mi/n);

K = Q(¢) = QIx]/(x" + 1)

e.g. n = 660; { = exp(27i/661);
K=Q() — Q[x]/(x"+---+1).
e K=Q(v3.v3./5,....7/2)

Define (
O 2

Nonzero
factor ul
DOWETS (

e.g. K=
= 0 =
e.g. (=
= 0 =
e.g. (=
= 0 =
e.g. K =
Z[(1++

The short-generator problem Define O =Z N K

1 -mo
theory Take degree-n number field K. O — Z" as Z-mo

ed cryptography

l.e. field K € C with lenqg K = n. Nonzero ideals of
0

is at Chicago &
siteit Eindhoven

(Weaker specification: field K factor uniquely as

with Q C K and lenqg K = n.)

eg. n=2; K=Q(i) =
Q& Qi Q[/(x* +1). |
e.g. n = 256; ¢ = exp(mi/n); e.g. ¢ = exp(mi/2
K = Q(¢) — Qx]/(x" +1). >0 =2 -2
hrough the night e.g. n = 660; ¢ = exp(2mi/661); ;g(/)g__;)[(g](l’/‘
1057 K=Q(Q) = Qlx]/(x" +---41). -

8 K=QU2 Va5 V) RO

powers of prime ic

= O = Z|i] — Z|

loving to the left
ving to the right
Big generator

senerator’,

raphy

g0 &
hoven

he left
e right
1erator
> night
, 1987

The short-generator problem

Take degree-n number field K.
l.e. field K € C with lenqg K = n.

(Weaker specification: field K
with Q C K and lenq K = n.)

eg. n=2;, K=Q(i) =

Q@ Qi — Q[x]/(x* +1).

e.g. n = 256; { = exp(mi/n);

K = Q(¢) = QIx]/(x" +1)

e.g. n = 660; { = exp(2mi/661);
K=Q() — Q[x]/(x"+---+1).
e K—Q(v2.7/3.v5.. .. v/29)

Define © = Z N K; subring
O — Z" as Z-modules.

Nonzero ideals of O
factor uniquely as products

powers of prime ideals of O.

e.g. K =Q(i) = Q[x]/(x*
= O = Z[i] — Z[x]/(x?
e.g. { = exp(mi/256), K =
— 0 = Z[¢) < Z[x]/ (2
e.g. { = exp(2mwi/661), K =
= O =Z|{] <= ---.

e.g. K= Q(\/g) = () =
Z[(1++/5)/2] = Z[x]/ (x>~

T he short-generator problem Define O = Z N K; subring of K.
O —» Z" as Z-modules.

Take degree-n number field K.
l.e. field K C C with lenqg K = n. Nonzero ideals of O
factor uniquely as products of

(Weaker specification: field K
with Q C K and lenq K = n.)

e.g. n=2; K=Q(i) =
Q® Qi — Q[x]/(x*+1)

powers of prime ideals of O.

e.g. K = Q(/) ;»Q[X]/(X +1)
= 0 =Z[i] = Z|[x]/(x* +1).
eg. n=2506; (=exp(mi/n): e.g. ¢ = exp(mi/256), K = Q(¢)
Kg: Q(g)i» EQ[X]/(Z(” +/1§ = O =Z[{] — Z[x]/(x*° + 1),
e.g. n = 660; ¢ = exp(27i/661); e.g. ¢ = exp(2mi/661), K = Q({)

K=QE) = QI/(x"+---+1). — O=&d=>-

B e.g. K = Q(v/5) :>. O =
e.g. K=Q(v2,v3,V5, ..., V29). Z[(1++/5)/2] — Z[x]/(x*—x—1).

rt-generator problem

yree-n number field K.
K C C with lenq K = n.

specification: field K
_ K and lenq K = n.)

2, K=Q(i) =

— Q[x]/(x* +1).

256; ¢ = exp(7i/n);

¢) = Q[x]/(x" +1).
660; { = exp(27i/661);

() = Qx| /(x" 4 ---+1).

Define © = Z N K; subring of K.
O — Z" as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K=Q(i) — Q[x]/(x* + 1)
= O =Z[i] = Z[x]/(x%2 + 1).
e.g. (= exp(mi/256), K = Q({)
= 0 =Z[¢] — Z[x]/(x*° +1).
e.g. ¢ = exp(2mi/661), K = Q(¢)
= O =Z|[{] = -~

eg. K=Q(v5) = O =
Z[(1++/5)/2] <= Z[x]/(x*—x—1).

The sho
Find “sf
given th

e.g. (=
O = ZJ¢
The Z-s
201 — 2.
035 — 1
979 — 1.
(18 — 8.
IS an Ide
Can you
such tha

or problem

nber field K.
ith lenq K = n.

1on: field K
enQ K = n.)

(/) =

x? +1).
exp(mi/n);
|/(x" +1).
exp(27mi/661);

|/(x" + -+ 1).
3,5, ..., V29).

Define © = Z N K; subring of K.
O < Z" as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K =Q(i) = Q[x]/(x* + 1)
= O =Z[i] = Z[x]/(x* + 1).
e.g. (= exp(mi/256), K = Q({)
= O = Z[¢] < Z[x]/(x?*®® + 1).
e.g. { = exp(27i/661), K = Q({)
= O =Z[{] < ---.

eg. K=Q(v5) = O =
Z[(1++/5)/2] = Z[x]/(x>—x—1).

The short-generat
Find “short” nonz
given the principal

e.g. { =exp(mi/4
0 = Z[¢] = Z|x],
The Z-submodule
201 — 233¢ — 430
935 — 1063¢ — 19
979 — 1119¢ — 20!
718 — 829¢ — 153
is an ideal I of O.
Can you find a shc
such that I = gO

Define © = Z N K; subring of K.
O — Z" as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K= Q(i) = Q[x]/(x* + 1)
= O =Z[i] = Z[x]/(x%2 + 1).
e.g. { = exp(mi/256), K = Q({)
= 0 =Z[¢] = Z[x]/(x*° + 1).
e.g. ¢ = exp(2mi/661), K = Q(¢)
= O =Z|[{] = -~

eg. K=Q(v5) = O =
Z[(1++/5)/2] = Z[x]/(x*—x—1).

The short-generator problen
Find “short” nonzero g € O
given the principal ideal gO

e.g. (=exp(mi/4); K= Q(
O =Z[¢] — Z[x]/(x* + 1).
The Z-submodule of O gen
201 — 233¢ — 430¢2 — 712¢
935 — 1063¢ — 1986¢2 — 32
079 — 1119¢ — 2092¢2 — 34
718 — 829¢ — 1537¢2 — 254
Is an ideal I of O.

Can you find a short g € O

such that I = g7

Define © = Z N K; subring of K.
O < Z" as Z-modules.

Nonzero ideals of O
factor uniquely as products of

powers of prime ideals of O.

e.g. K =Q(i) = Q[x]/(x* + 1)
= O =Z[i] = Z[x]/(x* + 1).
e.g. (= exp(mi/256), K = Q({)
= O = Z[¢] < Z[x]/(x?*®® + 1).
e.g. { = exp(27i/661), K = Q({)
= O =Z[{] <= ---.

eg. K=Q(v5) = O =
Z[(1++/5)/2] = Z[x]/(x>—x—1).

The short-generator problem:
Find “short” nonzero g € O
given the principal ideal gO.

e.g. ¢ =exp(mi/4); K = Q();
O =Z[¢] — Z[x]/(x* +1).
The Z-submodule of O gen by
201 — 233¢ — 430¢2 — 712¢3,
035 — 1063¢ — 1986¢2 — 3299¢3,
079 — 1119¢ — 2092¢2 — 3470¢3,
718 — 829¢ — 1537¢2 — 2546¢3
Is an ideal I of O.

Can you find a short g € O

such that I = g7

) = Z N K; subring of K.

'3

s Z-modules.

ideals of O

110

uely as products of

T

orime ideals of O.

- Q) — Q[x]/(x2 +1)
Z[i] — Z[X]/(X2 1).
exp(mi/256), K = Q(¢)

Z[¢] < Z[x]/(x*° + 1).
exp(2mi /661), K = Q(¢)

Z[] = -
-Q(V5) = 0=

5)/2] < Z[X]/(XZ—X—].).

The short-generator problem:
Find “short” nonzero g € O
given the principal ideal gO.

e.g. ¢ =exp(mi/4); K = Q(C);
O =Z[¢] — Z[x]/(x* + 1).
The Z-submodule of O gen by
201 — 233¢ — 43082 — 712¢3,

035 — 1063¢ — 1986¢2 — 3299¢3,
979 — 1119¢ — 2092¢2 — 3470¢3,

718 — 829¢ — 1537¢2 — 2546¢3
Is an ideal I of O.

Can you find a short g € O
such that I = g7

The latt

=+ subring of K.
dules.

O
products of
leals of O.

[X]/(X +1)
[X]/(1).

6), K = Q(¢)
[x]/(x*° + 1),
561), K = Q(¢)

= 0 =

Z[x]/(x?>—x—1).

The short-generator problem:
Find “short” nonzero g € O
given the principal ideal gO.

e.g. ¢ =exp(mi/4); K = Q();
O =Z[¢] — Z[x]/(x* +1).
The Z-submodule of O gen by
201 — 233¢ — 43082 — 712¢3,

035 — 1063¢ — 1986¢2 — 3299¢3,
979 — 1119¢ — 2092¢2 — 3470¢3,

718 — 829¢ — 1537¢2 — 2546¢3
Is an ideal I of O.

Can you find a short g € O
such that I = g7

The lattice perspe

Use LLL to quickl
short elements of

ZA+ZB+ZC +
A = (201, —233, -
B = (935, —1063,
C = (979, —1119,
D = (718, —829, -

of K.

The short-generator problem:
Find “short” nonzero g € O
given the principal ideal gO.

e.g. ¢ =exp(mi/4); K = Q();
O =Z[¢] — Z[x]/(x* +1).
The Z-submodule of O gen by
201 — 233¢ — 43082 — 712¢3,

035 — 1063¢ — 1986¢2 — 3299¢3,
979 — 1119¢ — 2092¢2 — 3470¢3,

718 — 829¢ — 1537¢2 — 2546¢3
Is an ideal I of O.

Can you find a short g € O
such that I = g7

The lattice perspective

Use LLL to quickly find

short elements of lattice

LA+ ZB + ZC + ZD wher
A = (201, —233, —430, —71
B = (935, —1063, —1986, —
C = (979, —1119, —2092, —
D = (718, —829, —1537, —2

The short-generator problem:
Find “short” nonzero g € O
given the principal ideal gO.

e.g. ¢ =exp(mi/4); K = Q();
O =Z[¢] — Z[x]/(x* +1).
The Z-submodule of O gen by
201 — 233¢ — 43082 — 712¢3,

035 — 1063¢ — 1986¢2 — 3299¢3,
979 — 1119¢ — 2092¢2 — 3470¢3,

718 — 829¢ — 1537¢2 — 2546¢3
Is an ideal I of O.

Can you find a short g € O
such that I = g7

The lattice perspective

S

Use LLL to quickly find

nort elements of lattice

LA+ ZB + ZC + ZD where

201, —233, —430, —712),
035, —1063, —1986, —3299),
079, —1119, —2092, —3470),

= (
= (
= (
— (718, —829, —1537, —2546).

The short-generator problem:
Find “short” nonzero g € O
given the principal ideal gO.

e.g. ¢ =exp(mi/4); K = Q();
O =Z[¢] — Z[x]/(x* +1).
The Z-submodule of O gen by
201 — 233¢ — 43082 — 712¢3,

035 — 1063¢ — 1986¢2 — 3299¢3,
979 — 1119¢ — 2092¢2 — 3470¢3,

718 — 829¢ — 1537¢2 — 2546¢3
Is an ideal I of O.

Can you find a short g € O
such that I = g7

The lattice perspective

Use LLL to quickly find

short elements of lattice

LA+ 2ZB + ZC + ZD where
(201, —233, —430, —712),
(935, —1063, —1986, —3299),
(979, —1119, —2092, —3470),
(718, —829, —1537, —2546).

A
B
C
D

Find (3,1,4,1) as
—37A+ 3B —7C +16D.
This was my original g.

The short-generator problem:
Find “short” nonzero g € O
given the principal ideal gO.

e.g. ¢ =exp(mi/4); K = Q();
O =Z[¢] — Z[x]/(x* +1).
The Z-submodule of O gen by
201 — 233¢ — 43082 — 712¢3,

035 — 1063¢ — 1986¢2 — 3299¢3,
979 — 1119¢ — 2092¢2 — 3470¢3,

718 — 829¢ — 1537¢2 — 2546¢3
Is an ideal I of O.

Can you find a short g € O
such that I = g7

The lattice perspective

Use LLL to quickly find

short elements of lattice

LA+ 2ZB + ZC + ZD where
201, —233, —430, —712),
935, —1063, —1986, —3299),
979, —1119, —2092, —3470),
718, —829, —1537, —2546).

A=
B = (
C =
D = (

Find (3,1,4,1) as
—37A+ 3B —7C +16D.
This was my original g.

Also find, e.g., (—4,—1,3,1).
Multiplying by root of unity

(here ¢?) preserves shortness.

rt-generator problem:
ort” nonzero g € O
e principal ideal gO.

exp(mi/4); K = Q({);
] < Z[x]/(x* +1).
ubmodule of O gen by
33¢ — 43002 — 712¢3,

)63¢ — 1986¢2 — 3299¢3,
119¢ — 2092¢2 — 3470¢3,

29¢ — 1537¢2 — 2546¢3
al I of O.

find a short g € O

t I =g07?

The lattice perspective

Use LLL to quickly find

short elements of lattice
LA+ ZB + ZC + ZD where
A = (201, —233, —430, —712),

C =
D = (718, —829, —1537, —2546).

Find (3,1,4,1) as
—37A+3B—-7C +16D.
This was my original g.

Also find, e.g., (—4,—1,3,1).
Multiplying by root of unity

(here ¢?) preserves shortness.

(
B = (935, —1063, —1986, —3299),
(979, —1119, —2092, —3470),

For muc

LLL alm

Big gap
and size
that LLI

or problem:

ero g € O
ideal gO.

) K = Q(Q);
/(x* +1).
of O gen by
2 —712¢°,

36¢2 — 3290¢3,
3282 — 3470¢3,

7¢2 — 2546¢3
ort g € O
!

The lattice perspective

Use LLL to quickly find

short elements of lattice

LA+ ZB + ZC + ZD where
201, —233, —430, —712),

A
B
C
D = (718, —829, —1537, —2546).

Find (3,1,4,1) as
—37A+ 3B —7C +16D.
This was my original g.

Also find, e.g., (—4,—1,3,1).
Multiplying by root of unity

(here ¢?) preserves shortness.

(

(935, —1063, —1986, —3299),
(979, —1119, —2092, —3470),
(

For much larger n

LLL almost never
Big gap between s
and size of “short
that LLL typically

The lattice perspective

Use LLL to quickly find

short elements of lattice
LA+ ZB + ZC + ZD where
A = (201, —233, —430, —712),

C =
D = (718, —829, —1537, —2546).

Find (3,1,4,1) as
—37A+3B—-7C +16D.
This was my original g.

Also find, e.g., (—4,—1,3,1).
Multiplying by root of unity

(here ¢?) preserves shortness.

(
B = (935, —1063, —1986, —3299),
(979, —1119, —2092, —3470),

For much larger n:

LLL almost never finds g.
Big gap between size of g
and size of “short” vectors
that LLL typically finds in I

The lattice perspective

Use LLL to quickly find

short elements of lattice

LA+ ZB + ZC + ZD where
201, —233, —430, —712),

A
B
C
D = (718, —829, —1537, —2546).

Find (3,1,4,1) as
—37A+ 3B —7C +16D.
This was my original g.

Also find, e.g., (—4,—1,3,1).
Multiplying by root of unity

(here ¢?) preserves shortness.

(

(935, —1063, —1986, —3299),
(979, —1119, —2092, —3470),
(

For much larger n:

LLL almost never finds g.

Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

The lattice perspective

Use LLL to quickly find

short elements of lattice

LA+ ZB + ZC + ZD where
201, —233, —430, —712),

A
B
C
D = (718, —829, —1537, —2546).

Find (3,1,4,1) as
—37A+ 3B —7C +16D.
This was my original g.

Also find, e.g., (—4,—1,3,1).
Multiplying by root of unity

(here ¢?) preserves shortness.

(

(935, —1063, —1986, —3299),
(979, —1119, —2092, —3470),
(

For much larger n:

LLL almost never finds g.

Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:
reduced gap but slower.

The lattice perspective

Use LLL to quickly find

short elements of lattice

LA+ ZB + ZC + ZD where
(201, —233, —430, —712),
(935, —1063, —1986, —3299),
(979, —1119, —2092, —3470),
(718, —829, —1537, —2546).

A
B
C
D

Find (3,1,4,1) as
—37A+ 3B —7C +16D.
This was my original g.

Also find, e.g., (—4,—1,3,1).
Multiplying by root of unity

(here ¢?) preserves shortness.

For much larger n:

LLL almost never finds g.
Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:
reduced gap but slower.

Fancier lattice algorithms:
Under reasonable assumptions,
2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,
2008 Nguyen—Vidick (~1.33")
but still exponential time.

Ice perspective

“to quickly find

ments of lattice

B+ ZC + ZD where

1, —233, —430, —712),

5, —1063, —1986, —3299),
9, —1119, —2092, —3470),
8, —829, —1537, —2546).

1,4,1) as
3B—-7C 4+ 16D.
s my original g.

I, eg., (—4,-1,3,1).
ing by root of unity
) preserves shortness.

For much larger n:

LLL almost never finds g.
Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:
reduced gap but slower.

Fancier lattice algorithms:
Under reasonable assumptions,
2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,
2008 Nguyen—Vidick (~1.33")
but still exponential time.

Exploitir

Use LLL
generate
What hc

Pure lat
Work m

ctive

v find

lattice

ZD where
-430, —712),
—1986, —3299),
—2092, —3470),
-1537, —2546).

+ 16D.
1al g.
4,—1,3,1).

t of unity
5 shortness.

For much larger n:

LLL almost never finds g.
Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:
reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,

2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,

2008 Nguyen—Vidick (~1.33")
but still exponential time.

Exploiting factoriz

Use LLL, BK/Z, et

generate rather sh
What happens if ¢

Pure lattice appro
Work much harde

V)

For much larger n:

LLL almost never finds g.
Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:
reduced gap but slower.

Fancier lattice algorithms:
Under reasonable assumptions,
2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,
2008 Nguyen—Vidick (~1.33")
but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € g
What happens if aO # gO:

Pure lattice approach: Disc:
Work much harder, find sho

For much larger n:

LLL almost never finds g.
Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:
reduced gap but slower.

Fancier lattice algorithms:
Under reasonable assumptions,
2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,
2008 Nguyen—Vidick (~1.33")
but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO7?

Pure lattice approach: Discard «.

Work much harder, find shorter o.

For much larger n:

LLL almost never finds g.
Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:
reduced gap but slower.

Fancier lattice algorithms:
Under reasonable assumptions,
2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,
2008 Nguyen—Vidick (~1.33")
but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO7?

Pure lattice approach: Discard «.

Work much harder, find shorter o.

Alternative: Gain information
from factorization of ideals.

For much larger n:

LLL almost never finds g.
Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:
reduced gap but slower.

Fancier lattice algorithms:
Under reasonable assumptions,
2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,
2008 Nguyen—Vidick (~1.33")
but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO7?

Pure lattice approach: Discard «.

Work much harder, find shorter o.

Alternative: Gain information
from factorization of ideals.

eg. If ;O =g0" P2 . Q?

For much larger n:

LLL almost never finds g.

Big gap between size of g

and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,
2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,
2008 Nguyen—Vidick (~1.33")

but sti

| exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO7?

Pure lattice approach: Discard «.

Work much harder, find shorter o.

Alternative: Gain information
from factorization of ideals.

e.g. If 010 = g0 - P?.Q?
and apO = g0 - P - Q3

For much larger n:

LLL almost never finds g.

Big gap between size of g

and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:

reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,
2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,
2008 Nguyen—Vidick (~1.33")

but sti

| exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO7?

Pure lattice approach: Discard «.

Work much harder, find shorter o.

Alternative: Gain information
from factorization of ideals.

e.g. If 010 = g0 - P?.Q?
and a0 = g0 - P - @3
and 30 = g0 - P - Q?

For much larger n:

LLL almost never finds g.
Big gap between size of g
and size of “short” vectors
that LLL typically finds in I.

Increased BKZ block size:
reduced gap but slower.

Fancier lattice algorithms:

Under reasonable assumptions,

2015 Laarhoven—de Weger
finds g in time ~1.23".

Big progress compared to, e.g.,

2008 Nguyen—Vidick (~1.33")
but still exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO7?

Pure lattice approach: Discard «.

Work much harder, find shorter o.

Alternative: Gain information
from factorization of ideals.

eg. If a1O =gO - P?. Q2
and apO = g0 - P - Q3
and o300 = gO - P - Q? then

P=aja; 10 and Q = Q0 10
—1

and g0 = o "ay, oz3(9

h larger n:

ost never finds g.
between size of g
of “short” vectors
_ typically finds in I.

d BKZ block size:
gap but slower.

lattice algorithms:
asonable assumptions,
arhoven—de Weger

n time ~1.23".

ress compared to, e.g.,
uyen—Vidick (/~1.33")
exponential time.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO7?

Pure lattice approach: Discard o.

Work much harder, find shorter «.

Alternative: Gain information
from factorization of ideals.

e.g. If 010 = gO - P?.Q?
and agO:gO-P-Q3
and 030 = gO - P - Q? then

P=aja; 10 and Q = QapQ, 10
—1

and g0 = oy "ay, oz3(9

General
factor o
of some

Solve sy
to find ¢
as prodt

finds g.
ize of g

" vectors
finds in I.

ck size:
lower.

orithms:

assumptions,

e Weger
23",

ared to, e.g.,

ck (~1.33")
al time.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO?

Pure lattice approac
Work much harder,

n: Discard «.

find shorter o.

Alternative: Gain information

from factorization of ideals.

e.g. If 10 = gO - P?- Q2

and ac O =g0 - P -
and az30 =g0 - P -

Q3
Q? then

P=aja; 10 and Q = Q0 10

and gO—all

a, oz3(9

General strategy:
factor O into pre
of some primes an

Solve system of ec
to find generator {
as product of pow

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO?

Pure lattice approach: Discard o.

Work much harder, find shorter «.

Alternative: Gain information
from factorization of ideals.

e.g. If 1O = gO - P? - Q?
and a0 = g0 - P - Q3
and 030 = gO - P - Q? then

P=aja; 10 and Q = QapQ, 10
—1

and g0 = oy "ay, oz3(9

General strategy: For many
factor O into products of |
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the

Exploiting factorization General strategy: For many a's,

Use LLL. BKZ. etc. to factor O into products of powers

generate rather short a € gO. of some primes and gO.
What happens if aO # gO?? Solve system of equations

Pure lattice approach: Discard a. to find generator for g0

Work much harder, find shorter a. as product of powers of the as.

Alternative: Gain information
from factorization of ideals.

e.g. |f 0110 — gO : P2 _ QQ
anc azO:g(’).p.QZ%
and a30 = gO - P - Q7 then

P=aja; 10 and Q = Qo ~10
—1

and g0 = o "ay, a3(9

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO??

Pure lattice approach: Discard «.

Work much harder, find shorter a.

Alternative: Gain information

from factorization of ideals.

e.g.

dNcG

dNcG

If €10 = g0 - P?. Q7
OzQOZgO-P-Q3
a30 = gO - P - Q? then

P=aja; 10 and Q = Q0 10

and g0 = o4

—1
a, oz3(9

General strategy: For many a's,
factor O into products of powers
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the a's.

“Can the system be solved?”

— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.

Exploiting factorization

Use LLL, BKZ, etc. to
generate rather short a € gQ.
What happens if aO # gO??

Pure lattice approach: Discard «.

Work much harder, find shorter a.

Alternative: Gain information

from factorization of ideals.

e.g.

dNcG

dNcG

f 110 = g0 - P?-Q°
OzQOZgO-P-Q3
30 = gO - P - Q% then

P=aja; 10 and Q = Q0 10

and g0 = o4

—1
a, oz3(9

General strategy: For many a's,
factor O into products of powers
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the a's.

“Can the system be solved?”

— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.

“But {primes} is infinite!”

1g factorization

. BKZ, etc. to
' rather short o € g0O.
ppens if aO # gO7?

tice approach: Discard o.

uch harder, find shorter o.

ive: Gain information
torization of ideals.

1O:gO-P2-Q2

) =g0-P- Q3

) = g@ - P - Q% then
x_l(’) and Q—a2a3 Lo
—ozlloz2 oz3(9

General strategy: For many a's,
factor O into products of powers
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the a's.

“Can the system be solved?”

— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.

“But {primes} is infinite!”

— Restr
e.g., all

ation

c. to
ort a € g0.
xO £ g7

ach: Discard .

- find shorter a.

iInformation
of ideals.

. P2 . Q2

D Q3

> . Q2 then

R = 042043_10
20/3*(9.

General strategy: For many a's,
factor O into products of powers
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the a's.

“Can the system be solved?”

— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a 1
e.g., all primes of

rd o,

rter c.

General strategy: For many a's,
factor O into products of powers
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the a's.

“Can the system be solved?”

— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base
e.g., all primes of norm <y.

General strategy: For many a's,
factor O into products of powers
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the a's.

“Can the system be solved?”

— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base”:

e.g., all primes of norm <y.

General strategy: For many a's,
factor O into products of powers
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the a's.

“Can the system be solved?”

— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base”:

e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

General strategy: For many a's,
factor O into products of powers
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the a's.

“Can the system be solved?”

— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base’:
e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

— Then throw it away.
But often it does factor.

General strategy: For many a's,
factor O into products of powers
of some primes and gQO.

Solve system of equations
to find generator for gO
as product of powers of the a's.

“Can the system be solved?”

— Becomes increasingly
reasonable to expect as the
number of equations approaches
and passes the number of primes.

“But {primes} is infinite!”

— Restrict to a “factor base’:
e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

— Then throw it away.
But often it does factor.

Familiar issue from
“Index calculus’ DL methods,

CFRAC, LS, QS, NFS, etc.
Model the norm of (a/g)O
as “random” integer in [1, x];

y-smoothness chance ~1/y
if logy ~ +1/(1/2) log x log log x.

strategy: For many a's,
O into products of powers
primes and gO.

stem of equations
renerator for g0
ct of powers of the a's.

e system be solved?”

mes increasingly

le to expect as the

of equations approaches
es the number of primes.

rimes} is infinite!”

— Restrict to a “factor base’:
e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

— Then throw It away.
But often it does factor.

Familiar issue from

“Index calculus’™ DL methods,
CFRAC, LS, QS, NFS, etc.
Model the norm of (a/g)O
as “random” integer in [1, x|;

y-smoothness chance ~1/y
if logy ~ +/(1/2) log x log log x.

Variatiol
Generat:
factor o
After en
solve sys
obtain g

For many a's,
bducts of powers

d gO.

juations
or gO
ers of the a's.

e solved?”

singly
ct as the
ns approaches

mber of primes.

nfinite!”

— Restrict to a “factor base’:
e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

— Then throw it away.
But often it does factor.

Familiar issue from

“Index calculus’™ DL methods,
CFRAC, LS, QS, NFS, etc.
Model the norm of (a/g)O
as “random” integer in [1, x];

y-smoothness chance ~1/y
if logy ~ +1/(1/2)log x log log x.

Variation: lIgnore ,
Generate rather st
factor O into sm
After enough a's,
solve system of eq
obtain generator f

a's,
YOwers

ches
Imes.

— Restrict to a “factor base’:
e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

— Then throw It away.
But often it does factor.

Familiar issue from

“Index calculus’™ DL methods,
CFRAC, LS, QS, NFS, etc.
Model the norm of (a/g)O
as “random” integer in [1, x|;

y-smoothness chance ~1/y

if logy ~ +/(1/2) log x log log x.

Variation: lgnore gO.
Generate rather short o € (
factor O into small primes
After enough a's,

solve system of equations;
obtain generator for each pr

— Restrict to a “factor base’:
e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

— Then throw it away.
But often it does factor.

Familiar issue from

“Index calculus™ DL methods,
CFRAC, LS, QS, NFS, etc.
Model the norm of (a/g)O
as “random” integer in [1, x];

y-smoothness chance ~1/y

if logy ~ +1/(1/2)log x log log x.

Variation: lgnore gO.
Generate rather short o € O,
factor O into small primes.
After enough a's,

solve system of equations;
obtain generator for each prime.

— Restrict to a “factor base’: Variation: lgnore gQ.
e.g., all primes of norm <y. Generate rather short o € O,

) . , factor o into small primes.
But what if a® doesn’t P

. . , After enough a's,
factor into those primes? 5

solve system of equations;
— Then throw it away. obtain generator for each prime.
But often it does factor. After this precomputation,

Familiar issue from factor one a©O C gO;

“index calculus” DL methods, obtain generator for gO.

CFRAC, LS, QS, NFS, etc.
Model the norm of (a/g)O
as “random” integer in [1, x];

y-smoothness chance ~1/y
if logy ~ +1/(1/2)log x log log x.

— Restrict to a “factor base’: Variation: lgnore gQ.
e.g., all primes of norm <y. Generate rather short o € O,

) . , factor o into small primes.
But what if a® doesn’t P

. . , After enough a's,
factor into those primes? 5

solve system of equations;
— Then throw it away. obtain generator for each prime.
But often it does factor. After this precomputation,

Familiar issue from factor one a©O C gO;

“index calculus” DL methods, obtain generator for gO.

CFRAC, LS, Q5, NFS, etc. “Do all primes have generators?”
Model the norm of (a/g)O

as “random” integer in [1, x];

y-smoothness chance ~1/y
if logy ~ +1/(1/2)log x log log x.

— Restrict to a “factor base’:
e.g., all primes of norm <y.

“But what if O doesn’t
factor into those primes?”

— Then throw it away.
But often it does factor.

Familiar issue from

“Index calculus™ DL methods,
CFRAC, LS, QS, NFS, etc.
Model the norm of (a/g)O
as “random” integer in [1, x];

y-smoothness chance ~1/y
if logy ~ +1/(1/2)log x log log x.

Variation: lgnore gO.

Generate rather short o € O,
factor O into small primes.
After enough a's,

solve system of equations;
obtain generator for each prime.
After this precomputation,
factor one aO C gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:
For many (most?) number fields,
yes; but for big cyclotomics, nol!

Modulo a few small primes, yes.

1ct to a ‘factor base’:
primes of norm <y.

at if O doesn't
to those primes?”

throw It away.
n it does factor.

Issue from
alculus” DL methods,

LS, QS, NFS, etc.
ne norm of (a/g)O
lom"” integer in [1, x];
hness chance ~1/y

~ 1/(1/2) log x log log x.

Variation: lgnore gO.

Generate rather short o € O,
factor O into small primes.
After enough a's,

solve system of equations;
obtain generator for each prime.
After this precomputation,
factor one aO C gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:
For many (most?) number fields,
yes; but for big cyclotomics, nol

Modulo a few small primes, yes.

{princip.
kernel of
{nonzer
Cisatfi
the “cla:

Fundam
in algebl

-actor base’:
norm <y.

doesn't

rimes?’

away.
factor.

)
)L methods,
\FS, etc.
f (a/g)0
er in [1, x];
nce ~1/y

log x log log x.

Variation: Ignore gO.

Generate rather short o € O,
factor O into small primes.
After enough a's,

solve system of equations;
obtain generator for each prime.
After this precomputation,
factor one aO C gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:
For many (most?) number fields,
yes; but for big cyclotomics, nol

Modulo a few small primes, yes.

{principal nonzero
kernel of a semigr:
{nonzero ideals} -
C is a finite abelia
the “class group o

Fundamental obje
in algebraic numb

Variation: Ignore gO. {principal nonzero ideals} is

\v

Generate rather short o € O, kernel of a semigroup map
factor O into small primes. {nonzero ideals} — C where
After enough a's, C is a finite abelian group,
solve system of equations; the “class group of K.

obtain generator for each prime. .
& P Fundamental object of studh

After this precomputation, . .
P P in algebraic number theory.

factor one aO C gQO;
obtain generator for gO.

s,

“Do all primes have generators?”
| — Standard heuristics:
| For many (most?) number fields,
— yes; but for big cyclotomics, nol
g X. |

Modulo a few small primes, yes.

Variation: Ignore gO. {principal nonzero ideals} is

Generate rather short a € O, kernel of a semigroup map
factor O into small primes. {nonzero ideals} — C where
After enough a's, C is a finite abelian group,
solve system of equations; the “class group of K.

obtain generator for each prime. .
& P Fundamental object of study

After this precomputation, . .
in algebraic number theory.
factor one aO C gQ;

obtain generator for gO.
“Do all primes have generators?”

— Standard heuristics:
For many (most?) number fields,
yes; but for big cyclotomics, nol

Modulo a few small primes, yes.

Variation: lgnore gO.

Generate rather short o € O,
factor O into small primes.
After enough a's,

solve system of equations;
obtain generator for each prime.
After this precomputation,
factor one aO C gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:
For many (most?) number fields,
yes; but for big cyclotomics, nol

Modulo a few small primes, yes.

{principal nonzero ideals} is
kernel of a semigroup map
{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.

Fundamental object of study
in algebraic number theory.

Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.

Variation: lgnore gO.

Generate rather short o € O,
factor O into small primes.
After enough a's,

solve system of equations;
obtain generator for each prime.
After this precomputation,
factor one aO C gO;

obtain generator for gO.

“Do all primes have generators?”

— Standard heuristics:
For many (most?) number fields,
yes; but for big cyclotomics, nol

Modulo a few small primes, yes.

{principal nonzero ideals} is
kernel of a semigroup map
{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.

Fundamental object of study
in algebraic number theory.

Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.

Also compute unit group OF
via ratios of generators.

1: lgnore gO.

> rather short o € O,

O into small primes.
ough a's,

tem of equations;
enerator for each prime.
S precomputation,

ne aO C g0O;

enerator for gQ.

primes have generators?”

lard heuristics:
y (most?) number fields,
for big cyclotomics, no!

a few small primes, yes.

{principal nonzero ideals} is
kernel of a semigroup map
{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.

Fundamental object of study
in algebraic number theory.

Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.

Also compute unit group OF
via ratios of generators.

Big gene

Smart—\
this met
a genera
with larg
large, th
generatc
6 may t:

Indeed, ;
oroduct

Must be
DUt extr

o).
ort o € O,
all primes.

uations;

or each prime.
yutation,

5O,

or gO.

/e generators?”

Stics:
number fields,
clotomics, no!

[l primes, yes.

{principal nonzero ideals} is
kernel of a semigroup map
{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.

Fundamental object of study
in algebraic number theory.

Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.

Also compute unit group OF
via ratios of generators.

Big generator

Smart—Vercautere
this method is like
a generator of larg

with large coetficie
large, that writing
generator down as
6 may take expone

Indeed, generator
oroduct of powers
Must be gu for so

out extremely unli

Ime.

ors?”

lelds,
nol
yes.

{principal nonzero ideals} is
kernel of a semigroup map
{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.

Fundamental object of study
in algebraic number theory.

Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.

Also compute unit group OF
via ratios of generators.

Big generator

Smart—Vercauteren: “Howes
this method is likely to prod
a generator of large height,

with large coefficients. Inde
large, that writing the obtal
generator down as a polynot
6 may take exponential time

Indeed, generator found for
oroduct of powers of various
Must be gu for some u € O

out extremely unlikely to be

{principal nonzero ideals} is
kernel of a semigroup map
{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.

Fundamental object of study
in algebraic number theory.

Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.

Also compute unit group OF
via ratios of generators.

Big generator

Smart—Vercauteren: “However
this method is likely to produce
a generator of large height, i.e.,

with large coefficients. Indeed so
large, that writing the obtained
generator down as a polynomial in
6 may take exponential time."

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € OF,

out extremely unlikely to be g.

{principal nonzero ideals} is
kernel of a semigroup map
{nonzero ideals} — C where
C is a finite abelian group,
the “class group of K.

Fundamental object of study
in algebraic number theory.

Factoring many small aO

Is a standard textbook method
of computing class group

and generators of ideals.

Also compute unit group OF
via ratios of generators.

Big generator

Smart—Vercauteren: “However
this method is likely to produce
a generator of large height, i.e.,

with large coefficients. Indeed so
large, that writing the obtained
generator down as a polynomial in
6 may take exponential time."

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € OF,

out extremely unlikely to be g.

How do we find g from gu?

|l nonzero ideals} is
- a semigroup map

> ideals} — C where
nite abelian group,
ss group of K.

ental object of study
alc number theory.

g many small aO
dard textbook method
uting class group
erators of ideals.

npute unit group OF
s of generators.

Big generator

Smart—Vercauteren: “However
this method is likely to produce

a generator of large height, i.e.,
with large coefficients. Indeed so
large, that writing the obtained
generator down as a polynomial in
6 may take exponential time.”

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € O,

out extremely unlikely to be g.

How do we find g from gu?

There at

ring may

ideals} is
OUpP map
» C where

n group,
f K"

ct of study
or theory.

nall aO®
yook method

5 group
ideals.

group OF
ators.

Big generator

Smart—Vercauteren: “However
this method is likely to produce
a generator of large height, i.e.,

with large coefficients. Indeed so
large, that writing the obtained
generator down as a polynomial in
6 may take exponential time."

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € OF,

out extremely unlikely to be g.

How do we find g from gu?

There are exactly
ring maps @1, ...,

od

Big generator

Smart—Vercauteren: “However
this method is likely to produce

a generator of large height, i.e.,
with large coefficients. Indeed so
large, that writing the obtained
generator down as a polynomial in
6 may take exponential time.”

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € O,

out extremely unlikely to be g.

How do we find g from gu?

There are exactly n distinct

ring maps @1,...,9n: K —

Big generator

Smart—Vercauteren: “However
this method is likely to produce
a generator of large height, i.e.,

with large coefficients. Indeed so
large, that writing the obtained
generator down as a polynomial in
6 may take exponential time."

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € O,

out extremely unlikely to be g.

How do we find g from gu?

There are exactly n distinct

ring maps ¢1,...,9,: K — C.

Big generator There are exactly n distinct

Smart—Vercauteren: “However & Maps ¥1 Pn

this method is likely to produce Define Log : K* — R” by
a generator of large height, i.e., Log = (log |¢1],...,log|wnl|).
with large coefficients. Indeed so

large, that writing the obtained
generator down as a polynomial in
6 may take exponential time."

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € O,

out extremely unlikely to be g.

How do we find g from gu?

Big generator

Smart—Vercauteren: “However
this method is likely to produce
a generator of large height, i.e.,

with large coefficients. Indeed so
large, that writing the obtained
generator down as a polynomial in
6 may take exponential time."

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € O,

out extremely unlikely to be g.

How do we find g from gu?

There are exactly n distinct
ring maps ¢1,...,9,: K — C.

Define Log : K* — R” by
Log = (log [p1], - - ., log |wnl).

Log O* is a lattice
of rank r; + rn — 1 where

rn = #{i : pi(K) C R},
2ry = #1 : pi(K) € R}.

Big generator

Smart—Vercauteren: “However
this method is likely to produce
a generator of large height, i.e.,

with large coefficients. Indeed so
large, that writing the obtained
generator down as a polynomial in
6 may take exponential time."

Indeed, generator found for gO is
oroduct of powers of various a's.
Must be gu for some u € O,

out extremely unlikely to be g.

How do we find g from gu?

There are exactly n distinct
ring maps ¢1,...,9,: K — C.

Define Log : K* — R” by
Log = (log [p1], - - ., log |wnl).

Log O* is a lattice
of rank r; + rn — 1 where

rn = #{i : pi(K) C R},
2ry = #1 : pi(K) € R}.

e.g. { =exp(7mi/256), K = Q({):
images of ¢ under ring maps

are ¢,¢3,¢2, ..., ¢
r1 =0; n =128; rank 127.

2rator

/ercauteren: “However
hod is likely to produce
tor of large height, i.e.,

re coefficients. Indeed so
at writing the obtained

r down as a polynomial in
ke exponential time.”

ocenerator found for gQO is
of powers of various a's.
gu for some u € O,
emely unlikely to be g.

we find g from gu?

There are exactly n distinct
ring maps ¢1,...,9,: K — C.
Define Log : K* — R” by

Log = (log [p1], . .., log |wnl).

Log O* is a lattice

of rank r; + rn — 1 where
rn = #{i : pj(K) C R},

2ry = #{i 1 pi(K) £ R}.

e.g. { =exp(7mi/256), K = Q({):
images of ¢ under ring maps

are ¢,¢3,¢2, ..., ¢
rr =0; n=128; rank 127.

Comput
as sum ¢
for the ¢

n: “"However

ly to produce

e height, 1.e.,
nts. Indeed so
the obtained

“a polynomial in

antial time.”

found for gO is
of various a's.
me u € OF,
kely to be g.

from gu?

There are exactly n distinct

ring maps @1, ..., wn: K — C.

Define Log : K* — R” by
Log = (log [p1], . - ., log|wnl).

Log O* is a lattice
of rank r; + rn — 1 where

rn = #{i : pi(K) C R},
2ry = #1 : pi(K) € R}.

e.g. { = exp(mi/256), K = Q({):

images of ¢ under ring maps

are ¢, ¢3,¢°,.. ., el
ri =0; n =128; rank 127.

Compute Log gu
as sum of multiple
for the original o'

/er
uce
l.e.,
>d so
ned
mial In
g is
, QU'S.

5k

24

There are exactly n distinct
ring maps ©1, ..., wn: K — C.

Define Log : K* — R” by
Log = (log [p1], . .., log|wnl).

Log O* is a lattice
of rank r; + rn — 1 where

rn = #{i : pi(K) C R},
2ry = #1 : pi(K) € R}.

e.g. { =exp(7mi/256), K = Q({):
images of ¢ under ring maps

are ¢, ¢3, 82, ..., el
rn =0; n=128; rank 127.

Compute Log gu
as sum of multiples of Log o
for the original a's.

There are exactly n distinct

ring maps @1, ..., wn: K — C.

Define Log : K* — R” by
Log = (log [p1], . - ., log |wnl).

Log O* is a lattice
of rank r; + rn — 1 where

rn = #{i : pi(K) C R},
2ry = #1 : pi(K) € R}.

e.g. { = exp(mi/256), K = Q({):

images of ¢ under ring maps

are ¢,¢3,¢°,.. ., el
r1 =0; n =128; rank 127.

Compute Log gu
as sum of multiples of Log o
for the original a's.

There are exactly n distinct

ring maps @1, ..., wn: K — C.

Define Log : K* — R” by
Log = (log [p1], . - ., log |wnl).

Log O* is a lattice
of rank r; + rn — 1 where

rn = #{i : pi(K) C R},
2ry = #1 : pi(K) € R}.

e.g. { = exp(mi/256), K = Q({):

images of ¢ under ring maps

are ¢,¢3,¢°,.. ., el
r1 =0; n =128; rank 127.

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

There are exactly n distinct

ring maps @1, ..., wn: K — C.

Define Log : K* — R” by
Log = (log [p1], . - ., log |wnl).

Log O* is a lattice
of rank r; + rn — 1 where

rn = #{i : pi(K) C R},
2ry = #1 : pi(K) € R}.

e.g. { = exp(mi/256), K = Q({):

images of ¢ under ring maps

are ¢,¢3,¢°,.. ., el
r1 =0; n =128; rank 127.

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

This 1s a close-vector problem
(“bounded-distance decoding”).

"Embedding” heuristic:
CVP as fast as SVP.

There are exactly n distinct

ring maps @1, ..., wn: K — C.

Define Log : K* — R” by
Log = (log [p1], . - ., log |wnl).

Log O* is a lattice
of rank r; + rn — 1 where

rn = #{i : pi(K) C R},
2ry = #1 : pi(K) € R}.

e.g. { = exp(mi/256), K = Q({):

images of ¢ under ring maps

are ¢,¢3,¢°,.. ., el
r1 =0; n =128; rank 127.

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

This 1s a close-vector problem
(“bounded-distance decoding”).
"Embedding” heuristic:

CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.
#{roots of unity} is small.

e exactly n distinct

s a lattice

r1 + r» — 1 where
{71 9i(K) C R},
{7 9i(K) £ R}.

exp(mi/256), K = Q(¢):

ot ¢ under ring maps

C5 C511-
» = 128; rank 127.

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

This 1s a close-vector problem

(“bounded-distance decoding”).

"Embedding” heuristic:
CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.
#{roots of unity} is small.

A subfie

(2014.0:

Say we |
for a prc

n distinct
wn: K — C.

» R by
., log |e¢nl).

| where
' C R}

Z R},
56), K = Q({):

ring maps
H11

rank 127.

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

This 1s a close-vector problem

(“bounded-distance decoding”).

"Embedding” heuristic:
CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.
#{roots of unity} is small.

A subfield-logarith

(2014.02 Bernsteil

Say we know Log
for a proper subfie

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

This 1s a close-vector problem

(“bounded-distance decoding”).

"Embedding” heuristic:
CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.
#{roots of unity} is small.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Lognormy.F g
for a proper subfield F C K

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

This 1s a close-vector problem

(“bounded-distance decoding”).

"Embedding” heuristic:
CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.
#{roots of unity} is small.

A subftield-logarithm attack

(2014.02 Bernstein)

Say we know Lognormy.F g
for a proper subfield F C K.

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

This 1s a close-vector problem

(“bounded-distance decoding”).

"Embedding” heuristic:
CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.
#{roots of unity} is small.

A subftield-logarithm attack

(2014.02 Bernstein)

Say we know Lognormy.F g
for a proper subfield F C K.

We also know Log normy.F gu,
so we know Log normg.f u.

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

This 1s a close-vector problem

(“bounded-distance decoding”).

"Embedding” heuristic:
CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.
#{roots of unity} is small.

A subftield-logarithm attack

(2014.02 Bernstein)

Say we know Lognormy.F g
for a proper subfield F C K.

We also know Log normy.F gu,
so we know Log normg.f u.

This linearly constrains Log u
to a shifted sublattice of Log O*.
Number of independent

constraints: unit rank for F.

Compute Log gu
as sum of multiples of Log o
for the original a's.

Find elements of Log OF
close to Log gu.

This 1s a close-vector problem

(“bounded-distance decoding”).

"Embedding” heuristic:
CVP as fast as SVP.

This finds Log u.

Easily reconstruct g

up to a root of unity.
#{roots of unity} is small.

A subftield-logarithm attack

(2014.02 Bernstein)

Say we know Lognormy.F g
for a proper subfield F C K.

We also know Log normy.F gu,
so we know Log normg.f u.

This linearly constrains Log u

to a shifted sublattice of Log O*.
Number of independent
constraints: unit rank for F.

Find elements close to Log gu.
Lower-dimension lattice problem,
if unit rank of F is positive.

e Log gu
f multiples of Log o
riginal a's.

ments of Log OF
Log gu.

 close-vector problem

ed-distance decoding”).

ding” heuristic:
fast as SVP.

Is Log u.
construct g

root of unity:.

of unity} is small.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Lognormy.F g
for a proper subfield F C K.

We also know Log normy.F gu,
so we know Log normg.fF u.

This linearly constrains Log u

to a shifted sublattice of Log O*.

Number of independent
constraints: unit rank for F.

Find elements close to Log gu.
Lower-dimension lattice problem,
if unit rank of F is positive.

Start by
Log norr
for each

Various
dependil

s of Log o

>.

og O*

tor problem

e decoding”).

ristic:
P.

8
Ity.
Is small.

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Lognormy.F g
for a proper subfield F C K.

We also know Log normy.F gu,
so we know Log normg.fF u.

This linearly constrains Log u

to a shifted sublattice of Log O*.

Number of independent
constraints: unit rank for F.

Find elements close to Log gu.

Lower-dimension lattice problem,

if unit rank of F is positive.

Start by recursivel
Log normy.F g via
for each F C K.

Various constraint
depending on subf

g").

A subfield-logarithm attack

(2014.02 Bernstein)

Say we know Lognormy.F g
for a proper subfield F C K.

We also know Log normy.F gu,
so we know Log normg.fF u.

This linearly constrains Log u

to a shifted sublattice of Log O*.

Number of independent
constraints: unit rank for F.

Find elements close to Log gu.
Lower-dimension lattice problem,
if unit rank of F is positive.

Start by recursively computi

Log normy.F g via norm of ,
for each F C K.

Various constraints on Log ¢
depending on subfield struct

A subftield-logarithm attack

(2014.02 Bernstein)

Say we know Lognormy.F g
for a proper subfield F C K.

We also know Log normy.F gu,
so we know Log normg.f u.

This linearly constrains Log u

to a shifted sublattice of Log O*.

Number of independent
constraints: unit rank for F.

Find elements close to Log gu.

Lower-dimension lattice problem,

if unit rank of F is positive.

Start by recursively computing

Log normy.F g via norm of g0
for each F C K.

Various constraints on Log u,
depending on subfield structure.

A subftield-logarithm attack

(2014.02 Bernstein)

Say we know Lognormy.F g
for a proper subfield F C K.

We also know Log normy.F gu,
so we know Log normg.f u.

This linearly constrains Log u

to a shifted sublattice of Log O*.

Number of independent
constraints: unit rank for F.

Find elements close to Log gu.

Lower-dimension lattice problem,

if unit rank of F is positive.

Start by recursively computing

Log normy.F g via norm of g0
for each F C K.

Various constraints on Log u,
depending on subfield structure.

e.g. (= exp(2mi/661), K = Q({).
Degrees of subfields of K:

660
N
330 220 132 60

PO VNN

165 110 66 _ 443020 " 12
o 33 A T 10 4
Wz//

\\1//

|d-logarithm attack

> Bernstein)

<now Lognormgy.F g
per subfield F C K.

know Log normy.F gu,
wow Log normy.F u.

arly constrains Log u

ted sublattice of Log O*.

of independent
1ts: unit rank for F.

ments close to Log gu.

'mension lattice problem,

ink of F is positive.

Start by recursively computing

Log normy.F g via norm of gO
for each F C K.

Various constraints on Log u,
depending on subfield structure.

e.g. (= exp(2mi/661), K = Q({).

Degrees of subfields of K:

660
N
330 220 132 60

PO VNN

165 110 66 _ 443020 " 12
5|5YW5
Wz//

\\1//

Most ex
Compos
K =Q(s
CVP be

m attack

)

NorMk:F 8
Id F C K.

normy.F gu,
Mk -F U.

rains Log u

tice of Log O*.

ndent
ank for F.

e to Log gu.

attice problem,

5 positive.

Start by recursively computing

Log normy.F g via norm of g0
for each F C K.

Various constraints on Log u,
depending on subfield structure.

e.g. (= exp(2mi/661), K = Q({).

Degrees of subfields of K:

660
N
330 220 132 60

PO VNN

165 110 66 _ 443020 " 12
o 33 A T 10 4
Wz//

\\1//

Most extreme case
Composite of quac

K=Q(v2,v3,V

CVP becomes triv

s u,

o O,

" U.

lem,

Start by recursively computing

Log normy.F g via norm of gO
for each F C K.

Various constraints on Log u,
depending on subfield structure.

e.g. (= exp(2mi/661), K = Q({).

Degrees of subfields of K:

660
N
330 220 132 60

PO VNN

165 110 66 _ 443020 " 12
5|5YW5
Wz//

\\1//

Most extreme case:

Composite of quadratics, su

K=Q(v2 v3,V5,...,

CVP becomes trivial!

V2!

Start by recursively computing Most extreme case:

Log normy.F g via norm of gO Composite of quadratics, such as
for each F C K. K= Q(\/§ v3.4/5 ... v 29).

. . CVP becomes triviall
Various constraints on Log u,

depending on subfield structure.

e.g. (= exp(2mi/661), K = Q({).
Degrees of subfields of K:
660

N
330 220 132 60

PO VNN

165 110 66 _ 443020 " 12
o 33 A T 10 4
Wz//

\\1//

Start by recursively computing
Log normy.F g via norm of gO

for each F C K.

Various constraints on Log u,
depending on subfield structure.

e.g. (= exp(2mi/661), K = Q({).

Degrees of subfields of K:

660
N
330 220 132 60

PO VNN

165 110 66 _ 443020 " 12
o 33 A T 10 4
Wz//

\\1//

Most extreme case:
Composite of quadratics, such as

K=Q(v2,v3,v5,...,v29).

CVP becomes trivial!

Opposite extreme: prime degree;
the only proper subfield is Q.
My recommendation: big Galois

group; e.g., Q[x]/(xP — x —1).

Many intermediate cases.

Start by recursively computing

Log normy.F g via norm of gO
for each F C K.

Various constraints on Log u,
depending on subfield structure.

e.g. (= exp(2mi/661), K = Q({).

Degrees of subfields of K:

660
N
330 220 132 60

PO VNN

165 110 66 _ 443020 " 12
o 33 A T 10 4
Wz//

\\1//

Most extreme case:
Composite of quadratics, such as

K=Q(v2,v3,v5,...,v29).

CVP becomes trivial!

Opposite extreme: prime degree;
the only proper subfield is Q.
My recommendation: big Galois

group; e.g., Q[x]/(xP — x —1).
Many intermediate cases.

Confused summary by Cramer—
Ducas—Peikert—Regev: method
"may vyield slightly subexponential
runtimes in cyclotomic rings of
highly smooth index” .

recursively computing

nk-F & via norm of gO
F CK.

constraints on Log u,
1g on subfield structure.

exp(2mi/661), K = Q({).

of subfields of K:

660
N
330 220 132 _60

/ XTI

) 66 _44 30 20 12
mﬁ\;a
W/
T~5<3%<)

\\1//

Most extreme case:
Composite of quadratics, such as

K=Q(v2,v3,v5,...,v29).

CVP becomes trivial!

Opposite extreme: prime degree;
the only proper subfield is Q.
My recommendation: big Galois

group; e.g., Q[x]/(xP — x —1).
Many intermediate cases.

Confused summary by Cramer—
Ducas—Peikert—Regev: method
“may yield slightly subexponential
runtimes in cyclotomic rings of
highly smooth index" .

Further

for cycle
(good) |

y computing
norm of g0

s on Log u,
leld structure.

561), K = Q({).

s of K:
)

3

S/

60

<!
/

;

5<0
/

Most extreme case:
Composite of quadratics, such as

K=Q(v2,v3,v5,...,v29).

CVP becomes trivial!

Opposite extreme: prime degree;
the only proper subfield is Q.
My recommendation: big Galois

group; e.g., Q[x]/(xP — x —1).
Many intermediate cases.

Confused summary by Cramer—
Ducas—Peikert—Regev: method
“may vyield slightly subexponential
runtimes in cyclotomic rings of
highly smooth index” .

Further improvem:

(1)2014.10 Camy
Shepherd: Quickly
for cyclotomics u
(good) basis for ¢

Most extreme case:
Composite of quadratics, such as

K=Q(v2,v3,v5,...,v29).

CVP becomes trivial!

Opposite extreme: prime degree;
the only proper subfield is Q.
My recommendation: big Galois

group; e.g., Q[x]/(xP — x —1).
Many intermediate cases.

Confused summary by Cramer—
Ducas—Peikert—Regev: method
“may yield slightly subexponential
runtimes in cyclotomic rings of
highly smooth index" .

Further improvements: m

" '

@ 2014.10 Campbell-Grov
Shepherd: Quickly solve CV
for cyclotomics using know

(good) basis for cyclotomic

Most extreme case:
Composite of quadratics, such as

K=Q(v2,v3,v5,...,v29).

CVP becomes trivial!

Opposite extreme: prime degree;
the only proper subfield is Q.
My recommendation: big Galois

group; e.g., Q[x]/(xP — x —1).
Many intermediate cases.

Confused summary by Cramer—
Ducas—Peikert—Regev: method
“may vyield slightly subexponential
runtimes in cyclotomic rings of
highly smooth index” .

Further improvements: m @

N—

@ 2014.10 Campbell-Groves—

Shepherd: Quickly solve CVP
for cyclotomics using known

(good) basis for cyclotomic units.

Most extreme case:
Composite of quadratics, such as

K=Q(v2,v3,v5,...,v29).

CVP becomes trivial!

Opposite extreme: prime degree;
the only proper subfield is Q.
My recommendation: big Galois

group; e.g., Q[x]/(xP — x —1).
Many intermediate cases.

Confused summary by Cramer—
Ducas—Peikert—Regev: method
“may vyield slightly subexponential
runtimes in cyclotomic rings of
highly smooth index” .

Further improvements: m @

N—

@ 2014.10 Campbell-Groves—

Shepherd: Quickly solve CVP
for cyclotomics using known

(good) basis for cyclotomic units.

Analysis In paper is bogus,
but algorithm is very fast.

Most extreme case:
Composite of quadratics, such as

K=Q(v2,v3,v5,...,v29).

CVP becomes trivial!

Opposite extreme: prime degree;
the only proper subfield is Q.
My recommendation: big Galois

group; e.g., Q[x]/(xP — x —1).
Many intermediate cases.

Confused summary by Cramer—
Ducas—Peikert—Regev: method
“may vyield slightly subexponential
runtimes in cyclotomic rings of
highly smooth index” .

Further improvements: m @

N—

@ 2014.10 Campbell-Groves—
Shepherd: Quickly solve CVP
for cyclotomics using known

(good) basis for cyclotomic units.

Analysis In paper is bogus,
but algorithm is very fast.

Plagiarized and properly analyzed
by Cramer—Ducas—Peikert—Regev.

Most extreme case:
Composite of quadratics, such as

K=Q(v2,v3,v5,...,v29).

CVP becomes trivial!

Opposite extreme: prime degree;
the only proper subfield is Q.
My recommendation: big Galois

group; e.g., Q[x]/(xP — x —1).
Many intermediate cases.

Confused summary by Cramer—
Ducas—Peikert—Regev: method
“may vyield slightly subexponential
runtimes in cyclotomic rings of
highly smooth index” .

Further improvements: m @

N—

@ 2014.10 Campbell-Groves—
Shepherd: Quickly solve CVP
for cyclotomics using known

(good) basis for cyclotomic units.

Analysis In paper is bogus,
but algorithm is very fast.

Plagiarized and properly analyzed
by Cramer—Ducas—Peikert—Regev.

@ 2015.01 Song announcement:
Fast quantum algorithm for gu.

“PIP ... solved [BiasseSong'14]".
But paper not available yet.

